1
|
Liu ST, Huang SM, Ho CL, Yen LC, Huang CJ, Lin WS, Chan JYH. The regulatory mechanisms of myogenin expression in doxorubicin-treated rat cardiomyocytes. Oncotarget 2016; 6:37443-57. [PMID: 26452256 PMCID: PMC4741940 DOI: 10.18632/oncotarget.5338] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/25/2015] [Indexed: 01/03/2023] Open
Abstract
Doxorubicin, an anthracycline antibiotic, has been used as an anti-neoplastic drug for almost 60 years. However, the mechanism(s) by which anthracyclines cause irreversible myocardial injury remains unclear. In order to delineate possible molecular signals involved in the myocardial toxicity, we assessed candidate genes using mRNA expression profiling in the doxorubicin-treated rat cardiomyocyte H9c2 cell line. In the study, it was confirmed that myogenin, an important transcriptional factor for muscle terminal differentiation, was significantly reduced by doxorubicin in a dose-dependent manner using both RT-PCR and western blot analyses. Also, it was identified that the doxorubicin-reduced myogenin gene level could not be rescued by most cardio-protectants. Furthermore, it was demonstrated how the signaling of the decreased myogenin expression by doxorubicin was altered at the transcriptional, post-transcriptional and translational levels. Based on these findings, a working model was proposed for relieving doxorubicin-associated myocardial toxicity by down-regulating miR-328 expression and increasing voltage-gated calcium channel β1 expression, which is a repressor of myogenin gene regulation. In summary, this study provides several lines of evidence indicating that myogenin is the target for doxorubicin-induced cardio-toxicity and a novel therapeutic strategy for doxorubicin clinical applications based on the regulatory mechanisms of myogenin expression.
Collapse
Affiliation(s)
- Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan, Republic of China.,Department of Medicine, Division of Hematology/Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Ching-Liang Ho
- Department of Medicine, Division of Hematology/Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Li-Chen Yen
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Chi-Jung Huang
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan, Republic of China.,Department of Medical Research, Cathay General Hospital, New Taipei City 221, Taiwan, Republic of China
| | - Wei-Shiang Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan, Republic of China
| | - James Yi-Hsin Chan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan, Republic of China.,Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| |
Collapse
|
2
|
Brown SA, Sandhu N, Herrmann J. Systems biology approaches to adverse drug effects: the example of cardio-oncology. Nat Rev Clin Oncol 2015; 12:718-31. [PMID: 26462128 DOI: 10.1038/nrclinonc.2015.168] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increased awareness of the cardiovascular toxic effects of chemotherapy has led to the emergence of cardio-oncology (or onco-cardiology), which focuses on screening, monitoring and treatment of patients with cardiovascular dysfunctions resulting from chemotherapy. Anthracyclines, such as doxorubicin, and HER2 inhibitors, such as trastuzumab, both have cardiotoxic effects. The biological rationale, mechanisms of action and cardiotoxicity profiles of these two classes of drugs, however, are completely different, suggesting that cardiotoxic effects can occur in a range of different ways. Advances in genomics and proteomics have implicated several genomic variants and biological pathways that can influence the susceptibility to cardiotoxicity from these, and other drugs. Established pathways include multidrug resistance proteins, energy utilization pathways, oxidative stress, cytoskeletal regulation and apoptosis. Gene-expression profiles that have revealed perturbed pathways have vastly increased our knowledge of the complex processes involved in crosstalk between tumours and cardiac function. Utilization of mathematical and computational modelling can complement pharmacogenomics and improve individual patient outcomes. Such endeavours should enable identification of variations in cardiotoxicity, particularly in those patients who are at risk of not recovering, even with the institution of cardioprotective therapy. The application of systems biology holds substantial potential to advance our understanding of chemotherapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Sherry-Ann Brown
- Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Nicole Sandhu
- Division of General Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Joerg Herrmann
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Mohammadi A, Attari F, Babapour V, Hassani SNS, Masoudi N, Shahverdi A, Baharvand H. Generation of Rat Embryonic Germ Cells via Inhibition of TGFß and MEK Pathways. CELL JOURNAL 2015. [PMID: 26199907 PMCID: PMC4503842 DOI: 10.22074/cellj.2016.3732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Embryonic germ (EG) cells are the results of reprogramming primordial germ cells (PGC) in vitro. Studying these cells can be of benefit in determining the mechanism by which specialized cells acquire pluripotency. Therefore in the current study we have tried to derive rat EG cells with inhibition of transforming growth factor-β (TGFβ) and mitogen-activated protein kinase kinase (MEK) signaling pathways. MATERIALS AND METHODS In this experimental study, rat PGCs were cultured under feeder free condition with two small molecules that inhibited the above mentioned pathways. Under this condition only two-day presence of stem cell factor (SCF) as a survival factor was applied for PGC reprogramming. Pluripotency of the resultant EG cells were further confirmed by immunofluorescent staining, directed differentiation ability to neural and cardiac cells, and their contribution to teratoma formation as well. Moreover, chromosomal stability of two different EG cells were assessed through G-banding technique. RESULTS Formerly, derivation of rat EG cells were observed solely in the presence of glycogen synthase kinase-3 (GSK3β) and MEK pathway inhibitors. Due to some drawbacks of inhibiting GSK3β molecules such as increases in chromosomal aberrations, in the present study we have attempted to assess a feeder-free protocol that derives EG cells by the simultaneous suppression of TGFβ signaling and the MEK pathway. We have shown that rat EG cells could be generated in the presence of two inhibitors that suppressed the above mentioned pathways. Of note, inhibition of TGFβ instead of GSK3β significantly maintained chromosomal integrity. The resultant EG cells demonstrated the hallmarks of pluripotency in protein expression level and also showed in vivo and in vitro differentiation capacities. CONCLUSION Rat EG cells with higher karyotype stability establish from PGCs by inhibiting TGFβ and MEK signaling pathways.
Collapse
Affiliation(s)
- Alireza Mohammadi
- Department of Physiology and Pharmacology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farnoosh Attari
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vahab Babapour
- Department of Physiology and Pharmacology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyedeh-Na Seh Hassani
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Najmehsadat Masoudi
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran ; Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| |
Collapse
|
4
|
Zadegan FG, Ghaedi K, Kalantar SM, Peymani M, Hashemi MS, Baharvand H, Nasr-Esfahani MH. Cardiac differentiation of mouse embryonic stem cells is influenced by a PPAR γ/PGC-1α-FNDC5 pathway during the stage of cardiac precursor cell formation. Eur J Cell Biol 2015; 94:257-66. [PMID: 25936576 DOI: 10.1016/j.ejcb.2015.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/18/2015] [Accepted: 04/01/2015] [Indexed: 01/26/2023] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) γ co-activator 1α (PGC-1α) up-regulation induces FNDC5 expression in muscle and consequently causes browning of white adipose tissue (WAT). In addition to skeletal muscle, FNDC5 is mainly expressed in heart and brain tissues. Here, we demonstrate that FNDC5 expression increased during the process of cardiac differentiation of mouse embryonic stem cells (mESCs) similar to PGC-1α and PPARα. To testify the correlation between PGC-1α and FNDC5 in cardiac cell differentiation of mESCs, we utilized specific PPARγ agonist and antagonist in two stages of cardiac differentiation, during and post-cardiac precursor cells (CPCs) formation. Our results indicated that a reduction in PGC-1α expression, via treatment with GW9662 during CPCs formation stage, down-regulated FNDC5 transcript levels as well as mitochondrial markers which negatively influenced on the whole process of cardiac differentiation efficiency. On the other hand, increase PGC-1α expression during CPCs formation stage via rosiglitazone treatment increase FNDC5 and mitochondrial markers transcript levels which enhanced cardiac differentiation efficiency. Importantly, such alteration in PGC-1α expression at post-CPCs formation stage did not affect overall cardiac differentiation rate as expression of FNDC5 and mitochondrial markers were not significantly changed. We concluded that PPARγ agonist and antagonist induced up and down-regulation of PGC-1α and subsequently modulated the process of CPCs formation through an alteration in FNDC5 and mitochondrial markers expression.
Collapse
Affiliation(s)
- Faezeh Ghazvini Zadegan
- Department of Medical Genetic, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences Treatment and Health Services of Yazd, Yazd, Iran; Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran.
| | - Seyed Mehdi Kalantar
- Department of Medical Genetic, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences Treatment and Health Services of Yazd, Yazd, Iran
| | - Maryam Peymani
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Motahare-Sadat Hashemi
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
5
|
Induced expression of Fndc5 significantly increased cardiomyocyte differentiation rate of mouse embryonic stem cells. Gene 2014; 551:127-37. [DOI: 10.1016/j.gene.2014.08.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/13/2014] [Accepted: 08/22/2014] [Indexed: 11/22/2022]
|
6
|
Abstract
Aim:Doxorubicin-induced cardiotoxicity limited its clinical utilization in oncology. In this study, Dox was entrapped into PEG-PLGA Nanoparticles, cardiotoxicity of Dox or PEG-PLGA-Dox was investigated in rats. Materials and methods :PEG-PLGA-Dox was prepared via modified single emulsion method. Its characterization including size, Drug loading capacity (DLC), entrapment efficiency (EE) were estimated. The cardiotoxicity of PEG-PLGA-Dox was assessed on SD rats via echocardiography and biochemical indicators compare to free Dox and physical sodium. Results:The average diameter of PEG-PLGA-Dox is around 200 nm, with DLC about 10%.After administered PEG-PLGA-Dox, the ratio of heart weight to body weight decreased not as significant as Dox group, level of serum parameters and echocardiography parameter also decreased little compared to the Dox group. Conclusions:After entrapped into PEG-PLGA nanoparticle, Dox-induced cardiotoxicity was reduced significantly.
Collapse
|
7
|
Attari F, Sepehri H, Ansari H, Hassani SN, Esfandiari F, Asgari B, Shahverdi A, Baharvand H. Efficient induction of pluripotency in primordial germ cells by dual inhibition of TGF-β and ERK signaling pathways. Stem Cells Dev 2014; 23:1050-61. [PMID: 24382167 DOI: 10.1089/scd.2013.0438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Primordial germ cells (PGCs) have the ability to be reprogrammed into a pluripotent state and are defined as embryonic germ cells (EGCs) in vitro. EGC formation is more efficient, has a shorter culture period than somatic cell reprogramming, and does not require exogenous genetic manipulation. Therefore, EGCs are a good model to analyze mechanisms by which committed cells acquire a pluripotent state. In the present study we have attempted to elucidate a more defined and robust protocol that promotes EGC generation through the suppression of transforming growth factor-β (TGF-β) and extracellular signal-regulated kinase (ERK) signaling pathways by SB431542 (SB) and PD0325901 (PD), respectively. Under this condition the efficiency of transformation of PGCs into EGCs was more than the inhibition of glycogen synthase kinase 3 and ERK signaling pathways. Pluripotency of the resultant-derived EGC lines were further confirmed by gene expression, immunofluorescent staining, directed differentiation ability, teratoma formation, and their contribution to chimeric mice and germ-line transmission. These results showed that PGCs from different embryonic stages (E8.5 and E12.5) could be reprogrammed, maintained, and expanded efficiently under feeder- and serum-free chemically defined conditions by dual inhibition of TGF-β and ERK signaling pathways, regardless of the animal's genetic background.
Collapse
Affiliation(s)
- Farnoosh Attari
- 1 Department of Animal Biology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran , Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
8
|
McCaffrey TA, Tziros C, Lewis J, Katz R, Siegel R, Weglicki W, Kramer J, Mak IT, Toma I, Chen L, Benas E, Lowitt A, Rao S, Witkin L, Lian Y, Lai Y, Yang Z, Fu SW. Genomic profiling reveals the potential role of TCL1A and MDR1 deficiency in chemotherapy-induced cardiotoxicity. Int J Biol Sci 2013; 9:350-60. [PMID: 23630447 PMCID: PMC3638290 DOI: 10.7150/ijbs.6058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 02/27/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Anthracyclines, such as doxorubicin (Adriamycin), are highly effective chemotherapeutic agents, but are well known to cause myocardial dysfunction and life-threatening congestive heart failure (CHF) in some patients. METHODS To generate new hypotheses about its etiology, genome-wide transcript analysis was performed on whole blood RNA from women that received doxorubicin-based chemotherapy and either did, or did not develop CHF, as defined by ejection fractions (EF)≤40%. Women with non-ischemic cardiomyopathy unrelated to chemotherapy were compared to breast cancer patients prior to chemo with normal EF to identify heart failure-related transcripts in women not receiving chemotherapy. Byproducts of oxidative stress in plasma were measured in a subset of patients. RESULTS The results indicate that patients treated with doxorubicin showed sustained elevations in oxidative byproducts in plasma. At the RNA level, women who exhibited low EFs after chemotherapy had 260 transcripts that differed >2-fold (p<0.05) compared to women who received chemo but maintained normal EFs. Most of these transcripts (201) were not altered in non-chemotherapy patients with low EFs. Pathway analysis of the differentially expressed genes indicated enrichment in apoptosis-related transcripts. Notably, women with chemo-induced low EFs had a 4.8-fold decrease in T-cell leukemia/lymphoma 1A (TCL1A) transcripts. TCL1A is expressed in both cardiac and skeletal muscle, and is a known co-activator for AKT, one of the major pro-survival factors for cardiomyocytes. Further, women who developed low EFs had a 2-fold lower level of ABCB1 transcript, encoding the multidrug resistance protein 1 (MDR1), which is an efflux pump for doxorubicin, potentially leading to higher cardiac levels of drug. In vitro studies confirmed that inhibition of MDR1 by verapamil in rat H9C2 cardiomyocytes increased their susceptibility to doxorubicin-induced toxicity. CONCLUSIONS It is proposed that chemo-induced cardiomyopathy may be due to a reduction in TCL1A levels, thereby causing increased apoptotic sensitivity, and leading to reduced cardiac MDR1 levels, causing higher cardiac levels of doxorubicin and intracellular free radicals. If so, screening for TCL1A and MDR1 SNPs or expression level in blood, might identify women at greatest risk of chemo-induced heart failure.
Collapse
Affiliation(s)
- Timothy A McCaffrey
- Department of Medicine, Division of Genomic Medicine, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Direct comparison of distinct cardiomyogenic induction methodologies in human cardiac-derived c-kit positive progenitor cells. Tissue Eng Regen Med 2012. [DOI: 10.1007/s13770-012-0336-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
10
|
Dehghani L, Farokhpour M, Karbalaie K, Nematollahi M, Tanhaie S, Hayati-Rodbari N, Kiani-Esfahani A, Hescheler J, Nasr-Esfahani MH, Baharvand H. The influence of dexamethasone administration on the protection against doxorubicin-induced cardiotoxicity in purified embryonic stem cell-derived cardiomyocytes. Tissue Cell 2012; 45:101-6. [PMID: 23141520 DOI: 10.1016/j.tice.2012.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/27/2012] [Indexed: 12/13/2022]
Abstract
Embryonic stem cells (ESCs) have various uses in drug toxicity, as they can be easily differentiated in vitro. However, one of the major obstacles in the assessment of these differentiated cells is the presence of a heterogeneous cell population. To circumvent this problem, purified ESC-derived desired cells by means of the tissue-specific GFP and/or antibiotic resistance gene expression has been proposed. Therefore, this study aimed to assess the role of doxorubicin (DOX) in cardiotoxicity by using genetically engineered purified ESC-derived cardiomyocytes under the control alpha-myosin heavy chain promoter. The results revealed that ESCs are suitable for evaluation of DOX cardiotoxicity. This study showed that DOX cardiotoxicity was reduced as detected by beating cardiomyocytes and caspase activity only by pretreatment with dexamethasone (DEX), not during or post-DOX treatment. DEX influence appears to be mediated via glucocorticoid receptor and enhances cardiomyocyte-specific gene expression. Therefore, for the general assessment of cytotoxicity, non-genetically engineered ESC-derived cardiomyocytes are sufficient but for the molecular assessment of DOX-induced toxicity, genetically engineered purified ESC-derived cardiomyocytes are necessary.
Collapse
Affiliation(s)
- Leila Dehghani
- Department of Cell and Molecular Biology, Cell Science Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Blazeski A, Zhu R, Hunter DW, Weinberg SH, Zambidis ET, Tung L. Cardiomyocytes derived from human induced pluripotent stem cells as models for normal and diseased cardiac electrophysiology and contractility. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:166-77. [PMID: 22971665 PMCID: PMC3910285 DOI: 10.1016/j.pbiomolbio.2012.07.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 12/21/2022]
Abstract
Since the first description of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), these cells have garnered tremendous interest for their potential use in patient-specific analysis and therapy. Additionally, hiPSC-CMs can be derived from donor cells from patients with specific cardiac disorders, enabling in vitro human disease models for mechanistic study and therapeutic drug assessment. However, a full understanding of their electrophysiological and contractile function is necessary before this potential can be realized. Here, we review this emerging field from a functional perspective, with particular emphasis on beating rate, action potential, ionic currents, multicellular conduction, calcium handling and contraction. We further review extant hiPSC-CM disease models that recapitulate genetic myocardial disease.
Collapse
Affiliation(s)
- Adriana Blazeski
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD
| | - Renjun Zhu
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD
| | - David W. Hunter
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD
| | - Seth H. Weinberg
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD
| | - Elias T. Zambidis
- Institute for Cell Engineering and Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, Baltimore, MD
| | - Leslie Tung
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD
| |
Collapse
|
12
|
Wei WJ, Sun HY, Ting KY, Zhang LH, Lee HC, Li GR, Yue J. Inhibition of cardiomyocytes differentiation of mouse embryonic stem cells by CD38/cADPR/Ca2+ signaling pathway. J Biol Chem 2012; 287:35599-35611. [PMID: 22908234 PMCID: PMC3471724 DOI: 10.1074/jbc.m112.392530] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cyclic adenosine diphosphoribose (cADPR) is an endogenous Ca2+ mobilizing messenger that is formed by ADP-ribosyl cyclases from nicotinamide adenine dinucleotide (NAD). The main ADP-ribosyl cyclase in mammals is CD38, a multi-functional enzyme and a type II membrane protein. Here we explored the role of CD38-cADPR-Ca2+ in the cardiomyogenesis of mouse embryonic stem (ES) cells. We found that the mouse ES cells are responsive to cADPR and possess the key components of the cADPR signaling pathway. In vitro cardiomyocyte (CM) differentiation of mouse ES cells was initiated by embryoid body (EB) formation. Interestingly, beating cells appeared earlier and were more abundant in CD38 knockdown EBs than in control EBs. Real-time RT-PCR and Western blot analyses further showed that the expression of several cardiac markers, including GATA4, MEF2C, NKX2.5, and α-MLC, were increased markedly in CD38 knockdown EBs than those in control EBs. Similarly, FACS analysis showed that more cardiac Troponin T-positive CMs existed in CD38 knockdown or 8-Br-cADPR, a cADPR antagonist, treated EBs compared with that in control EBs. On the other hand, overexpression of CD38 in mouse ES cells significantly inhibited CM differentiation. Moreover, CD38 knockdown ES cell-derived CMs possess the functional properties characteristic of normal ES cell-derived CMs. Last, we showed that the CD38-cADPR pathway negatively modulated the FGF4-Erks1/2 cascade during CM differentiation of ES cells, and transiently inhibition of Erk1/2 blocked the enhanced effects of CD38 knockdown on the differentiation of CM from ES cells. Taken together, our data indicate that the CD38-cADPR-Ca2+ signaling pathway antagonizes the CM differentiation of mouse ES cells.
Collapse
Affiliation(s)
- Wen-Jie Wei
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | - Hai-Ying Sun
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | - Kai Yiu Ting
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | - Li-He Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hon-Cheung Lee
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | - Gui-Rong Li
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | - Jianbo Yue
- Department of Physiology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Moraveji SF, Attari F, Shahverdi A, Sepehri H, Farrokhi A, Hassani SN, Fonoudi H, Aghdami N, Baharvand H. Inhibition of glycogen synthase kinase-3 promotes efficient derivation of pluripotent stem cells from neonatal mouse testis. Hum Reprod 2012; 27:2312-24. [DOI: 10.1093/humrep/des204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
14
|
Le Menuet D, Munier M, Campostrini G, Lombès M. Mineralocorticoid receptor and embryonic stem cell models: molecular insights and pathophysiological relevance. Mol Cell Endocrinol 2012; 350:216-22. [PMID: 21767600 DOI: 10.1016/j.mce.2011.06.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/24/2011] [Accepted: 06/28/2011] [Indexed: 12/20/2022]
Abstract
Mineralocorticoid receptor (MR) signaling is pivotal for numerous physiological processes and implicated in various pathological conditions concerning among others, tight epithelia, central nervous and cardiovascular systems. For decades, the pleiotropic actions of MR have been investigated using animal and cellular models as well as by clinical studies. Here is reviewed and contextualized the utilization of a strategy that recently emerged to analyze the complexity of MR signaling: the derivation and differentiation of mouse embryonic stem (ES) cell models. ES cells were derived from wild-type or transgenic MR overexpressing animals. Undifferentiated ES cells were differentiated into cardiomyocytes, neurons and adipocytes, these cell types being important pathophysiological targets of MR. These approaches have already brought new insights concerning MR effect on cardiomyocyte contractility and ionic channel remodeling, in the regulation of neuronal MR expression and its positive role on neuron survival. Differentiated ES cell models thus constitute powerful and promising tools to further decipher the molecular mechanisms of cell-specific MR actions.
Collapse
Affiliation(s)
- Damien Le Menuet
- INSERM U693, Faculté de Médecine Paris-Sud 11, 63 rue Gabriel Péri, Le Kremlin-Bicêtre Cedex, France.
| | | | | | | |
Collapse
|
15
|
Toxicity of ecstasy (MDMA) towards embryonic stem cell-derived cardiac and neural cells. Toxicol In Vitro 2010; 24:1133-8. [DOI: 10.1016/j.tiv.2010.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 11/22/2009] [Accepted: 03/10/2010] [Indexed: 01/29/2023]
|