1
|
Rieder GS, Duarte T, Delgado CP, Rodighiero A, Nogara PA, Orian L, Aschner M, Dalla Corte CL, Da Rocha JBT. Interplay between diphenyl diselenide and copper: Impact on D. melanogaster survival, behavior, and biochemical parameters. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109899. [PMID: 38518983 DOI: 10.1016/j.cbpc.2024.109899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Copper (Cu2+) is a biologically essential element that participates in numerous physiological processes. However, elevated concentrations of copper have been associated with cellular oxidative stress and neurodegenerative diseases. Organo‑selenium compounds such as diphenyl diselenide (DPDS) have in vitro and in vivo antioxidant properties. Hence, we hypothesized that DPDS may modulate the toxicity of Cu2+ in Drosophila melanogaster. The acute effects (4 days of exposure) caused by a high concentration of Cu2+ (3 mM) were studied using endpoints of toxicity such as survival and behavior in D. melanogaster. The potential protective effect of low concentration of DPDS (20 μM) against Cu2+ was also investigated. Adult flies aged 1-5 days post-eclosion (both sexes) were divided into four groups: Control, DPDS (20 μM), CuSO4 (3 mM), and the combined exposure of DPDS (20 μM) and CuSO4 (3 mM). Survival, biochemical, and behavioral parameters were determined. Co-exposure of DPDS and CuSO4 increased acetylcholinesterase (AChE) activity and the generation of reactive oxygen species (ROS as determined by DFCH oxidation). Contrary to our expectation, the co-exposure reduced survival, body weight, locomotion, catalase activity, and cell viability in relation to control group. Taken together, DPDS potentiated the Cu2+ toxicity.
Collapse
Affiliation(s)
- G S Rieder
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil. https://twitter.com/RiederSchmitt
| | - T Duarte
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil. https://twitter.com/tttamie
| | - C P Delgado
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil. https://twitter.com/cassiapdelgado
| | - A Rodighiero
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - P A Nogara
- Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense (IFSul), Av. Leonel de Moura Brizola, 2501, 96418-400 Bagé, RS, Brazil. https://twitter.com/nogara_pablo
| | - L Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy. https://twitter.com/_LauraOrian
| | - M Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - C L Dalla Corte
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - J B T Da Rocha
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Department of Biochemistry, Institute of Basic Health Science, Federal University of Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil.
| |
Collapse
|
2
|
Ibrahim M, Meinerz DF, Khan M, Ali A, Khan MI, AlAsmari AF, Alharbi M, Alshammari A, da Rocha JBT, Alasmari F. Genotoxicity and cytotoxicity potential of organoselenium compounds in human leukocytes in vitro. Saudi Pharm J 2023; 31:101832. [PMID: 38125951 PMCID: PMC10730359 DOI: 10.1016/j.jsps.2023.101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/14/2023] [Indexed: 12/23/2023] Open
Abstract
In the current work, cytotoxicity and genotoxicity of different organoselenium compounds were examined using Trypan blue exclusion and alkaline comet assays with silver staining respectively. Leukocytes were subjected to a 3-hour incubation with organoselenium compounds at concentrations of 1, 5, 10, 25, 50, and 75 μM, or with the control vehicle (DMSO), at a temperature of 37 °C. The viability of the cells was evaluated using the Trypan blue exclusion method, while DNA damage was analyzed through the alkaline comet assay with silver staining. The exposure of leukocytes to different organoselenium compounds including i.e. (Z)-N-(pyridin-2-ylmethylene)-1-(2-((2-(1-((E)-pyridin-2-ylmethyleneamino)ethyl)phenyl)diselanyl)phenyl)ethanamine (C1), 2,2'(1Z,1'E)-(1,1'-(2,2'-diselanediylbis(2,1-phenylene))bis(ethane-1,1-diyl)) bis(azan-1-yl-1-ylidene)bis -methan-1-yl-1-ylidene)diphenol (C2), and dinaphthyl diselenide (NapSe)2, At concentrations ranging from 1 to 5 μM, no significant DNA damage was observed, as indicated by the absence of a noteworthy increase in the Damage Index (DI). Our results suggest that the organoselenium selenium compounds tested were not genotoxic and cytotoxic to human leukocytes in vitro at lower concentration. This study offers further insights into the genotoxicity profile of these organochalcogens in human leukocytes. Their genotoxicity and cytotoxicity effects at higher concentration are probably mediated through reactive oxygen species generation and their ability to catalyze thiol oxidation.
Collapse
Affiliation(s)
- Mohammad Ibrahim
- Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM) KPK, Mardan 23200, Pakistan
- Programa de Pós-Graduação em Ciências Biológicas- Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Daiane Francine Meinerz
- Programa de Pós-Graduação em Ciências Biológicas- Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM) KPK, Mardan 23200, Pakistan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan (AWKUM) KPK, Mardan 23200, Pakistan
| | - Muhammad Idrees Khan
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Popova SA, Shevchenko OG, Chukicheva IY. Synthesis of new coumarin[1,3]oxazine derivatives of 7-hydroxy-6-isobornyl-4-methylcoumarin and their antioxidant activity. Chem Biol Drug Des 2022; 100:994-1004. [PMID: 34553497 DOI: 10.1111/cbdd.13955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/06/2021] [Accepted: 09/06/2021] [Indexed: 01/25/2023]
Abstract
In this work, we synthesized a series of new 9,10-dihydro-2H,8H-chromeno[8,7e][1,3]oxazine-2-on derivatives which incorporate isobornylcoumarin and 1,3-oxazine moieties. A structure-antioxidant activity relationship was analyzed. A comparative evaluation of their radical scavenging activity, antioxidant and membrane-protective properties was carried out in test with DPPH, as well as on the models of Fe2+ /ascorbate-initiated lipid peroxidation and oxidative hemolysis of mammalian red blood cells. The results suggest that all the obtained coumarin[1,3]oxazine derivatives of 7-hydroxy-6-isobornyl-4-methylcoumarin are capable of exhibiting antioxidant activity in various model systems. Compound 7 with a phenyl fragment, combining high radical scavenging activity and the ability to inhibit Fe2+ /ascorbate-initiated peroxidation of animal lipids in a heterogeneous environment, also proved to be the most effective membrane protector and antioxidant in the model of H2 O2 -induced erythrocyte hemolysis.
Collapse
Affiliation(s)
- Svetlana A Popova
- Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation
| | - Oksana G Shevchenko
- Institute of Biology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation
| | - Irina Yu Chukicheva
- Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation
| |
Collapse
|
4
|
Mannich bases of alizarin: synthesis and evaluation of antioxidant capacity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Api AM, Belsito D, Botelho D, Bruze M, Burton GA, Cancellieri MA, Chon H, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Jones L, Joshi K, Kumar M, Lapczynski A, Lavelle M, Lee I, Liebler DC, Moustakas H, Na M, Penning TM, Ritacco G, Romine J, Sadekar N, Schultz TW, Selechnik D, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. RIFM fragrance ingredient safety assessment, biphenyl, CAS Registry Number 92-52-4. Food Chem Toxicol 2022; 167 Suppl 1:113320. [PMID: 35872256 DOI: 10.1016/j.fct.2022.113320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel for Fragrance Safety, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel for Fragrance Safety, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - G A Burton
- Member Expert Panel for Fragrance Safety, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - H Chon
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel for Fragrance Safety, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - M Date
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - W Dekant
- Member Expert Panel for Fragrance Safety, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel for Fragrance Safety, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Kumar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member Expert Panel for Fragrance Safety, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - H Moustakas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Na
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel for Fragrance Safety, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel for Fragrance Safety, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - D Selechnik
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel for Fragrance Safety, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
6
|
Tao S, Huo A, Gao Y, Zhang X, Yang J, Du Y. PhICl2-Mediated Regioselective and Electrophilic Oxythio/Selenocyanation of o-(1-Alkynyl)benzoates: Access to Biologically Active S/SeCN-Containing Isocoumarins. Front Chem 2022; 10:859995. [PMID: 35665060 PMCID: PMC9158338 DOI: 10.3389/fchem.2022.859995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
The application of PhICl2/NH4SCN and PhICl2/KSeCN reagent systems to the synthesis of the biologically active S/SeCN-containing isocoumarins via a process involving thio/selenocyanation, enabled by thio/selenocyanogen chloride generated in situ, followed with an intramolecular lactonization was realized. Gram-scale synthesis, further derivatization to access C4 thio/selenocyanated Xyridin A and anti-tumor activities of the obtained products highlight the potential use of this method.
Collapse
Affiliation(s)
- Shanqing Tao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Aiwen Huo
- Hebei Key Laboratory of State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China
| | - Yan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xiangyang Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Jingyue Yang
- Hebei Key Laboratory of State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China
- *Correspondence: Yunfei Du, ; Jingyue Yang,
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- *Correspondence: Yunfei Du, ; Jingyue Yang,
| |
Collapse
|
7
|
Buravlev EV, Shevchenko OG, Suponitsky KY. Synthesis and Antioxidant Capacity of Some Derivatives of Sesamol at the C-6 Position. Chem Biodivers 2021; 18:e2100221. [PMID: 34033215 DOI: 10.1002/cbdv.202100221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/28/2021] [Indexed: 01/29/2023]
Abstract
Several synthetic approaches (aminomethylation, alkylation, condensation, etc.) have been used to synthesize derivatives based on the sesamol (1), natural phenol. The set of methods, including the study of antioxidant activity (AOA) by the ability to inhibit the initiated oxidation of animal lipids, radical scavenging activity, Fe2+ -chelation ability, as well as a comparative assessment of membrane-protective activity under the conditions of H2 O2 -induced hemolysis of mice red blood cells (RBCs), was used to analyze the antioxidant potential of the synthesized compounds. The synthesized derivatives have demonstrated different activity in the listed test systems, and we have identified compounds which appear to be most promising for a detailed study of their pharmacological properties.
Collapse
Affiliation(s)
- Evgeny V Buravlev
- Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, 48, Pervomayskaya St., 167000, Syktyvkar, Komi Republic, Russian Federation
| | - Oksana G Shevchenko
- Institute of Biology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, 28, Kommunisticheskaya St., 167982, Syktyvkar, Komi Republic, Russian Federation
| | - Kyrill Yu Suponitsky
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, Vavilova St., 119991, Moscow, Russian Federation
| |
Collapse
|
8
|
do Nascimento MLLB, Dos Reis AC, Santos JVO, Negreiros HA, da Silva FCC, Ferreira PMP, Gonçalves JCR, Dittz D, Braz DC, Nunes AMV, Cunha RLOR, Melo-Cavalcante AAC, de Castro E Sousa JM. Antiproliferative and Genotoxic Action of an Underexploited Organoteluran Derivative on Sarcoma 180 Cells. Anticancer Agents Med Chem 2021; 21:1019-1026. [PMID: 32951579 DOI: 10.2174/1871520620666200918110152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The search for novel metallic chemical compounds with toxicogenic effects has been of great importance for more efficient cancer treatment. OBJECTIVE The study evaluated the cytotoxic, genotoxic and mutagenic activity of organoteluran RF07 in the S-180 cell line. METHODS The bioassays used were cell viability with 3-(4,5-dimethyl-2-thiazole)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) test, evaluation of apoptosis and necrosis using fluorescence and flow cytometry, cytokinesisblock micronucleus test and comet assay. The compound was tested at 1; 2.5 and 5μM. RESULTS The results showed the cytotoxicity of RF07 at concentrations of 2.5, 5, 10 and 20μM when compared to the negative control. For genotoxicity tests, RF07 showed effects in all concentrations assessed by increased index and frequencies of damage and mutagenic alterations. The compound was also cytotoxic due to the significant decrease in the nuclear division index, with significant values of apoptosis and necrosis. The results of fluorescence and flow cytometry showed apoptosis as the main type of cell death caused by RF07 at 5μM, which is thought to avoid an aggressive immune response of the organism. CONCLUSION In addition to cytotoxic and genotoxic effects, RF07 creates good perspectives for future antitumor formulations.
Collapse
Affiliation(s)
- Maria L L Barreto do Nascimento
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Toxicological Genetics, Federal University of Piaui, Teresina, Brazil
| | - Antonielly Campinho Dos Reis
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Toxicological Genetics, Federal University of Piaui, Teresina, Brazil
| | - José V O Santos
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Toxicological Genetics, Federal University of Piaui, Teresina, Brazil
| | - Helber A Negreiros
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Toxicological Genetics, Federal University of Piaui, Teresina, Brazil
| | | | - Paulo M P Ferreira
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Toxicological Genetics, Federal University of Piaui, Teresina, Brazil
| | - Juan C R Gonçalves
- Department of Pharmaceutical Sciences, Federal University of Paraiba, Joao Pessoa, Brazil
| | - Dalton Dittz
- Department of Biochemistry and Pharmacology, Federal University of Piaui, Teresina, Brazil
| | - Débora C Braz
- Department of Pharmacy, University of Piaui, Teresina, Brazil
| | - Adriana M V Nunes
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piaui, Teresina, Brazil
| | - Rodrigo L O R Cunha
- Center for Natural and Human Sciences, Laboratory of Chemical Biology, Federal University of ABC, Santo Andre, Brazil
| | - Ana A C Melo-Cavalcante
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Toxicological Genetics, Federal University of Piaui, Teresina, Brazil
| | - João Marcelo de Castro E Sousa
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Toxicological Genetics, Federal University of Piaui, Teresina, Brazil
| |
Collapse
|
9
|
Bortoli M, Bruschi M, Swart M, Orian L. Sequential oxidations of phenylchalcogenides by H2O2: insights into the redox behavior of selenium via DFT analysis. NEW J CHEM 2020. [DOI: 10.1039/c9nj06449d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biological activity of sulfur and selenium, despite their similarity, shows some remarkable differences that have been recognized in many different scenarios.
Collapse
Affiliation(s)
- Marco Bortoli
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- Via Marzolo 1
- 35131 Padova
- Italy
| | - Matteo Bruschi
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- Via Marzolo 1
- 35131 Padova
- Italy
| | - Marcel Swart
- University of Girona
- Campus Montilivi (Ciències)
- IQCC
- 17003 Girona
- Spain
| | - Laura Orian
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- Via Marzolo 1
- 35131 Padova
- Italy
| |
Collapse
|
10
|
The 125Te Chemical Shift of Diphenyl Ditelluride: Chasing Conformers over a Flat Energy Surface. Molecules 2019; 24:molecules24071250. [PMID: 30935011 PMCID: PMC6480379 DOI: 10.3390/molecules24071250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022] Open
Abstract
The interest in diphenyl ditelluride (Ph2Te2) is related to its strict analogy to diphenyl diselenide (Ph2Se2), whose capacity to reduce organic peroxides is largely exploited in catalysis and green chemistry. Since the latter is also a promising candidate as an antioxidant drug and mimic of the ubiquitous enzyme glutathione peroxidase (GPx), the use of organotellurides in medicinal chemistry is gaining importance, despite the fact that tellurium has no recognized biological role and its toxicity must be cautiously pondered. Both Ph2Se2 and Ph2Te2 exhibit significant conformational freedom due to the softness of the inter-chalcogen and carbon–chalcogen bonds, preventing the existence of a unique structure in solution. Therefore, the accurate calculation of the NMR chemical shifts of these flexible molecules is not trivial. In this study, a detailed structural analysis of Ph2Te2 is carried out using a computational approach combining classical molecular dynamics and relativistic density functional theory methods. The goal is to establish how structural changes affect the electronic structure of diphenyl ditelluride, particularly the 125Te chemical shift.
Collapse
|
11
|
Methylglyoxal disturbs the expression of antioxidant, apoptotic and glycation responsive genes and triggers programmed cell death in human leukocytes. Toxicol In Vitro 2019; 55:33-42. [DOI: 10.1016/j.tiv.2018.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/03/2018] [Accepted: 11/02/2018] [Indexed: 12/22/2022]
|
12
|
Bueno D, Meinerz D, Waczuk E, de Souza D, Batista Rocha J. Toxicity of organochalcogens in human leukocytes is associated, but not directly related with reactive species production, apoptosis and changes in antioxidant gene expression. Free Radic Res 2018; 52:1158-1169. [DOI: 10.1080/10715762.2018.1536824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Diones Bueno
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Daiane Meinerz
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Emily Waczuk
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Diego de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - João Batista Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
13
|
Ecker A, da Silva RS, Dos Santos MM, Ardisson-Araújo D, Rodrigues OED, da Rocha JBT, Barbosa NV. Safety profile of AZT derivatives: Organoselenium moieties confer different cytotoxic responses in fresh human erythrocytes during in vitro exposures. J Trace Elem Med Biol 2018; 50:240-248. [PMID: 30262286 DOI: 10.1016/j.jtemb.2018.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/12/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The incorporation of selenium in the structure of nucleosides is a promising strategy to develop novel therapeutic molecules. OBJECTIVE To assess the toxic effects of three AZT derivatives containing organoselenium moieties on human erythrocytes. METHODOLOGY Freshly human erythrocytes were acutely treated with AZT and selenium derivatives SZ1 (chlorophenylseleno), SZ2 (phenylseleno) and SZ3 (methylphenylseleno) at concentrations ranging from 10 to 500 μM. Afterwards, parameters related to membrane damage, redox dyshomeostasis and eryptosis were determined in the cells. RESULTS The effects of AZT and derivatives toward erythrocytes differed considerably. Overall, the SZ3 exhibited similar effect profiles to the prototypal AZT, without causing cytotoxicity. Contrary, the derivative SZ1 induced hemolysis and increased the membrane fragility of cells. Reactive species generation, lipid peroxidation and thiol depletion were also substantially increased in cells after exposure to SZ1. δ-ALA-D and Na+/K+-ATPase activities were inhibited by derivatives SZ1 and SZ2. Additionally, both derivatives caused eryptosis, promoting cell shrinkage and translocation of phosphatidylserine at the membrane surface. The size and granularity of erythrocytes were not modified by any compound. CONCLUSION The insertion of either chlorophenylseleno or, in a certain way, phenylseleno moietes in the structure of AZT molecule was harmful to erythrocytes and this effect seems to involve a pro-oxidant activity. This was not true for the derivative encompassing methylphenylseleno portion, making it a promising candidate for pharmacological studies.
Collapse
Affiliation(s)
- Assis Ecker
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Rafael S da Silva
- LabSelen-NanoBio - Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Matheus Mulling Dos Santos
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Daniel Ardisson-Araújo
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Oscar E D Rodrigues
- LabSelen-NanoBio - Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Nilda Vargas Barbosa
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
14
|
Isopropyl Caffeate: A Caffeic Acid Derivative-Antioxidant Potential and Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6179427. [PMID: 29849905 PMCID: PMC5932986 DOI: 10.1155/2018/6179427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/19/2018] [Accepted: 03/08/2018] [Indexed: 12/11/2022]
Abstract
Phenolic compounds, among them isopropyl caffeate, possess antioxidant potential, but not without toxicity and/or adverse effects. The present study aimed to evaluate the antioxidant activity and toxicity of isopropyl caffeate through in silico, in vitro and in vivo testing. The results showed that isopropyl caffeate presents no significant theoretical risk of toxicity, with likely moderate bioactivity: GPCR binding, ion channel modulation, nuclear receptor binding, and enzyme inhibition. Isopropyl caffeate induced hemolysis only at the concentrations of 500 and 1000 μg/ml. We observed types A and O erythrocyte protection from osmotic stress, no oxidation of erythrocytes, and even sequestrator and antioxidant behavior. However, moderate toxicity, according to the classification of GHS, was demonstrated through depressant effects on the central nervous system, though there was no influence on water and food consumption or on weight gain, and it did present possible hepatoprotection. We conclude that the effects induced by isopropyl caffeate are due to its antioxidant activity, capable of preventing production of free radicals and oxidative stress, a promising molecule with pharmacological potential.
Collapse
|
15
|
Bianchini MC, Galvão DO, Tamborena T, Alves CO, Puntel RL. Mentha pulegium crude extracts induce thiol oxidation and potentiate hemolysis when associated to t-butyl hydroperoxide in human's erythrocytes. AN ACAD BRAS CIENC 2017; 89:2901-2909. [PMID: 29236859 DOI: 10.1590/0001-3765201720170446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/01/2017] [Indexed: 11/22/2022] Open
Abstract
Mentha pulegium (Lamiaceae) tea has been used as a traditional medicine; however, the modulatory effect of M. pulegium extracts on damage to human erythrocytes associated to t-butyl hydroperoxide (t-BHP) exposure remains to be investigated. Accordingly, we perform this study in order to test the hypothesis that aqueous and ethanolic extracts of M. pulegium could modulate the hemolysis associated to t-BHP exposure, non-protein thiol (NPSH) oxidation and lipid peroxidation (measured as thiobarbituric acid reactive substances - TBARS) in human erythrocytes. Samples were co-incubated with t-BHP (4 mmol/L) and/or aqueous or ethanolic extracts (10-1000 mg/mL) during 120 min to further analysis. We found that both extracts, when associated to t-BHP, potentiate NPSH oxidation and hemolysis. Moreover, both extracts significantly prevents against t-BHP-induced TBARS production. A significant correlation among hemolysis and NPSH levels was found. Taking together, our data points that the association of M. pulegium extracts with t-BHP culminates in toxic effect to exposed erythrocytes, besides its protective effect against t-BHP-induced TBARS production. So, we infer that the use of this extract may exert negative effect during painful crisis in sickle cell anemia. However, more studies are still necessary to better investigate/understand the mechanism(s) involved in the toxic effect resultant from this association.
Collapse
Affiliation(s)
- Matheus C Bianchini
- Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, Uruguaiana, 97500-970 RS, Brazil
| | - Dennyura O Galvão
- Universidade Regional do Cariri, Rua Cel. Antonio Luiz, s/n, Campus do Pimenta, 63105-000 Crato, CE, Brazil
| | - Tatiana Tamborena
- Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, Uruguaiana, 97500-970 RS, Brazil
| | - Claudia O Alves
- Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, Uruguaiana, 97500-970 RS, Brazil
| | - Robson L Puntel
- Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, Uruguaiana, 97500-970 RS, Brazil
| |
Collapse
|
16
|
Portela JL, Soares D, Rosa H, Roos DH, Pinton S, Ávila DS, Puntel RL. Ilex paraguariensis crude extract acts on protection and reversion from damage induced by t-butyl hydroperoxide in human erythrocytes: a comparative study with isolated caffeic and/or chlorogenic acids. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2007-2014. [PMID: 27545589 DOI: 10.1002/jsfa.8001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/22/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Studies comparing the effects of phytochemicals under different regimens of exposure are necessary to give a better indication about their mechanism(s) of protection. Hence, in the present study, we investigated the preventive (pre-incubation), protective (co-incubation) and/or remediative (post-incubation) activity of chlorogenic acid and caffeic acids, in comparison with Ilex paraguariensis crude extract, against t-butyl hydroperoxide (t-BHP)-induced damage to human erythrocytes. RESULTS We found that both caffeic and chlorogenic acids were able to prevent and revert the hemolysis associated with t-BHP exposure. By contrast, isolated compounds (alone or in combination) presented no effect on basal and/or t-BHP-induced non-protein thiol (NPSH) oxidation or production of thiobarbituric acid reactive substances (TBBARS). In turn, I. paraguariensis extract was effective to prevent, protect and revert the hemolysis associated with t-BHP exposure. Moreover, I. paraguariensis significantly protects and reverts t-BHP-induced NPSH oxidation and TBARS production. CONCLUSIONS We have found that I. paraguariensis extract acts better with respect to the protection and reversion of t-BHP-associated changes, whereas isolated compounds are more active in preventing and reverting t-BHP pro-hemolytic action. Moreover, our data suggest that the pro-hemolytic activity of t-BHP may occur via mechanism(s) other(s) than lipid peroxidation and/or NPSH oxidation. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- José Luiz Portela
- Universidade Federal do Pampa - Campus Uruguaiana, BR-472 Km 7, Uruguaiana, 97500-970, RS, Brazil
| | - Deividi Soares
- Universidade Federal do Pampa - Campus Uruguaiana, BR-472 Km 7, Uruguaiana, 97500-970, RS, Brazil
| | - Hemerson Rosa
- Universidade Federal do Pampa - Campus Uruguaiana, BR-472 Km 7, Uruguaiana, 97500-970, RS, Brazil
| | - Daniel Henrique Roos
- Universidade Federal do Pampa - Campus Uruguaiana, BR-472 Km 7, Uruguaiana, 97500-970, RS, Brazil
| | - Simone Pinton
- Universidade Federal do Pampa - Campus Uruguaiana, BR-472 Km 7, Uruguaiana, 97500-970, RS, Brazil
| | - Daiana Silva Ávila
- Universidade Federal do Pampa - Campus Uruguaiana, BR-472 Km 7, Uruguaiana, 97500-970, RS, Brazil
| | - Robson L Puntel
- Universidade Federal do Pampa - Campus Uruguaiana, BR-472 Km 7, Uruguaiana, 97500-970, RS, Brazil
| |
Collapse
|
17
|
Prestes ADS, dos Santos MM, Ecker A, Zanini D, Schetinger MRC, Rosemberg DB, da Rocha JBT, Barbosa NV. Evaluation of methylglyoxal toxicity in human erythrocytes, leukocytes and platelets. Toxicol Mech Methods 2017; 27:307-317. [DOI: 10.1080/15376516.2017.1285971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Matheus Mülling dos Santos
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Assis Ecker
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Daniela Zanini
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Denis Broock Rosemberg
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Nilda Vargas Barbosa
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
18
|
Mariano DOC, de Souza D, Meinerz DF, Allebrandt J, de Bem AF, Hassan W, Rodrigues OED, da Rocha JBT. The potential toxicological insights about the anti-HIV drug azidothymidine-derived monoselenides in human leukocytes: Toxicological insights of new selenium-azidothymidine analogs. Hum Exp Toxicol 2016; 36:910-918. [DOI: 10.1177/0960327116674529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Acquired immunodeficiency syndrome (AIDS) is a worldwide disease characterized by impairments of immune function. AIDS can be associated with oxidative stress (OS) that can be linked to selenium (Se) deficiency. Se is fundamental for the synthesis of selenoproteins, such as glutathione peroxidase and thioredoxin reductase. These enzymes catalyze the decomposition of reactive oxygen species and contribute to maintain equilibrium in cell redox status. Literature data indicate that organoselenium compounds, such as ebselen and diphenyl diselenide, have antioxidant properties in vitro and in vivo models associated with OS. Nevertheless, selenocompounds can also react and oxidize thiols groups, inducing toxicity in mammals. Here, we tested the potential cytotoxic and genotoxic properties of six analogs of the prototypal anti-HIV drug azidothymidine (AZT) containing Se (5′-Se-(phenyl)zidovudine; 5′-Se-(1,3,5-trimethylphenyl)zidovudine; 5′-Se-(1-naphtyl)zidovudine; 5′-Se-(4-chlorophenyl)zidovudine) (C4); 5′-Se-(4-methylphenyl)zidovudine (C5); and 5′-(4-methylbenzoselenoate)zidovudine). C5 increased the rate of dithiothreitol oxidation (thiol oxidase activity) and C2-C4 and C6 (at 100 µM) increased DNA damage index (DI) in human leukocytes. Moreover, C5 (200 µM) decreased human leukocyte viability to about 50%. Taken together, these results indicated the low in vitro toxicity in human leukocytes of some Se-containing analogs of AZT.
Collapse
Affiliation(s)
- DOC Mariano
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - D de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - DF Meinerz
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - J Allebrandt
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - AF de Bem
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Santa Catarina, Brazil
| | - W Hassan
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - OED Rodrigues
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - JBT da Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
19
|
Mubashar Sabir S, Khan MF, Rocha JBT, Boligon AA, Athayde ML. Phenolic Profile, Antioxidant Activities and Genotoxic Evaluations of C
alendula officinalis. J Food Biochem 2015. [DOI: 10.1111/jfbc.12132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Syed Mubashar Sabir
- Department of Chemistry; University of Poonch; Rawalakot Azad Kashmir +92-12350 Pakistan
| | - Muhammad Fareed Khan
- Department of Plant Breeding and Molecular Geneticts; University of Poonch; Rawalakot Azad Kashmir +92-12350 Pakistan
| | - Joao Batista Texeira Rocha
- Departmento de Química; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria Brazil
| | - Aline Augusti Boligon
- Phytochemical Research Laboratory; Department of Industrial Pharmacy; Federal University of Santa Maria; Santa Maria Brazil
| | - Margareth Linde Athayde
- Phytochemical Research Laboratory; Department of Industrial Pharmacy; Federal University of Santa Maria; Santa Maria Brazil
| |
Collapse
|
20
|
Yang F, Wong KH, Yang Y, Li X, Jiang J, Zheng W, Wu H, Chen T. Purification and in vitro antioxidant activities of tellurium-containing phycobiliproteins from tellurium-enriched Spirulina platensis. Drug Des Devel Ther 2014; 8:1789-800. [PMID: 25336922 PMCID: PMC4199980 DOI: 10.2147/dddt.s62530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tellurium-containing phycocyanin (Te-PC) and allophycocyanin (Te-APC), two organic tellurium (Te) species, were purified from tellurium-enriched Spirulina platensis by a fast protein liquid chromatographic method. It was found that the incorporation of Te into the peptides enhanced the antioxidant activities of both phycobiliproteins. With fractionation by ammonium sulfate precipitation and hydroxylapatite chromatography, Te-PC and Te-APC could be effectively separated with high purity, and Te concentrations were 611.1 and 625.3 μg g(-1) protein in Te-PC and Te-APC, respectively. The subunits in the proteins were identified by using MALDI-TOF-TOF mass spectrometry. Te incorporation enhanced the antioxidant activities of both phycobiliproteins, as examined by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid assay. Moreover, Te-PC and Te-APC showed dose-dependent protection on erythrocytes against the water-soluble free radical initiator 2,2'-azo(2-asmidinopropane)dihydrochloride-induced hemolysis. In the hepatoprotective model, apoptotic cell death and nuclear condensation induced by tert-butyl hydroperoxide in HepG2 cells was significantly attenuated by Te-PC and Te-APC. Taken together, these results suggest that Te-PC and Te-APC are promising Te-containing proteins with application potential for treatment of diseases related to oxidative stress.
Collapse
Affiliation(s)
- Fang Yang
- Department of Chemistry, Jinan University, Guangzhou, People's Republic of China
| | - Ka-Hing Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Yufeng Yang
- Institute of Hydrobiology, College of Life Science and Technology, Jinan University, Guangzhou, People's Republic of China
| | - Xiaoling Li
- Department of Chemistry, Jinan University, Guangzhou, People's Republic of China
| | - Jie Jiang
- Department of Chemistry, Jinan University, Guangzhou, People's Republic of China
| | - Wenjie Zheng
- Department of Chemistry, Jinan University, Guangzhou, People's Republic of China
| | - Hualian Wu
- Department of Chemistry, Jinan University, Guangzhou, People's Republic of China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
21
|
Dhau JS, Singh A, Singh A, Sooch BS. A Study on the Antioxidant Activity of Pyridylselenium Compounds and their Slow Release from Poly(acrylamide) Hydrogels. PHOSPHORUS SULFUR 2014. [DOI: 10.1080/10426507.2013.844143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jaspreet S. Dhau
- Department of Chemistry, Punjabi University, Patiala-147002, Punjab, India
| | - Avtar Singh
- Department of Chemistry, Punjabi University, Patiala-147002, Punjab, India
| | - Amritpal Singh
- Department of Chemistry, Punjabi University, Patiala-147002, Punjab, India
| | - Balwinder S. Sooch
- Department of Biotechnology, Punjabi University, Patiala-147002, Punjab, India
| |
Collapse
|
22
|
Meinerz DF, Allebrandt J, Mariano DOC, Waczuk EP, Soares FA, Hassan W, Rocha JBT. Differential genotoxicity of diphenyl diselenide (PhSe)2 and diphenyl ditelluride (PhTe)2. PeerJ 2014; 2:e290. [PMID: 24711962 PMCID: PMC3970806 DOI: 10.7717/peerj.290] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 02/04/2014] [Indexed: 11/20/2022] Open
Abstract
Organoselenium compounds have been pointed out as therapeutic agents. In contrast, the potential therapeutic aspects of tellurides have not yet been demonstrated. The present study evaluated the comparative toxicological effects of diphenyl diselenide (PhSe)2 and diphenyl ditelluride (PhTe)2 in mice after in vivo administration. Genotoxicity (as determined by comet assay) and mutagenicicity were used as end-points of toxicity. Subcutaneous administration of high doses of (PhSe)2 or (PhTe)2 (500 µmol/kg) caused distinct genotoxicity in mice. (PhSe)2 significantly decreased the DNA damage index after 48 and 96 h of its injection (p < 0.05). In contrast, (PhTe) caused a significant increase in DNA damage (p < 0.05) after 48 and 96 h of intoxication. (PhSe)2 did not cause mutagenicity but (PhTe)2 increased the micronuclei frequency, indicating its mutagenic potential. The present study demonstrated that acute in vivo exposure to ditelluride caused genotoxicity in mice, which may be associated with pro-oxidant effects of diphenyl ditelluride. In addition, the use of this compound and possibly other related tellurides must be carefully controlled.
Collapse
Affiliation(s)
- Daiane Francine Meinerz
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Josiane Allebrandt
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Douglas O C Mariano
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Emily P Waczuk
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Felix Antunes Soares
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - Waseem Hassan
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| | - João Batista T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria , Santa Maria, RS, Brasil
| |
Collapse
|
23
|
Direct synthesis of 4-organylsulfenyl-7-chloro quinolines and their toxicological and pharmacological activities in Caenorhabditis elegans. Eur J Med Chem 2014; 75:448-59. [PMID: 24561673 DOI: 10.1016/j.ejmech.2014.01.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 12/30/2022]
Abstract
We describe herein our results on the synthesis and biological properties in Caenorhabditis elegans of a range of 4-organylsulfenyl-7-chloroquinolines. This class of compounds have been easily synthesized in high yields by direct reaction of 4,7-dichloroquinoline with organylthiols using DMSO as solvent at room temperature under air atmosphere and tolerates a range of substituents in the organylsulfenyl moiety. We have performed a toxicological and pharmacological screening of the synthesized 4-organylsulfenyl-7-chloroquinolines in vivo in C. elegans acutely exposed to these compounds, under per se and stress conditions. Hence, we determined the lethal dose 50% (LD50), in order to choose a nonlethal concentration (10 μM) and verified that at that concentration some of the compounds depicted protective action against the induced damage inflicted by paraquat, a superoxide generator. Two compounds (3c and 3h) reduced the toxicity inflicted by paraquat above survival, reproduction and longevity of the worms, at least in part, by reducing the reactive oxygen species (ROS) generated by the toxicant exposure. Besides, these compounds increased the quantities of superoxide dismutase (SOD-3::GFP) and catalase (CTL-1,2,3::GFP), antioxidant enzymes. We concluded that the protective effects of the compounds observed in this study might have been a hormetic response dependent of the transcriptional factor DAF-16/FOXO, causing a non-lethal oxidative stress that protects against the subsequently damage induced by paraquat.
Collapse
|
24
|
Meinerz DF, Comparsi B, Allebrandt J, Mariano DOC, Dos Santos DB, Zemolin APP, Farina M, Dafre LA, Rocha JBT, Posser T, Franco JL. Sub-acute administration of (S)-dimethyl 2-(3-(phenyltellanyl) propanamido) succinate induces toxicity and oxidative stress in mice: unexpected effects of N-acetylcysteine. SPRINGERPLUS 2013; 2:182. [PMID: 23658858 PMCID: PMC3644195 DOI: 10.1186/2193-1801-2-182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/16/2013] [Indexed: 12/21/2022]
Abstract
The organic tellurium compound (S)-dimethyl 2-(3-(phenyltellanyl) propanamide) succinate (TeAsp) exhibits thiol-peroxidase activity that could potentially offer protection against oxidative stress. However, data from the literature show that tellurium is a toxic agent to rodents. In order to mitigate such toxicity, N-acetylcysteine (NAC) was administered in parallel with TeAsp during 10 days. Mice were separated into four groups receiving daily injections of (A) vehicle (PBS 2.5 ml/kg, i.p. and DMSO 1 ml/kg, s.c.), (B) NAC (100 mg/kg, i.p. and DMSO s.c.), (C) PBS i.p. and TeAsp (92.5 μmol/kg, s.c), or (D) NAC plus TeAsp. TeAsp treatment started on the fourth day. Vehicle or NAC-treated animals showed an increase in body weight whereas TeAsp caused a significant reduction. Contrary to expected, NAC co-administration potentiated the toxic effect of TeAsp, causing a decrease in body weight. Vehicle, NAC or TeAsp did not affect the exploratory and motor activity in the open-field test at the end of the treatment, while the combination of NAC and TeAsp produced a significant decrease in these parameters. No DNA damage or alterations in cell viability were observed in leukocytes of treated animals. Treatments produced no or minor effects on the activities of antioxidant enzymes catalase, glutathione peroxidase and glutathione reductase, whereas the activity of the thioredoxin reductase was decreased in the brain and increased the liver of the animals in the groups receiving TeAsp or TeAsp plus NAC. In conclusion, the toxicity of TeAsp was potentiated by NAC and oxidative stress appears to play a central role in this process.
Collapse
Affiliation(s)
- Daiane F Meinerz
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS CEP 97105-900 Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Evaluation of in vitro antioxidant effect of new mono and diselenides. Toxicol In Vitro 2013; 27:1433-9. [PMID: 23499633 DOI: 10.1016/j.tiv.2013.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/28/2013] [Accepted: 03/02/2013] [Indexed: 12/19/2022]
Abstract
This study was designed to examine the antioxidant activity in vitro of novel mono- and diselenide compounds. We compared whether the formation of p-methyl-selenol from compounds 1-phenyl-3-(p-tolylselanyl)propan-2-amine (C1) and 1,2-dip-tolyldiselenide (C4) and o-methoxy-selenol from compounds 1-(2-methoxyphenylselanyl)-3-phenylpropan-2-amine (C2) and 1,2-bis(2-methoxyphenyl)diselenide (C3) may be involved in their antioxidant effects. The compounds were tested against Fe(II) and sodium nitroprusside (SNP)-induced lipid peroxidation in rat brain and liver homogenates. Likewise, the antioxidant capacity of the compounds was assessed by their ability to decolorize the DPPH radical as well as the Fe(II) chelating assay through the reduction of molybdenum(VI) (Mo6+) to molybdenum(V) (Mo5+). This colorimetric assay was also used to quantify thiol peroxidase (GPx) and oxidase activity and thioredoxin reductase (TrxR) activity. The results showed that the novel selenide compounds inhibit the thiobarbituric acid reactive species (TBARS) induced by different pro-oxidants, but the monoselenides effects were significant only at concentrations higher than the concentrations of the diselenides. Similarly, the total antioxidant activity was higher in the diselenides. Moreover, GPx and TrxR activity was only observed for the diselenides, which indicates that these compounds are more stable selenol molecules than monoselenides.
Collapse
|
26
|
Puntel RL, Roos DH, Seeger RL, Rocha JB. Mitochondrial electron transfer chain complexes inhibition by different organochalcogens. Toxicol In Vitro 2013; 27:59-70. [DOI: 10.1016/j.tiv.2012.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 10/12/2012] [Accepted: 10/13/2012] [Indexed: 01/17/2023]
|
27
|
Vij P, Hardej D. Evaluation of tellurium toxicity in transformed and non-transformed human colon cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:768-782. [PMID: 23068156 DOI: 10.1016/j.etap.2012.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 09/08/2012] [Indexed: 06/01/2023]
Abstract
Diphenyl ditelluride (DPDT) and tellurium tetrachloride (TeCl(4)) were evaluated for toxicity in transformed (HT-29, Caco-2) and non-transformed colon cells (CCD-18Co). Significant decreases in viability were observed with DPDT exposure in HT-29 (62.5-1000 μM), Caco-2 (31.25-1000 μM) and CCD-18Co cells (500-1000 μM) and with TeCl(4) in HT-29 (31.25-1000 μM), Caco-2 (31.25-1000 μM) and CCD-18Co cells (500-1000 μM). Light microscopy confirmed viability analysis. Significant increases in caspase 3/7 and 9 activity were observed with DPDT in HT-29 (500-1000 μM) and CCD-18Co cells (1000 μM) indicating apoptosis. No significant increases in caspases were seen with TeCl(4) indicating necrosis. Apoptosis or necrosis was confirmed with fluorescent staining (FITC-Annexin, Hoechst 33342 and Ethidium Homodimer). Significant decreases in GSH/GSSG ratio were observed with DPDT in HT-29 (62.5-1000 μM), and CCD-18Co cells (1000 μM) and with TeCl(4) in HT-29 (62.5-1000 μM) and CCD-18Co cells (250-1000 μM). We concluded that cells treated with DPDT resulted in apoptosis and TeCl(4) treatment in necrosis. GSH/GSSG ratio shifts indicate oxidative mechanisms are involved.
Collapse
Affiliation(s)
- Puneet Vij
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA
| | | |
Collapse
|
28
|
Güez CM, Waczuk EP, Pereira KB, Querol MVM, Rocha JBTD, Oliveira LFSD. In vivo and in vitro genotoxicity studies of aqueous extract of Xanthium spinosum. BRAZ J PHARM SCI 2012. [DOI: 10.1590/s1984-82502012000300013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The use of plants as a source of palliative or cure for pathological conditions is quite common worldwide. Xanthium spinosum (Asteraceae), popularly known in Brazil as 'espinho de carneiro', is an annual weed from South America, which has been used by empiric medicine to treat neoplasias. Owing to the extensive use of the above-mentioned plant and to the lack of reports about the real effects of its infusion, current study evaluated the genotoxic potential of its aqueous extract at concentrations 0.02 g L-1, 0.1 g L-1 and 0.2 g L-1 by fish micronucleus test and by comet human leukocytes assay. The micronucleus test featured at least 50 cells with micronuclei to every 2,000 cells scored, as a mutagenic parameter. The comet assay was used as a parameter for assessing the level of cell damage and the damage index. Since no significant changes in strain cells exposed to the aqueous extract in the comet and micronucleus assays were reported, it seems that no genotoxicity evidence is extant at the concentrations and in the assays performed.
Collapse
|
29
|
Evaluation of the neurotoxic/neuroprotective role of organoselenides using differentiated human neuroblastoma SH-SY5Y cell line challenged with 6-hydroxydopamine. Neurotox Res 2012; 22:138-49. [PMID: 22271527 DOI: 10.1007/s12640-012-9311-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/06/2012] [Accepted: 01/09/2012] [Indexed: 12/15/2022]
Abstract
It is well established that oxidative stress plays a major role in several neurodegenerative conditions, like Parkinson disease (PD). Hence, there is an enormous effort for the development of new antioxidants compounds with therapeutic potential for the management of PD, such as synthetic organoselenides molecules. In this study, we selected between nine different synthetic organoselenides the most eligible ones for further neuroprotection assays, using the differentiated human neuroblastoma SH-SY5Y cell line as in vitro model. Neuronal differentiation of exponentially growing human neuroblastoma SH-SY5Y cells was triggered by cultivating cells with DMEM/F12 medium with 1% of fetal bovine serum (FBS) with the combination of 10 μM retinoic acid for 7 days. Differentiated cells were further incubated with different concentrations of nine organoselenides (0.1, 0.3, 3, 10, and 30 μM) for 24 h and cell viability, neurites densities and the immunocontent of neuronal markers were evaluated. Peroxyl radical scavenging potential of each compound was determined with TRAP assay. Three organoselenides tested presented low cytotoxicity and high antioxidant properties. Pre-treatment of cells with those compounds for 24 h lead to a significantly neuroprotection against 6-hydroxydopamine (6-OHDA) toxicity, which were directly related to their antioxidant properties. Neuroprotective activity of all three organoselenides was compared to diphenyl diselenide (PhSe)₂, the simplest of the diaryl diselenides tested. Our results demonstrate that differentiated human SH-SY5Y cells are suitable cellular model to evaluate neuroprotective/neurotoxic role of compounds, and support further evaluation of selected organoselenium molecules as potential pharmacological and therapeutic drugs in the treatment of PD.
Collapse
|
30
|
Roy S, Hardej D. Tellurium tetrachloride and diphenyl ditelluride cause cytotoxicity in rat hippocampal astrocytes. Food Chem Toxicol 2011; 49:2564-74. [DOI: 10.1016/j.fct.2011.06.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/24/2011] [Accepted: 06/27/2011] [Indexed: 01/13/2023]
|
31
|
Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol 2011; 85:1313-59. [DOI: 10.1007/s00204-011-0720-3] [Citation(s) in RCA: 330] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 05/18/2011] [Indexed: 02/07/2023]
|
32
|
Padmavathi P, Reddy VD, Kavitha G, Paramahamsa M, Varadacharyulu N. Chronic cigarette smoking alters erythrocyte membrane lipid composition and properties in male human volunteers. Nitric Oxide 2010; 23:181-6. [PMID: 20561918 DOI: 10.1016/j.niox.2010.05.287] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 05/10/2010] [Accepted: 05/27/2010] [Indexed: 12/13/2022]
Abstract
Cigarette smoking is a major lifestyle factor influencing the health of human beings. The present study investigates smoking induced alterations on the erythrocyte membrane lipid composition, fluidity and the role of nitric oxide. Thirty experimental and control subjects (age 35+/-8) were selected for the study. Experimental subjects smoke 12+/-2 cigarettes per day for 7-10 years. In smokers elevated nitrite/nitrate levels in plasma and red cell lysates were observed. Smokers showed increased hemolysis, erythrocyte membrane lipid peroxidation, protein carbonyls, C/P ratio (cholesterol and phospholipid ratio), anisotropic (gamma) value with decreased Na(+)/K(+)-ATPase activity and sulfhydryl groups. Alterations in smokers erythrocyte membrane individual phospholipids were also evident from the study. Red cell lysate nitric oxide positively correlated with C/P ratio (r=0.565) and fluorescent anisotropic (gamma) value (r=0.386) in smokers. Smoking induced generation of reactive oxygen/nitrogen species might have altered erythrocyte membrane physico-chemical properties.
Collapse
Affiliation(s)
- Pannuru Padmavathi
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, AP 515055, India
| | | | | | | | | |
Collapse
|
33
|
Meinerz DF, Sudati JH, dos Santos DB, Frediani A, Alberto EE, Allebrandt J, Franco JL, Barbosa NBV, Aschner M, da Rocha JBT. Evaluation of the biological effects of (S)-dimethyl 2-(3-(phenyltellanyl) propanamido) succinate, a new telluroamino acid derivative of aspartic acid. Arch Toxicol 2010; 85:43-9. [DOI: 10.1007/s00204-010-0555-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 05/04/2010] [Indexed: 12/31/2022]
|
34
|
Rosseti IB, Wagner C, Fachinetto R, Taube Junior P, Costa MS. Candida albicans growth and germ tube formation can be inhibited by simple diphenyl diselenides [(PhSe)2, (MeOPhSe)2, (p-Cl-PhSe)2, (F3CPhSe)2] and diphenyl ditelluride. Mycoses 2010; 54:506-13. [DOI: 10.1111/j.1439-0507.2010.01888.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|