1
|
Alves VM, Borba JVB, Braga RC, Korn DR, Kleinstreuer N, Causey K, Tropsha A, Rua D, Muratov EN. PreS/MD: Predictor of Sensitization Hazard for Chemical Substances Released From Medical Devices. Toxicol Sci 2022; 189:250-259. [PMID: 35916740 PMCID: PMC9516038 DOI: 10.1093/toxsci/kfac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the United States, a pre-market regulatory submission for any medical device that comes into contact with either a patient or the clinical practitioner must include an adequate toxicity evaluation of chemical substances that can be released from the device during its intended use. These substances, also referred to as extractables and leachables, must be evaluated for their potential to induce sensitization/allergenicity, which traditionally has been done in animal assays such as the guinea pig maximization test (GPMT). However, advances in basic and applied science are continuously presenting opportunities to employ new approach methodologies, including computational methods which, when qualified, could replace animal testing methods to support regulatory submissions. Herein, we developed a new computational tool for rapid and accurate prediction of the GPMT outcome that we have named PreS/MD (predictor of sensitization for medical devices). To enable model development, we (1) collected, curated, and integrated the largest publicly available dataset for GPMT results; (2) succeeded in developing externally predictive (balanced accuracy of 70%-74% as evaluated by both 5-fold external cross-validation and testing of novel compounds) quantitative structure-activity relationships (QSAR) models for GPMT using machine learning algorithms, including deep learning; and (3) developed a publicly accessible web portal integrating PreS/MD models that can predict GPMT outcomes for any molecule of interest. We expect that PreS/MD will be used by both industry and regulatory scientists in medical device safety assessments and help replace, reduce, or refine the use of animals in toxicity testing. PreS/MD is freely available at https://presmd.mml.unc.edu/.
Collapse
Affiliation(s)
- Vinicius M Alves
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Joyce V B Borba
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | - Daniel R Korn
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Nicole Kleinstreuer
- National Toxicology Program, Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27560, USA
| | - Kevin Causey
- Predictive, LLC, Research Triangle Park, North Carolina, USA
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Predictive, LLC, Research Triangle Park, North Carolina, USA
| | - Diego Rua
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Eugene N Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
2
|
Tung CW, Lin YH, Wang SS. Transfer learning for predicting human skin sensitizers. Arch Toxicol 2019; 93:931-940. [PMID: 30806762 DOI: 10.1007/s00204-019-02420-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/21/2019] [Indexed: 12/20/2022]
Abstract
Computational prioritization of chemicals for potential skin sensitization risks plays essential roles in the risk assessment of environmental chemicals and drug development. Given the huge number of chemicals for testing, computational methods enable the fast identification of high-risk chemicals for experimental validation and design of safer alternatives. However, the development of robust prediction model requires a large dataset of tested chemicals that is usually not available for most toxicological endpoints, especially for human data. A small training dataset makes the development of effective models difficult with insufficient coverage and accuracy. In this study, an ensemble tree-based multitask learning method was developed incorporating three relevant tasks in the well-defined adverse outcome pathway (AOP) of skin sensitization to transfer shared knowledge to the major task of human sensitizers. The results show both largely improved coverage and accuracy compared with three state-of-the-art methods. A user-friendly prediction server was available at https://cwtung.kmu.edu.tw/skinsensdb/predict . As AOPs for various toxicity endpoints are being actively developed, the proposed method can be applied to develop prediction models for other endpoints.
Collapse
Affiliation(s)
- Chun-Wei Tung
- Graduate Institute of Data Science, College of Management, Taipei Medical University, 172-1, Sec. 2, Keelung Rd., Taipei, 10675, Taiwan.
- National Institute of Environmental Health Sciences, National Health Research Institutes, 35 Keyan Rd., Zhunan, Miaoli County, 35053, Taiwan.
| | - Yi-Hui Lin
- School of Pharmacy, Kaohsiung Medical University, 100 Shihchuan 1st Rd., Kaohsiung, 80708, Taiwan
| | - Shan-Shan Wang
- School of Pharmacy, Kaohsiung Medical University, 100 Shihchuan 1st Rd., Kaohsiung, 80708, Taiwan
| |
Collapse
|
3
|
Hybrid optimal descriptors as a tool to predict skin sensitization in accordance to OECD principles. Toxicol Lett 2017; 275:57-66. [DOI: 10.1016/j.toxlet.2017.03.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 01/13/2023]
|
4
|
Wang CC, Lin YC, Wang SS, Shih C, Lin YH, Tung CW. SkinSensDB: a curated database for skin sensitization assays. J Cheminform 2017; 9:5. [PMID: 28194231 PMCID: PMC5285290 DOI: 10.1186/s13321-017-0194-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Skin sensitization is an important toxicological endpoint for chemical hazard determination and safety assessment. Prediction of chemical skin sensitizer had traditionally relied on data from rodent models. The development of the adverse outcome pathway (AOP) and associated alternative in vitro assays have reshaped the assessment of skin sensitizers. The integration of multiple assays as key events in the AOP has been shown to have improved prediction performance. Current computational models to predict skin sensitization mainly based on in vivo assays without incorporating alternative in vitro assays. However, there are few freely available databases integrating both the in vivo and the in vitro skin sensitization assays for development of AOP-based skin sensitization prediction models. To facilitate the development of AOP-based prediction models, a skin sensitization database named SkinSensDB has been constructed by curating data from published AOP-related assays. In addition to providing datasets for developing computational models, SkinSensDB is equipped with browsing and search tools which enable the assessment of new compounds for their skin sensitization potentials based on data from structurally similar compounds. SkinSensDB is publicly available at http://cwtung.kmu.edu.tw/skinsensdb.
Collapse
Affiliation(s)
- Chia-Chi Wang
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708 Taiwan.,PhD Program in Toxicology, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan.,National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, 35053 Taiwan.,Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 80424 Taiwan
| | - Ying-Chi Lin
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708 Taiwan.,PhD Program in Toxicology, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan
| | - Shan-Shan Wang
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708 Taiwan
| | - Chieh Shih
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708 Taiwan
| | - Yi-Hui Lin
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708 Taiwan
| | - Chun-Wei Tung
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708 Taiwan.,PhD Program in Toxicology, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan.,National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, 35053 Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan
| |
Collapse
|
5
|
Alves VM, Capuzzi SJ, Muratov E, Braga RC, Thornton T, Fourches D, Strickland J, Kleinstreuer N, Andrade CH, Tropsha A. QSAR models of human data can enrich or replace LLNA testing for human skin sensitization. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2016; 18:6501-6515. [PMID: 28630595 PMCID: PMC5473635 DOI: 10.1039/c6gc01836j] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Skin sensitization is a major environmental and occupational health hazard. Although many chemicals have been evaluated in humans, there have been no efforts to model these data to date. We have compiled, curated, analyzed, and compared the available human and LLNA data. Using these data, we have developed reliable computational models and applied them for virtual screening of chemical libraries to identify putative skin sensitizers. The overall concordance between murine LLNA and human skin sensitization responses for a set of 135 unique chemicals was low (R = 28-43%), although several chemical classes had high concordance. We have succeeded to develop predictive QSAR models of all available human data with the external correct classification rate of 71%. A consensus model integrating concordant QSAR predictions and LLNA results afforded a higher CCR of 82% but at the expense of the reduced external dataset coverage (52%). We used the developed QSAR models for virtual screening of CosIng database and identified 1061 putative skin sensitizers; for seventeen of these compounds, we found published evidence of their skin sensitization effects. Models reported herein provide more accurate alternative to LLNA testing for human skin sensitization assessment across diverse chemical data. In addition, they can also be used to guide the structural optimization of toxic compounds to reduce their skin sensitization potential.
Collapse
Affiliation(s)
- Vinicius M. Alves
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goias, Goiania, GO, 74605-170, Brazil
| | - Stephen J. Capuzzi
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Eugene Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Chemical Technology, Odessa National Polytechnic University, Odessa, 65000, Ukraine
| | - Rodolpho C. Braga
- Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goias, Goiania, GO, 74605-170, Brazil
| | - Thomas Thornton
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Denis Fourches
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Judy Strickland
- Integrated Laboratory Systems, Inc., P.O. Box 13501, Research Triangle Park, NC, 27709, USA
| | - Nicole Kleinstreuer
- National Institutes of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Carolina H. Andrade
- Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goias, Goiania, GO, 74605-170, Brazil
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
6
|
Alves VM, Muratov E, Fourches D, Strickland J, Kleinstreuer N, Andrade CH, Tropsha A. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds. Toxicol Appl Pharmacol 2015; 284:262-72. [PMID: 25560674 PMCID: PMC4546933 DOI: 10.1016/j.taap.2014.12.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/14/2014] [Accepted: 12/21/2014] [Indexed: 12/20/2022]
Abstract
Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using Random Forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers was 71-88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR Toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the Scorecard database of possible skin or sense organ toxicants as primary candidates for experimental validation.
Collapse
Affiliation(s)
- Vinicius M Alves
- Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220, Brazil; Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eugene Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Laboratory of Theoretical Chemistry, A.V. Bogatsky Physical-Chemical Institute NAS of Ukraine, Odessa 65080, Ukraine
| | - Denis Fourches
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Judy Strickland
- ILS/Contractor Supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), P.O. Box 13501, Research Triangle Park, NC 27709, USA
| | - Nicole Kleinstreuer
- ILS/Contractor Supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), P.O. Box 13501, Research Triangle Park, NC 27709, USA
| | - Carolina H Andrade
- Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220, Brazil
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Kang DW, Jadin L, Nekoroski T, Drake FH, Zepeda ML. Recombinant human hyaluronidase PH20 (rHuPH20) facilitates subcutaneous infusions of large volumes of immunoglobulin in a swine model. Drug Deliv Transl Res 2015; 2:254-64. [PMID: 25787031 DOI: 10.1007/s13346-012-0065-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Many patients with primary immunodeficiency disease (PIDD) require lifelong immunoglobulin (Ig) replacement therapy. Home-based subcutaneous (SC) infusion provides advantages to patients with PIDD compared to hospital-based intravenous infusion. One limitation of current practice with SCIg infusion is the need for small-volume infusions at multiple injection sites on a frequent basis. A method was developed for large-volume SC infusion that uses preinfusion of recombinant human hyaluronidase (rHuPH20) to facilitate fluid dispersion. Miniature swine was used as a preclinical model to assess the effects of rHuPH20-facilitated infusions, of a single monthly dose, on fluid dispersion, infusion-related pressure, swelling, induration, and tissue damage. Preinfusion of vehicle (control) or rHuPH20 (75 U/g Ig) was performed simultaneously on contralateral abdominal sites on each animal, followed by infusion of 300 mL 10 % Ig (30 g) at each site. Compared to control infusions, rHuPH20 significantly reduced infusion pressure and induration (p < 0.05) and accelerated postinfusion Ig dispersion. Histological evaluation of infusion site tissue showed moderate to severe swelling for the control. Swelling after rHuPH20-facilitated infusion was mild on day 1 and had completely resolved shortly thereafter. Laser Doppler imaging of control infusion sites revealed local cutaneous hypoperfusion during Ig infusion, which was reduced almost 7-fold (p < 0.05) with the use of rHuPH20. These results demonstrate that rHuPH20-facilitated Ig infusion is associated with improved dispersion of Ig, resulting in reduced tissue pressure, induration, and reduced risk of tissue damage from mechanical trauma or local ischemia, thus enabling SC administration of large volumes of Ig at a single site.
Collapse
Affiliation(s)
- David W Kang
- Halozyme Therapeutics, Inc, 11388 Sorrento Valley Road, San Diego, CA, 92121, USA,
| | | | | | | | | |
Collapse
|
8
|
Dearden JC, Rowe PH. Use of artificial neural networks in the QSAR prediction of physicochemical properties and toxicities for REACH legislation. Methods Mol Biol 2015; 1260:65-88. [PMID: 25502376 DOI: 10.1007/978-1-4939-2239-0_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
With the introduction of the REACH legislation in the European Union, there is a requirement for property and toxicity data on chemicals produced in or imported into the EU at levels of 1 tonne/year or more. This has meant an increase in the in silico prediction of such data. One of the chief predictive approaches is QSAR (quantitative structure-activity relationships), which is widely used in many fields. A QSAR approach that is increasingly being used is that of artificial neural networks (ANNs), and this chapter discusses its application to the range of physicochemical properties and toxicities required by REACH. ANNs generally outperform the main QSAR approach of multiple linear regression (MLR), although other approaches such as support vector machines sometimes outperform ANNs. Most ANN QSARs reported to date comply with only two of the five OECD Guidelines for the Validation of (Q)SARs.
Collapse
Affiliation(s)
- John C Dearden
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK,
| | | |
Collapse
|
9
|
Nandy A, Kar S, Roy K. Development of classification- and regression-based QSAR models andin silicoscreening of skin sensitisation potential of diverse organic chemicals. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2013.801076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Johansson H, Albrekt AS, Borrebaeck CA, Lindstedt M. The GARD assay for assessment of chemical skin sensitizers. Toxicol In Vitro 2013; 27:1163-9. [DOI: 10.1016/j.tiv.2012.05.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 04/20/2012] [Accepted: 05/03/2012] [Indexed: 11/30/2022]
|
11
|
Golla S, Neely BJ, Whitebay E, Madihally S, Robinson RL, Gasem KAM. Virtual design of chemical penetration enhancers for transdermal drug delivery. Chem Biol Drug Des 2012; 79:478-87. [PMID: 22172168 DOI: 10.1111/j.1747-0285.2011.01293.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Traditional drug design is a laborious and expensive process that often challenges the pharmaceutical industries. As a result, researchers have turned to computational methods for computer-assisted molecular design. Recently, genetic and evolutionary algorithms have emerged as efficient methods in solving combinatorial problems associated with computer-aided molecular design. Further, combining genetic algorithms with quantitative structure-property relationship analyses has proved effective in drug design. In this work, we have integrated a new genetic algorithm and nonlinear quantitative structure-property relationship models to develop a reliable virtual screening algorithm for the generation of potential chemical penetration enhancers. The genetic algorithms-quantitative structure-property relationship algorithm has been implemented successfully to identify potential chemical penetration enhancers for transdermal drug delivery of insulin. Validation of the newly identified chemical penetration enhancer molecular structures was conducted through carefully designed experiments, which elucidated the cytotoxicity and permeability of the chemical penetration enhancers.
Collapse
Affiliation(s)
- Sharath Golla
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| | | | | | | | | | | |
Collapse
|
12
|
Lu J, Zheng M, Wang Y, Shen Q, Luo X, Jiang H, Chen K. Fragment-based prediction of skin sensitization using recursive partitioning. J Comput Aided Mol Des 2011; 25:885-93. [DOI: 10.1007/s10822-011-9472-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 09/02/2011] [Indexed: 11/25/2022]
|
13
|
Sharma NS, Jindal R, Mitra B, Lee S, Li L, Maguire TJ, Schloss R, Yarmush ML. Perspectives on Non-Animal Alternatives for Assessing Sensitization Potential in Allergic Contact Dermatitis. Cell Mol Bioeng 2011; 5:52-72. [PMID: 24741377 DOI: 10.1007/s12195-011-0189-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Skin sensitization remains a major environmental and occupational health hazard. Animal models have been used as the gold standard method of choice for estimating chemical sensitization potential. However, a growing international drive and consensus for minimizing animal usage have prompted the development of in vitro methods to assess chemical sensitivity. In this paper, we examine existing approaches including in silico models, cell and tissue based assays for distinguishing between sensitizers and irritants. The in silico approaches that have been discussed include Quantitative Structure Activity Relationships (QSAR) and QSAR based expert models that correlate chemical molecular structure with biological activity and mechanism based read-across models that incorporate compound electrophilicity. The cell and tissue based assays rely on an assortment of mono and co-culture cell systems in conjunction with 3D skin models. Given the complexity of allergen induced immune responses, and the limited ability of existing systems to capture the entire gamut of cellular and molecular events associated with these responses, we also introduce a microfabricated platform that can capture all the key steps involved in allergic contact sensitivity. Finally, we describe the development of an integrated testing strategy comprised of two or three tier systems for evaluating sensitization potential of chemicals.
Collapse
Affiliation(s)
- Nripen S Sharma
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Rohit Jindal
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Bhaskar Mitra
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Serom Lee
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Lulu Li
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Tim J Maguire
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA ; Center for Engineering in Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
14
|
Price K, Krishnan K. An integrated QSAR-PBPK modelling approach for predicting the inhalation toxicokinetics of mixtures of volatile organic chemicals in the rat. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2011; 22:107-128. [PMID: 21391144 DOI: 10.1080/1062936x.2010.548350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The objective of this study was to predict the inhalation toxicokinetics of chemicals in mixtures using an integrated QSAR-PBPK modelling approach. The approach involved: (1) the determination of partition coefficients as well as V(max) and K(m) based solely on chemical structure for 53 volatile organic compounds, according to the group contribution approach; and (2) using the QSAR-driven coefficients as input in interaction-based PBPK models in the rat to predict the pharmacokinetics of chemicals in mixtures of up to 10 components (benzene, toluene, m-xylene, o-xylene, p-xylene, ethylbenzene, dichloromethane, trichloroethylene, tetrachloroethylene, and styrene). QSAR-estimated values of V(max) varied compared with experimental results by a factor of three for 43 out of 53 studied volatile organic compounds (VOCs). K(m) values were within a factor of three compared with experimental values for 43 out of 53 VOCs. Cross-validation performed as a ratio of predicted residual sum of squares and sum of squares of the response value indicates a value of 0.108 for V(max) and 0.208 for K(m). The integration of QSARs for partition coefficients, V(max) and K(m), as well as setting the K(m) equal to K(i) (metabolic inhibition constant) within the mixture PBPK model allowed to generate simulations of the inhalation pharmacokinetics of benzene, toluene, m-xylene, o-xylene, p-xylene, ethylbenzene, dichloromethane, trichloroethylene, tetrachloroethylene and styrene in various mixtures. Overall, the present study indicates the potential usefulness of the QSAR-PBPK modelling approach to provide first-cut evaluations of the kinetics of chemicals in mixtures of increasing complexity, on the basis of chemical structure.
Collapse
Affiliation(s)
- K Price
- Departement de sante environnementale et sante au travail, Faculte de medecine, Universite de Montreal, PQ, Canada
| | | |
Collapse
|
15
|
Michielan L, Moro S. Pharmaceutical Perspectives of Nonlinear QSAR Strategies. J Chem Inf Model 2010; 50:961-78. [DOI: 10.1021/ci100072z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lisa Michielan
- Molecular Modeling Section (MMS), Dipartimento di Scienze Farmaceutiche, Università di Padova, via Marzolo 5, I-35131 Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze Farmaceutiche, Università di Padova, via Marzolo 5, I-35131 Padova, Italy
| |
Collapse
|
16
|
Prediction of skin sensitization with a particle swarm optimized support vector machine. Int J Mol Sci 2009; 10:3237-3254. [PMID: 19742136 PMCID: PMC2738923 DOI: 10.3390/ijms10073237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 06/24/2009] [Indexed: 11/16/2022] Open
Abstract
Skin sensitization is the most commonly reported occupational illness, causing much suffering to a wide range of people. Identification and labeling of environmental allergens is urgently required to protect people from skin sensitization. The guinea pig maximization test (GPMT) and murine local lymph node assay (LLNA) are the two most important in vivo models for identification of skin sensitizers. In order to reduce the number of animal tests, quantitative structure-activity relationships (QSARs) are strongly encouraged in the assessment of skin sensitization of chemicals. This paper has investigated the skin sensitization potential of 162 compounds with LLNA results and 92 compounds with GPMT results using a support vector machine. A particle swarm optimization algorithm was implemented for feature selection from a large number of molecular descriptors calculated by Dragon. For the LLNA data set, the classification accuracies are 95.37% and 88.89% for the training and the test sets, respectively. For the GPMT data set, the classification accuracies are 91.80% and 90.32% for the training and the test sets, respectively. The classification performances were greatly improved compared to those reported in the literature, indicating that the support vector machine optimized by particle swarm in this paper is competent for the identification of skin sensitizers.
Collapse
|