1
|
Lima RS, Carrettiero DC, Ferrari MFR. BAG2 prevents Tau hyperphosphorylation and increases p62/SQSTM1 in cell models of neurodegeneration. Mol Biol Rep 2022; 49:7623-7635. [PMID: 35612780 DOI: 10.1007/s11033-022-07577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Protein aggregates are pathological hallmarks of many neurodegenerative diseases, however the physiopathological role of these aggregates is not fully understood. Protein quality control has a pivotal role for protein homeostasis and depends on specific chaperones. The co-chaperone BAG2 can target phosphorylated Tau for degradation by an ubiquitin-independent pathway, although its possible role in autophagy was not yet elucidated. In view of this, the aim of the present study was to investigate the association among protein aggregation, autophagy and BAG2 levels in cultured cells from hippocampus and locus coeruleus as well as in SH-SY5Y cell line upon different protein aggregation scenarios induced by rotenone, which is a flavonoid used as pesticide and triggers neurodegeneration. METHODS AND RESULTS The present study showed that rotenone exposure at 0.3 nM for 48 h impaired autophagy prior to Tau phosphorylation at Ser199/202 in hippocampus but not in locus coeruleus cells, suggesting that distinct neuron cells respond differently to rotenone toxicity. Rotenone induced Tau phosphorylation at Ser199/202, together with a decrease in the endogenous BAG2 protein levels in SH-SY5Y and hippocampus cell culture, which indicates that rotenone and Tau hyperphosphorylation can affect this co-chaperone. Finally, it has been shown that BAG2 overexpression, increased p62/SQSTM1 levels in cells from hippocampus and locus coeruleus, stimulated LC3II recycling as well as prevented the raise of phosphorylated Tau at Ser199/202 in hippocampus. CONCLUSIONS Results demonstrate a possible role for BAG2 in degradation pathways of specific substrates and its importance for the study of cellular aspects of neurodegenerative diseases.
Collapse
Affiliation(s)
- Raquel S Lima
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil
| | - Daniel C Carrettiero
- Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Santo Andre, SP, Brazil
| | - Merari F R Ferrari
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
2
|
Pokusa M, Hajdúchová D, Menichová V, Evinová A, Hatoková Z, Kráľová-Trančíková A. Vulnerability of subcellular structures to pathogenesis induced by rotenone in SH-SY5Y cells. Physiol Res 2021; 70:89-99. [PMID: 33453717 DOI: 10.33549/physiolres.934477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Numerous pathological changes of subcellular structures are characteristic hallmarks of neurodegeneration. The main research has focused to mitochondria, endoplasmic reticulum, Golgi apparatus, lysosomal networks as well as microtubular system of the cell. The sequence of specific organelle damage during pathogenesis has not been answered yet. Exposition to rotenone is used for simulation of neurodegenerative changes in SH-SY5Y cells, which are widely used for in vitro modelling of Parkinson´s disease pathogenesis. Intracellular effects were investigated in time points from 0 to 24 h by confocal microscopy and biochemical analyses. Analysis of fluorescent images identified the sensitivity of organelles towards rotenone in this order: microtubular cytoskeleton, mitochondrial network, endoplasmic reticulum, Golgi apparatus and lysosomal network. All observed morphological changes of intracellular compartments were identified before alphaS protein accumulation. Therefore, their potential as an early diagnostic marker is of interest. Understanding of subcellular sensitivity in initial stages of neurodegeneration is crucial for designing new approaches and a management of neurodegenerative disorders.
Collapse
Affiliation(s)
- M Pokusa
- Biomedical Center Martin, Martin, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
3
|
Ogunruku OO, Ogunyemi BO, Oboh G, Babatunde OO, Boligon AA. Modulation of dopamine metabolizing enzymes and antioxidant status by Capsicum annuum Lin in rotenone-intoxicated rat brain. Toxicol Rep 2019; 6:795-802. [PMID: 31440456 PMCID: PMC6700337 DOI: 10.1016/j.toxrep.2019.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Rotenone is a natural pesticide and environmental neurotoxin which mimics key aspects of Parkinson's disease. This study evaluated the effect of ethyl acetate extract of Capsicum annuum L. (C. annuum) in rotenone-intoxicated rats. Oral doses of C. annuum extract (50, 100 & 200 mg kg-1) and rotenone (2 mg kg-1 i.p.) were co-administered for 25 days during which rearing behavior was monitored. Biochemical alterations in the levels of tyrosine hydroxylase (TH), monoamine oxidase (MAO), superoxide dismutase (SOD) as well as reduced and oxidized glutathione (GSH) were estimated. Decrease in rearing behavior resulting from rotenone exposure was ameliorated by 200 mg kg-1 of C. annuum. Furthermore, rotenone exposure significantly (P < 0.05) decreased TH and increased MAO levels respectively. Impaired brain antioxidant capacity, typified by significantly (P < 0.05) decreased GSH redox status and SOD levels were also observed in rotenone-treated rats. However, co-administration of C. annuum ameliorated rotenone-induced derangements and potentiated the effect of levodopa. These results taken together suggests that C. annuum protects against rotenone-induced neurotoxicity by modulating dopamine metabolism and GSH redox status in rat brain.
Collapse
Affiliation(s)
| | | | - Ganiyu Oboh
- Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| | | | - Aline Augusti Boligon
- Program of Post-Graduation in Pharmaceutical Sciences, Federal University of Santa Maria, Campus Camobi, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
4
|
Hydroxysafflor Yellow A Attenuates Lipopolysaccharide-Induced Neurotoxicity and Neuroinflammation in Primary Mesencephalic Cultures. Molecules 2018; 23:molecules23051210. [PMID: 29783643 PMCID: PMC6100575 DOI: 10.3390/molecules23051210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 11/17/2022] Open
Abstract
Lipopolysaccharide (LPS)-induced neuroinflammation triggers and accelerates the pathogenesis of Parkinson's disease (PD). Carthamus tinctorius L., a traditional Chinese medicine, has been widely used for the treatment of cerebrovascular disease. Hydroxysafflor Yellow A (HSYA) is an active component of C. tinctorius. The purpose of this study was to investigate whether HSYA could attenuate LPS-induced neurotoxicity and neuroinflammation in primary mesencephalic cultures. Cell viability was measured by MTT and LDH assays. The number of tyrosine hydroxylase (TH) positive neuron was observed by immunohistochemistry. NF-κB p65 and iNOS expressions were evaluated with western blotting method. Pro-inflammatory cytokines including IL-1β and TNF-α were determined by ELISA kits. Nitric oxide (NO) content in the culture medium was assayed. The results showed that HSYA treatment significantly attenuated the LPS-induced dopaminergic neurons damage. HSYA partially inhibited the expressions of NF-κB p65 and iNOS. Furthermore, HSYA decreased the content of IL-1β, TNF-α and NO in the supernatants. Taken together, these results suggest that HSYA exerts protective effects on LPS-induced neurotoxicity in dopaminergic neurons and the mechanisms may be associated with the inhibition of inflammatory response.
Collapse
|
5
|
Dehghan E, Zhang Y, Saremi B, Yadavali S, Hakimi A, Dehghani M, Goodarzi M, Tu X, Robertson S, Lin R, Chudhuri A, Mirzaei H. Hydralazine induces stress resistance and extends C. elegans lifespan by activating the NRF2/SKN-1 signalling pathway. Nat Commun 2017; 8:2223. [PMID: 29263362 PMCID: PMC5738364 DOI: 10.1038/s41467-017-02394-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/24/2017] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor (erythroid-derived 2)-like 2 and its Caenorhabditis elegans ortholog, SKN-1, are transcription factors that have a pivotal role in the oxidative stress response, cellular homeostasis, and organismal lifespan. Similar to other defense systems, the NRF2-mediated stress response is compromised in aging and neurodegenerative diseases. Here, we report that the FDA approved drug hydralazine is a bona fide activator of the NRF2/SKN-1 signaling pathway. We demonstrate that hydralazine extends healthy lifespan (~25%) in wild type and tauopathy model C. elegans at least as effectively as other anti-aging compounds, such as curcumin and metformin. We show that hydralazine-mediated lifespan extension is SKN-1 dependent, with a mechanism most likely mimicking calorie restriction. Using both in vitro and in vivo models, we go on to demonstrate that hydralazine has neuroprotective properties against endogenous and exogenous stressors. Our data suggest that hydralazine may be a viable candidate for the treatment of age-related disorders.
Collapse
Affiliation(s)
- Esmaeil Dehghan
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yiqiang Zhang
- Greehey Children's Cancer Research Institute, UT Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Bahar Saremi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Amirmansoor Hakimi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Maryam Dehghani
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mohammad Goodarzi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiaoqin Tu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Scott Robertson
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rueyling Lin
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Asish Chudhuri
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hamid Mirzaei
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
6
|
Almeida MF, Silva CM, Chaves RS, Lima NCR, Almeida RS, Melo KP, Demasi M, Fernandes T, Oliveira EM, Netto LES, Cardoso SM, Ferrari MFR. Effects of mild running on substantia nigra during early neurodegeneration. J Sports Sci 2017; 36:1363-1370. [PMID: 28895489 DOI: 10.1080/02640414.2017.1378494] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Moderate physical exercise acts at molecular and behavioural levels, such as interfering in neuroplasticity, cell death, neurogenesis, cognition and motor functions. Therefore, the aim of this study is to analyse the cellular effects of moderate treadmill running upon substantia nigra during early neurodegeneration. Aged male Lewis rats (9-month-old) were exposed to rotenone 1mg/kg/day (8 weeks) and 6 weeks of moderate treadmill running, beginning 4 weeks after rotenone exposure. Substantia nigra was extracted and submitted to proteasome and antioxidant enzymes activities, hydrogen peroxide levels and Western blot to evaluate tyrosine hydroxylase (TH), alpha-synuclein, Tom-20, PINK1, TrkB, SLP1, CRMP-2, Rab-27b, LC3II and Beclin-1 level. It was demonstrated that moderate treadmill running, practiced during early neurodegeneration, prevented the increase of alpha-synuclein and maintained the levels of TH unaltered in substantia nigra of aged rats. Physical exercise also stimulated autophagy and prevented impairment of mitophagy, but decreased proteasome activity in rotenone-exposed aged rats. Physical activity also prevented H2O2 increase during early neurodegeneration, although the involved mechanism remains to be elucidated. TrkB levels and its anterograde trafficking seem not to be influenced by moderate treadmill running. In conclusion, moderate physical training could prevent early neurodegeneration in substantia nigra through the improvement of autophagy and mitophagy.
Collapse
Affiliation(s)
- Michael F Almeida
- a Departamento de Genética e Biologia Evolutiva, Instituto de Biociências , Universidade de São Paulo , São Paulo , Brazil
| | - Carolliny M Silva
- a Departamento de Genética e Biologia Evolutiva, Instituto de Biociências , Universidade de São Paulo , São Paulo , Brazil
| | - Rodrigo S Chaves
- a Departamento de Genética e Biologia Evolutiva, Instituto de Biociências , Universidade de São Paulo , São Paulo , Brazil
| | - Nathan C R Lima
- a Departamento de Genética e Biologia Evolutiva, Instituto de Biociências , Universidade de São Paulo , São Paulo , Brazil
| | - Renato S Almeida
- b Institute for Biosciences , University of Taubate , Taubate , Brazil
| | - Karla P Melo
- a Departamento de Genética e Biologia Evolutiva, Instituto de Biociências , Universidade de São Paulo , São Paulo , Brazil
| | - Marilene Demasi
- c Laboratory of Biochemistry and Biophysics , Butantan Institute , Sao Paulo , Brazil
| | - Tiago Fernandes
- d Laboratory of Biochemistry and Molecular Biology of the Exercise, Department of Human Movement Biodynamic, School of Physical Education and Sport , University of Sao Paulo , Sao Paulo , Brazil
| | - Edilamar M Oliveira
- d Laboratory of Biochemistry and Molecular Biology of the Exercise, Department of Human Movement Biodynamic, School of Physical Education and Sport , University of Sao Paulo , Sao Paulo , Brazil
| | - Luis E S Netto
- a Departamento de Genética e Biologia Evolutiva, Instituto de Biociências , Universidade de São Paulo , São Paulo , Brazil
| | - Sandra M Cardoso
- e Center for Neuroscience and Cell Biology , University of Coimbra , Coimbra , Portugal.,f Institute of Cellular and Molecular Biology, Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| | - Merari F R Ferrari
- a Departamento de Genética e Biologia Evolutiva, Instituto de Biociências , Universidade de São Paulo , São Paulo , Brazil
| |
Collapse
|
7
|
Yee AG, Freestone PS, Bai JZ, Lipski J. Paradoxical lower sensitivity of Locus Coeruleus than Substantia Nigra pars compacta neurons to acute actions of rotenone. Exp Neurol 2016; 287:34-43. [PMID: 27771354 DOI: 10.1016/j.expneurol.2016.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is not only associated with degeneration of dopaminergic (DAergic) neurons in the Substantia Nigra, but also with profound loss of noradrenergic neurons in the Locus Coeruleus (LC). Remarkably, LC degeneration may exceed, or even precede the loss of nigral DAergic neurons, suggesting that LC neurons may be more susceptible to damage by various insults. Using a combination of electrophysiology, fluorescence imaging and electrochemistry, we directly compared the responses of LC, nigral DAergic and nigral non-dopaminergic (non-DAergic) neurons in rat brain slices to acute application of rotenone, a mitochondrial toxin used to create animal and in vitro models of PD. Rotenone (0.01-5.0μM) dose-dependently inhibited the firing of all three groups of neurons, primarily by activating KATP channels. The toxin also depolarised mitochondrial potential (Ψm) and released reactive oxygen species (H2O2). When KATP channels were blocked, rotenone (1μM) increased the firing of LC neurons by activating an inward current associated with dose-dependent increase of cytosolic free Ca2+ ([Ca2+]i). This effect was attenuated by blocking oxidative stress-sensitive TRPM2 channels, and by pre-treatment of slices with anti-oxidants. These results demonstrate that rotenone inhibits the activity of LC neurons mainly by activating KATP channels, and increases [Ca2+]ivia TRPM2 channels. Since the responses of LC neurons were smaller than those of nigral DAergic neurons, our study shows that LC neurons are paradoxically less sensitive to acute effects of this parkinsonian toxin.
Collapse
Affiliation(s)
- Andrew G Yee
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Peter S Freestone
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ji-Zhong Bai
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Janusz Lipski
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
8
|
Chaves RS, Kazi AI, Silva CM, Almeida MF, Lima RS, Carrettiero DC, Demasi M, Ferrari MFR. Presence of insoluble Tau following rotenone exposure ameliorates basic pathways associated with neurodegeneration. IBRO Rep 2016; 1:32-45. [PMID: 30135926 PMCID: PMC6084878 DOI: 10.1016/j.ibror.2016.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 01/24/2023] Open
Abstract
Protein aggregation is an important feature of neurodegenerative disorders. In Alzheimer's disease (AD) protein aggregates are composed of hyperphosphorylated Tau and amyloid beta peptide (Aβ). Despite the involvement and identification of the molecular composition of these aggregates, their role in AD pathophysiology is not fully understood. However, depositions of these insoluble aggregates are typically reported as pathogenic and toxic for cell homeostasis. New evidences suggest that the deposition of these aggregates is a protective mechanism that preserves cell from toxic insults associated with the early stages of neurodegenerative diseases. To better understand the biological role of the protein aggregation with regard its effects in cellular homeostasis, the present study investigated the role of insoluble Tau and Tau aggregates on crucial cellular parameters such as redox homeostasis, proteasome activity and autophagy in hippocampal cell cultures and hippocampus of aged Lewis rats using a rotenone-induced aggregation model. Neurons were exposed to rotenone in different concentrations and exposure times aiming to determine the interval required for Tau aggregation. Our experimental design allowed us to demonstrate that rotenone exposure induces Tau hyperphosphorylation and aggregation in a concentration and time-dependent manner. Oxidative stress triggered by rotenone exposure was observed with the absence of Tau aggregates and was reduced or absent when Tau aggregates were present. This reduction of oxidative stress along with the presence of insoluble Tau was independent of alterations in antioxidant enzymes activities or cell death. In addition, rotenone induced oxidative stress was mainly associated with decrease in proteasome activity and autophagy flux. Conversely, when insoluble Tau appeared, autophagy turns to be overactivated while proteasome activity remained low. Our studies significantly advance the understanding that Tau aggregation might exert protective cellular effects, at least briefly, when neurons are facing neurodegeneration stimulus. We believe that our data add more complexity for the understanding of protein aggregation role in AD etiology.
Collapse
Affiliation(s)
- Rodrigo S Chaves
- Department of Genetics and Evolutionary Biology - Institute for Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Amajad I Kazi
- Department of Genetics and Evolutionary Biology - Institute for Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Carolliny M Silva
- Department of Genetics and Evolutionary Biology - Institute for Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Michael F Almeida
- Department of Genetics and Evolutionary Biology - Institute for Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Raquel S Lima
- Department of Genetics and Evolutionary Biology - Institute for Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Marilene Demasi
- Laboratory of Biochemistry and Biophysics - Butantan Institute, Sao Paulo, SP, Brazil
| | - Merari F R Ferrari
- Department of Genetics and Evolutionary Biology - Institute for Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
9
|
Zagoura D, Canovas-Jorda D, Pistollato F, Bremer-Hoffmann S, Bal-Price A. Evaluation of the rotenone-induced activation of the Nrf2 pathway in a neuronal model derived from human induced pluripotent stem cells. Neurochem Int 2016; 106:62-73. [PMID: 27615060 DOI: 10.1016/j.neuint.2016.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/25/2016] [Accepted: 09/06/2016] [Indexed: 01/21/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) are considered as a powerful tool for drug and chemical screening and development of new in vitro testing strategies in the field of toxicology, including neurotoxicity evaluation. These cells are able to expand and efficiently differentiate into different types of neuronal and glial cells as well as peripheral neurons. These human cells-based neuronal models serve as test systems for mechanistic studies on different pathways involved in neurotoxicity. One of the well-known mechanisms that are activated by chemically-induced oxidative stress is the Nrf2 signaling pathway. Therefore, in the current study, we evaluated whether Nrf2 signaling machinery is expressed in human induced pluripotent stem cells (hiPSCs)-derived mixed neuronal/glial culture and if so whether it becomes activated by rotenone-induced oxidative stress mediated by complex I inhibition of mitochondrial respiration. Rotenone was found to induce the activation of Nrf2 signaling particularly at the highest tested concentration (100 nM), as shown by Nrf2 nuclear translocation and the up-regulation of the Nrf2-downstream antioxidant enzymes, NQO1 and SRXN1. Interestingly, exposure to rotenone also increased the number of astroglial cells in which Nrf2 activation may play an important role in neuroprotection. Moreover, rotenone caused cell death of dopaminergic neurons since a decreased percentage of tyrosine hydroxylase (TH+) cells was observed. The obtained results suggest that hiPSC-derived mixed neuronal/glial culture could be a valuable in vitro human model for the establishment of neuronal specific assays in order to link Nrf2 pathway activation (biomarker of oxidative stress) with additional neuronal specific readouts that could be applied to in vitro neurotoxicity evaluation.
Collapse
Affiliation(s)
- Dimitra Zagoura
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, Ispra, Italy
| | - David Canovas-Jorda
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, Ispra, Italy
| | - Francesca Pistollato
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, Ispra, Italy
| | - Susanne Bremer-Hoffmann
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, Ispra, Italy
| | - Anna Bal-Price
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, Ispra, Italy.
| |
Collapse
|
10
|
BDNF trafficking and signaling impairment during early neurodegeneration is prevented by moderate physical activity. IBRO Rep 2016; 1:19-31. [PMID: 30135925 PMCID: PMC6084862 DOI: 10.1016/j.ibror.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/18/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022] Open
Abstract
Physical exercise can attenuate the effects of aging on the central nervous system by increasing the expression of neurotrophins such as brain-derived neurotrophic factor (BDNF), which promotes dendritic branching and enhances synaptic machinery, through interaction with its receptor TrkB. TrkB receptors are synthesized in the cell body and are transported to the axonal terminals and anchored to plasma membrane, through SLP1, CRMP2 and Rab27B, associated with KIF1B. Retrograde trafficking is made by EDH-4 together with dynactin and dynein molecular motors. In the present study it was found that early neurodegeneration is accompanied by decrease in BDNF signaling, in the absence of hyperphosphorylated tau aggregation, in hippocampus of 11 months old Lewis rats exposed to rotenone. It was also demonstrated that moderate physical activity (treadmill running, during 6 weeks, concomitant to rotenone exposure) prevents the impairment of BDNF system in aged rats, which may contribute to delay neurodegeneration. In conclusion, decrease in BDNF and TrkB vesicles occurs before large aggregate-like p-Tau are formed and physical activity applied during early neurodegeneration may be of relevance to prevent BDNF system decay.
Collapse
|
11
|
Bayer Andersen K, Leander Johansen J, Hentzer M, Smith GP, Dietz GPH. Protection of Primary Dopaminergic Midbrain Neurons by GPR139 Agonists Supports Different Mechanisms of MPP(+) and Rotenone Toxicity. Front Cell Neurosci 2016; 10:164. [PMID: 27445691 PMCID: PMC4923153 DOI: 10.3389/fncel.2016.00164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022] Open
Abstract
The G-protein coupled receptor 139 (GPR139) is expressed specifically in the brain in areas of relevance for motor control. GPR139 function and signal transduction pathways are elusive, and results in the literature are even contradictory. Here, we examined the potential neuroprotective effect of GPR139 agonism in primary culture models of dopaminergic (DA) neuronal degeneration. We find that in vitro GPR139 agonists protected primary mesencephalic DA neurons against 1-methyl-4-phenylpyridinium (MPP(+))-mediated degeneration. Protection was concentration-dependent and could be blocked by a GPR139 antagonist. However, the protection of DA neurons was not found against rotenone or 6-hydroxydopamine (6-OHDA) mediated degeneration. Our results support differential mechanisms of toxicity for those substances commonly used in Parkinson's disease (PD) models and potential for GPR139 agonists in neuroprotection.
Collapse
Affiliation(s)
| | | | - Morten Hentzer
- Department of Molecular Screening, H. Lundbeck A/S Valby, Denmark
| | | | | |
Collapse
|
12
|
Polanski W, Reichmann H, Gille G. Stimulation, protection and regeneration of dopaminergic neurons by 9-methyl-β-carboline: a new anti-Parkinson drug? Expert Rev Neurother 2014; 11:845-60. [DOI: 10.1586/ern.11.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Rotenone-induced neurotoxicity in rat brain areas: a study on neuronal and neuronal supportive cells. Neuroscience 2012; 230:172-83. [PMID: 23098804 DOI: 10.1016/j.neuroscience.2012.10.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/10/2012] [Accepted: 10/14/2012] [Indexed: 12/31/2022]
Abstract
The present study was conducted to correlate rotenone-induced neurotoxicity with cellular and molecular modifications in neuronal and neuronal supportive cells in rat brain regions. Rotenone was administered (3, 6 and 12 μg/μl) intranigrally in adult male Sprague-Dawley rats. After the 7th day of rotenone treatment, specific protein markers for neuronal cells - tyrosine hydroxylase (TH), astroglial cells - glial fibrillary acidic protein (GFAP), microglial cells - CD11b/c, and Iba-1 were evaluated by immunoblotting and immunofluorescence in the striatum (STR) and mid brain (MB). Apoptotic cell death was assessed by caspase-3 gene expression. Higher doses of rotenone significantly lowered TH protein levels and elevated Iba-1 levels in MB. All the doses of rotenone significantly increased GFAP and CD11b/c protein in the MB. In STR, rotenone elevated GFAP levels but did not affect TH, CD11b/c and Iba-1 protein levels. Caspase-3 expression was increased significantly by all the doses of rotenone in MB but in STR only by higher doses (6 and 12 μg). It may be suggested that astroglial activation and apoptosis play an important role in rotenone-induced neurotoxicity. MB appeared as more sensitive than STR toward rotenone-induced cell toxicity. The astroglial cells emerged as more susceptible than neuronal and microglial cells to rotenone in STR.
Collapse
|
14
|
Cabezas R, El-Bachá RS, González J, Barreto GE. Mitochondrial functions in astrocytes: neuroprotective implications from oxidative damage by rotenone. Neurosci Res 2012; 74:80-90. [PMID: 22902554 DOI: 10.1016/j.neures.2012.07.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 12/21/2022]
Abstract
Mitochondria are critical for cell survival and normal development, as they provide energy to the cell, buffer intracellular calcium, and regulate apoptosis. They are also major targets of oxidative stress, which causes bioenergetics failure in astrocytes through the activation of different mechanisms and production of oxidative molecules. This review provides an insightful overview of the recent discoveries and strategies for mitochondrial protection in astrocytes. We also discuss the importance of rotenone as an experimental approach for assessing oxidative stress in the brain and delineate some molecular strategies that enhance mitochondrial function in astrocytes as a promising strategy against brain damage.
Collapse
Affiliation(s)
- Ricardo Cabezas
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | | | | | | |
Collapse
|
15
|
Astrocyte activation: a key step in rotenone induced cytotoxicity and DNA damage. Neurochem Res 2012; 37:2178-89. [PMID: 22846965 DOI: 10.1007/s11064-012-0841-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/02/2012] [Accepted: 07/12/2012] [Indexed: 01/14/2023]
Abstract
Astrocytes are the most abundant glial cells, which provide metabolic support for neurons. Rotenone is a botanical pesticide of natural origin, known to exhibit neurotoxic potential via inhibition of mitochondrial complex-I. This study was carried out to explore the effect of rotenone on C6 cells. The cell line C6 derived from rat glioma cells represents astrocyte-like cell. C6 cells were treated with rotenone (0.1, 1 and 10 μM) for 4 h. The effect of rotenone was studied on cell survival (MTT reduction and PI uptake); free radicals (ROS and RNS) and DNA damage (comet assay and Hoechst staining). The glial cell activation and apoptotic cell death was evaluated by expression of Glial fibrillary acidic protein (GFAP) and caspase-3 respectively. The treatment with rotenone resulted in decreased cell survival and increased free radical generation. Altered nuclear morphology and DNA damage were evident following rotenone treatment in Hoechst staining and Comet assay. Rotenone elevated expression of GFAP and caspase-3 that indicates glial cell activation and apoptosis, respectively. We further studied the effect of melatonin, an antioxidant, on the observed toxic effects. Co-incubation of antioxidant, melatonin (300 μM), significantly suppressed rotenone induced above-mentioned effects in C6 cells. Inhibitory effects of melatonin suggest that free radicals play a major role in rotenone induced astrocyte activation and cellular toxicity leading to apoptosis of astroglial cells.
Collapse
|
16
|
Stoll EA, Cheung W, Mikheev AM, Sweet IR, Bielas JH, Zhang J, Rostomily RC, Horner PJ. Aging neural progenitor cells have decreased mitochondrial content and lower oxidative metabolism. J Biol Chem 2011; 286:38592-38601. [PMID: 21900249 DOI: 10.1074/jbc.m111.252171] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although neurogenesis occurs in discrete areas of the adult mammalian brain, neural progenitor cells (NPCs) produce fewer new neurons with age. To characterize the molecular changes that occur during aging, we performed a proteomic comparison between primary-cultured NPCs from the young adult and aged mouse forebrain. This analysis yielded changes in proteins necessary for cellular metabolism. Mitochondrial quantity and oxygen consumption rates decrease with aging, although mitochondrial DNA in aged NPCs does not have increased mutation rates. In addition, aged cells are resistant to the mitochondrial inhibitor rotenone and proliferate in response to lowered oxygen conditions. These results demonstrate that aging NPCs display an altered metabolic phenotype, characterized by a coordinated shift in protein expression, subcellular structure, and metabolic physiology.
Collapse
Affiliation(s)
- Elizabeth A Stoll
- Neurobiology and Behavior Program, University of Washington, Seattle, Washington 98109
| | - Willy Cheung
- Department of Computer Science, University of Washington, Seattle, Washington 98109
| | - Andrei M Mikheev
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98109
| | - Ian R Sweet
- Department of Medicine, University of Washington, Seattle, Washington 98109; Diabetes Endocrine Research Center, University of Washington, Seattle, Washington 98109
| | - Jason H Bielas
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington 98109; Department of Pathology, University of Washington, Seattle, Washington 98109
| | - Jing Zhang
- Department of Pathology, University of Washington, Seattle, Washington 98109
| | - Robert C Rostomily
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98109
| | - Philip J Horner
- Neurobiology and Behavior Program, University of Washington, Seattle, Washington 98109; Department of Neurological Surgery, University of Washington, Seattle, Washington 98109.
| |
Collapse
|
17
|
Yu ZQ, Liu MY, Ren QX, Xiong Y, Xu JH, Xiao CH, Gao DS. Dopamine Content in the Striatum and Expression Changes of Bad and Bcl-2 in Elderly Rats with Abnormal Behavior. Neurochem Res 2011; 36:2333-8. [DOI: 10.1007/s11064-011-0558-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 07/15/2011] [Accepted: 07/20/2011] [Indexed: 11/30/2022]
|
18
|
Siddiqui MA, Kashyap MP, Khanna VK, Yadav S, Al-Khedhairy AA, Musarrat J, Pant AB. Association of dopamine DA-D2 receptor in rotenone-induced cytotoxicity in PC12 cells. Toxicol Ind Health 2010; 26:533-42. [DOI: 10.1177/0748233710377776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The investigations were aimed to study the possible association of dopamine DA-D2 receptor in rotenone-induced cytotoxicity in PC12 cells, one among the most studied cell line in neurotoxicity studies. PC12 cells were subjected to receive an exposure of rotenone (10-6 to 10-4 M) for 24 and 48 hours. Cytotoxicity studies were carried out using standard end points including, (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT), lactate dehydrogenase (LDH) release and neutral red uptake (NRU). Cells were found to be vulnerable to rotenone in dose-dependent manner. In general, 10-4 and 10-5 M concentrations were found to be cytotoxic, whereas 10-6 M and lower concentrations used have shown nonsignificant effect on cell viability. Further, studies were extended to study the rotenone-induced alterations in cellular glutathione (GSH) level and dopamine DA-D2 receptor expression. Significant (p < 0.001) chronological depletion in GSH levels were recorded following rotenone exposure. Expression of dopamine DA-D2 receptor was also found to be effected significantly (p < 0.001) at 24 hours of rotenone exposure (10-4 and 10-5). However, no further depletion in the expression of dopamine DA-D2 receptor could be recorded with extended exposure period, that is, 48 hours. Rotenone at 10-6 M and lower concentrations was found to be ineffective in PC12 cells. Data suggest the vulnerability of PC12 cells against experimental exposure of rotenone, which possibly routed through dopamine DA-D2 receptor and oxidative stress machinery.
Collapse
Affiliation(s)
- MA Siddiqui
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - MP Kashyap
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| | - VK Khanna
- Developmental Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| | - S. Yadav
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| | - AA Al-Khedhairy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - J. Musarrat
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - AB Pant
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India,
| |
Collapse
|
19
|
Freestone PS, Chung KKH, Guatteo E, Mercuri NB, Nicholson LFB, Lipski J. Acute action of rotenone on nigral dopaminergic neurons--involvement of reactive oxygen species and disruption of Ca2+ homeostasis. Eur J Neurosci 2009; 30:1849-59. [PMID: 19912331 DOI: 10.1111/j.1460-9568.2009.06990.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rotenone is a toxin used to generate animal models of Parkinson's disease; however, the mechanisms of toxicity in substantia nigra pars compacta (SNc) neurons have not been well characterized. We have investigated rotenone (0.05-1 microm) effects on SNc neurons in acute rat midbrain slices, using whole-cell patch-clamp recording combined with microfluorometry. Rotenone evoked a tolbutamide-sensitive outward current (94 +/- 15 pA) associated with increases in intracellular [Ca(2+)] ([Ca(2+)](i)) (73.8 +/- 7.7 nm) and intracellular [Na(+)] (3.1 +/- 0.6 mm) (all with 1 microm). The outward current was not affected by a high ATP level (10 mm) in the patch pipette but was decreased by Trolox. The [Ca(2+)](i) rise was abolished by removing extracellular Ca(2+), and attenuated by Trolox and a transient receptor potential M2 (TRPM2) channel blocker, N-(p-amylcinnamoyl) anthranilic acid. Other effects included mitochondrial depolarization (rhodamine-123) and increased mitochondrial reactive oxygen species (ROS) production (MitoSox), which was also abolished by Trolox. A low concentration of rotenone (5 nm) that, by itself, did not evoke a [Ca(2+)](i) rise resulted in a large (46.6 +/- 25.3 nm) Ca(2+) response when baseline [Ca(2+)](i) was increased by a 'priming' protocol that activated voltage-gated Ca(2+) channels. There was also a positive correlation between 'naturally' occurring variations in baseline [Ca(2+)](i) and the rotenone-induced [Ca(2+)](i) rise. This correlation was not seen in non-dopaminergic neurons of the substantia nigra pars reticulata (SNr). Our results show that mitochondrial ROS production is a key element in the effect of rotenone on ATP-gated K(+) channels and TRPM2-like channels in SNc neurons, and demonstrate, in these neurons (but not in the SNr), a large potentiation of rotenone-induced [Ca(2+)](i) rise by a small increase in baseline [Ca(2+)](i).
Collapse
Affiliation(s)
- Peter S Freestone
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
20
|
Avila-Gomez IC, Velez-Pardo C, Jimenez-Del-Rio M. Effects of insulin-like growth factor-1 on rotenone-induced apoptosis in human lymphocyte cells. Basic Clin Pharmacol Toxicol 2009; 106:53-61. [PMID: 19874289 DOI: 10.1111/j.1742-7843.2009.00472.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human peripheral blood lymphocytes have been useful as a putative model of oxidative stress-induced apoptosis for Parkinson's disease. The present work shows that rotenone, a mitochondrial complex I inhibitor, induced time- and concentration-dependent apoptosis in lymphocytes which was mediated by anion superoxide radicals (O(2)*(-))/hydrogen peroxide, depolarization of mitochondria, caspase-3 activation, concomitantly with the nuclear translocation of transcription factors such as NF-kappaB, p53, c-Jun and nuclei fragmentation. Since insulin-like growth factor-1 (IGF-1) interferes with a cell's apoptotic machinery when subjected to several stressful conditions, it is demonstrated here for the first time that IGF-1 effectively protects lymphocytes against rotenone through PI-3K/Akt activation, down-regulation of p53 and maintenance of mitochondrial membrane potential independently of ROS generation. These data might contribute to understanding the role played by IGF-1 against oxidative stress stimuli.
Collapse
Affiliation(s)
- Isabel Cristina Avila-Gomez
- School of Medicine, Medical Research Institute, Neuroscience Research Program, University of Antioquia, Medellin, Colombia
| | | | | |
Collapse
|
21
|
Radad K, Moldzio R, Taha M, Rausch WD. Thymoquinone protects dopaminergic neurons against MPP+and rotenone. Phytother Res 2009; 23:696-700. [DOI: 10.1002/ptr.2708] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Guillot TS, Shepherd KR, Richardson JR, Wang MZ, Li Y, Emson PC, Miller GW. Reduced vesicular storage of dopamine exacerbates methamphetamine-induced neurodegeneration and astrogliosis. J Neurochem 2008; 106:2205-17. [PMID: 18643795 DOI: 10.1111/j.1471-4159.2008.05568.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vesicular monoamine transporter 2 (VMAT2) controls the loading of dopamine (DA) into vesicles and therefore determines synaptic properties such as quantal size, receptor sensitivity, and vesicular and cytosolic DA concentration. Impairment of proper DA compartmentalization is postulated to underlie the sensitivity of DA neurons to oxidative damage and degeneration. It is known that DA can auto-oxidize in the cytosol to form quinones and other oxidative species and that this production of oxidative stress is thought to be a critical factor in DA terminal loss after methamphetamine (METH) exposure. Using a mutant strain of mice (VMAT2 LO), which have only 5-10% of the VMAT2 expressed by wild-type animals, we show that VMAT2 is a major determinant of METH toxicity in the striatum. Subsequent to METH exposure, the VMAT2 LO mice show an exacerbated loss of dopamine transporter and tyrosine hydroxylase (TH), as well as enhanced astrogliosis and protein carbonyl formation. More importantly, VMAT2 LO mice show massive argyrophilic deposits in the striatum after METH, indicating that VMAT2 is a regulator of METH-induced neurodegeneration. The increased METH neurotoxicity in VMAT2 LO occurs in the absence of any significant difference in basal temperature or METH-induced hyperthermia. Furthermore, primary midbrain cultures from VMAT2 LO mice show more oxidative stress generation and a greater loss of TH positive processes than wild-type cultures after METH exposure. Elevated markers of neurotoxicity in VMAT2 LO mice and cultures suggest that the capacity to store DA determines the amount of oxidative stress and neurodegeneration after METH administration.
Collapse
Affiliation(s)
- Thomas S Guillot
- Center for Neurodegenerative Disease, Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | | | |
Collapse
|