1
|
Bian X, Jin L, Wang Y, Yuan M, Yao Z, Ning B, Gao W, Guo C. Riboflavin deficiency reduces bone mineral density in rats by compromising osteoblast function. J Nutr Biochem 2023; 122:109453. [PMID: 37788723 DOI: 10.1016/j.jnutbio.2023.109453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Insufficient riboflavin intake has been associated with poor bone health. This study aimed to investigate the effect of riboflavin deficiency on bone health in vivo and in vitro. Riboflavin deficiency was successfully developed in rats and osteoblasts. The results indicated that bone mineral density, serum bone alkaline phosphatase, bone phosphorus, and bone calcium were significantly decreased while serum ionized calcium and osteocalcin were significantly increased in the riboflavin-deficient rats. Riboflavin deficiency also induced the reduction of Runx2, Osterix, and BMP-2/Smad1/5/9 cascade in the femur. These results were further verified in cellular experiments. Our findings demonstrated that alkaline phosphatase activities and calcified nodules were significantly decreased while intracellular osteocalcin and pro-collagen I c-terminal propeptide were significantly increased in the riboflavin-deficient osteoblasts. Additionally, the protein expression of Osterix, Runx2, and BMP-2/Smad1/5/9 cascade were significantly decreased while the protein expression of p-p38 MAPK were significantly increased in the riboflavin-deficient cells compared to the control cells. Blockage of p38 MAPK signaling pathway with SB203580 reversed these effects in riboflavin-deficient osteoblastic cells. Our data suggest that riboflavin deficiency causes osteoblast malfunction and retards bone matrix mineralization via p38 MAPK/BMP-2/Smad1/5/9 signaling pathway.
Collapse
Affiliation(s)
- Xiangyu Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Lu Jin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Yanxian Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Man Yuan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Zhanxin Yao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Baoan Ning
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Weina Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China.
| | - Changjiang Guo
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China.
| |
Collapse
|
2
|
Gaweł J, Milan J, Żebrowski J, Płoch D, Stefaniuk I, Kus-Liśkiewicz M. Biomaterial composed of chitosan, riboflavin, and hydroxyapatite for bone tissue regeneration. Sci Rep 2023; 13:17004. [PMID: 37813934 PMCID: PMC10562422 DOI: 10.1038/s41598-023-44225-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023] Open
Abstract
Biomaterial engineering approaches involve using a combination of miscellaneous bioactive molecules which may promote cell proliferation and, thus, form a scaffold with the environment that favors the regeneration process. Chitosan, a naturally occurring biodegradable polymer, possess some essential features, i.e., biodegradability, biocompatibility, and in the solid phase good porosity, which may contribute to promote cell adhesion. Moreover, doping of the materials with other biocompounds will create a unique and multifunctional scaffold that will be useful in regenerative medicine. This study is focused on the manufacturing and characterization of composite materials based on chitosan, hydroxyapatite, and riboflavin. The resulting films were fabricated by the casting/solvent evaporation method. Morphological and spectroscopy analyses of the films revealed a porous structure and an interconnection between chitosan and apatite. The composite material showed an inhibitory effect on Staphylococcus aureus and exhibited higher antioxidant activity compared to pure chitosan. In vitro studies on riboflavin showed increased cell proliferation and migration of fibroblasts and osteosarcoma cells, thus demonstrating their potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Justyna Gaweł
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1 St, 35‑310, Rzeszow, Poland
| | - Justyna Milan
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1 St, 35‑310, Rzeszow, Poland
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Aleja Majora W. Kopisto 2a, 35-959, Rzeszow, Poland
| | - Jacek Żebrowski
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1 St, 35‑310, Rzeszow, Poland
| | - Dariusz Płoch
- Institute of Materials Engineering, College of Natural Sciences, University of Rzeszow, Pigonia 1 St, 35‑310, Rzeszow, Poland
| | - Ireneusz Stefaniuk
- Institute of Materials Engineering, College of Natural Sciences, University of Rzeszow, Pigonia 1 St, 35‑310, Rzeszow, Poland
| | - Małgorzata Kus-Liśkiewicz
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1 St, 35‑310, Rzeszow, Poland.
| |
Collapse
|
3
|
Liu M, Sun Y, Liu L, Zhang Z, Aimaijiang M, Zhang L, Quni S, Li M, Liu X, Li D, Zhang J, Zhou Y. Novel PVAMA/GelMA aerogels prepared by liquid-phase collection of photoinitiated polymerisation: injectable and flowable low-density 3D scaffolds for bone regeneration. NANOSCALE 2023; 15:14189-14204. [PMID: 37593970 DOI: 10.1039/d3nr02398b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Nanofibrous scaffolds, which are morphologically/structurally similar to native extracellular matrix, are ideal biomaterials for tissue engineering and regenerative medicine. However, the use of traditional electrospinning techniques to produce three-dimensional (3D) nanofibrous scaffolds with desired structural properties presents difficulty. To address this challenge, we prepared a novel liquid-phase-collected photoinitiated polymerised aerogel 3D scaffold (LPPI-AG) using the thermally induced (nanofiber) self-aggregation method after liquid-phase electrospinning of the hydroxyapatite-doped methacrylated polyvinyl alcohol/methacrylated gelatine solution obtained by photoinitiated polymerisation. The fabricated aerogel scaffolds had a high porosity of approximately 99.01% ± 0.40% and an interconnected network structure with pore sizes ranging from submicron to ∼300 μm. The new aerogel rapidly became flowable when exposed to a solution, and it can fill gaps and repair gap edges effectively and be loaded with nutrients and growth factors that promote bone growth for bone tissue engineering. LPPI-AG scaffolds can considerably promote osteogenic differentiation of bone marrow mesenchymal stem cells in vitro. Furthermore, in vivo studies showed that the LPPI-AG scaffold significantly promoted bone formation in a mouse model of critical-size calvarial defects.
Collapse
Affiliation(s)
- Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, P. R. China.
| | - Yihan Sun
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, P. R. China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, P. R. China
| | - Lijun Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, P. R. China.
| | - Zhiying Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, P. R. China.
| | - Maierhaba Aimaijiang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, P. R. China.
| | - Lu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, P. R. China.
| | - Sezhen Quni
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, P. R. China.
| | - Minghui Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, P. R. China.
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, P. R. China.
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, P. R. China.
| | - Junhu Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, P. R. China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, P. R. China.
| |
Collapse
|
4
|
Vitamin B 2 Prevents Glucocorticoid-Caused Damage of Blood Vessels in Osteonecrosis of the Femoral Head. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4006184. [PMID: 35845964 PMCID: PMC9279053 DOI: 10.1155/2022/4006184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 12/19/2022]
Abstract
Osteonecrosis of the femoral head (ONFH) is a disorder that can cause collapse of the femoral head. The damage and dysfunction of femoral head microvascular endothelial cells are related to the pathogenesis of glucocorticoid-induced ONFH. Reports suggest that vitamin B2 can promote osteoblast differentiation and prevent low bone mineral density and prevent reperfusion oxidative injury. To explore the effect and possible molecular mechanism of vitamin B2 on the ONFH and Human Umbilical Vein Endothelial Cells (HUVECs), we performed a rat model of ONFH by dexamethasone. The rats were randomly divided into four groups: control group, vitamin B2 group, dexamethasone group, and dexamethasone combined with vitamin B2 treatment group. HUVECs were used to further prove the role and mechanism of vitamin B2 in vitro. In patients, according to immunohistochemical and qRT-PCR of the femoral head, the angiogenic capacity of the ONFH femoral head is compromised. In vivo, it showed that vitamin B2 could inhibit glucocorticoid-induced ONFH-like changes in rats by suppressing cell apoptosis, promoting the regeneration of blood vessels, and increasing bone mass. According to in vitro results, vitamin B2 could induce the migration of HUVECs, enhance the expression of angiogenesis-related factors, and inhibit glucocorticoid-induced apoptosis. The underlying mechanism may be that vitamin B2 activates the PI3K signaling pathway. Vitamin B2 alleviated dexamethasone-induced ONFH, and vitamin B2 could promote the proliferation and migration of HUVECs and inhibit their apoptosis by activating the PI3K/Akt signaling pathway. Vitamin B2 may be a potentially effective treatment for ONFH.
Collapse
|
5
|
Wen K, Tao L, Tao Z, Meng Y, Zhou S, Chen J, Yang K, Da W, Zhu Y. Fecal and Serum Metabolomic Signatures and Microbial Community Profiling of Postmenopausal Osteoporosis Mice Model. Front Cell Infect Microbiol 2020; 10:535310. [PMID: 33330117 PMCID: PMC7728697 DOI: 10.3389/fcimb.2020.535310] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Background Multiple studies have shown that an imbalance in the intestinal microbiota is related to bone metabolism, but the role of the intestinal microbiota in postmenopausal osteoporosis remains to be elucidated. We explored the effect of the intestinal microbiota on osteoporosis. Methods We constructed a postmenopausal osteoporosis mouse model, and Micro CT was used to observe changes in bone structure. Then, we identified the abundance of intestinal microbiota by 16S RNA sequencing and found that the ratio of Firmicutes and Bacteroidetes increased significantly. UHPLC-MS analysis was further used to analyze changes in metabolites in feces and serum. Results We identified 53 upregulated and 61 downregulated metabolites in feces and 2 upregulated and 22 downregulated metabolites in serum under OP conditions, and interestedly, one group of bile acids showed significant differences in the OP and control groups. Network analysis also found that these bile acids had a strong relationship with the same family, Eggerthellaceae. Random forest analysis confirmed the effectiveness of the serum and fecal models in distinguishing the OP group from the control group. Conclusions These results indicated that changes in the gut microbiota and metabolites in feces and serum were responsible for the occurrence and development of postmenopausal osteoporosis. The gut microbiota is a vital inducer of osteoporosis and could regulate the pathogenesis process through the “microbiota-gut-metabolite-bone” axis, and some components of this axis are potential biomarkers, providing a new entry point for the future study on the pathogenesis of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Kaicheng Wen
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Tao
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhengbo Tao
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Meng
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Siming Zhou
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jianhua Chen
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Keda Yang
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wacili Da
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. Int J Mol Sci 2020; 21:ijms21030950. [PMID: 32023913 PMCID: PMC7037471 DOI: 10.3390/ijms21030950] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Riboflavin (RF) is a water-soluble member of the B-vitamin family. Sufficient dietary and supplemental RF intake appears to have a protective effect on various medical conditions such as sepsis, ischemia etc., while it also contributes to the reduction in the risk of some forms of cancer in humans. These biological effects of RF have been widely studied for their anti-oxidant, anti-aging, anti-inflammatory, anti-nociceptive and anti-cancer properties. Moreover, the combination of RF and other compounds or drugs can have a wide variety of effects and protective properties, and diminish the toxic effect of drugs in several treatments. Research has been done in order to review the latest findings about the link between RF and different clinical aberrations. Since further studies have been published in this field, it is appropriate to consider a re-evaluation of the importance of RF in terms of its beneficial properties.
Collapse
|
7
|
Balera Brito VG, Chaves-Neto AH, Landim de Barros T, Penha Oliveira SH. Soluble yerba mate (Ilex Paraguariensis) extract enhances in vitro osteoblastic differentiation of bone marrow-derived mesenchymal stromal cells. JOURNAL OF ETHNOPHARMACOLOGY 2019; 244:112131. [PMID: 31377259 DOI: 10.1016/j.jep.2019.112131] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yerba mate (Ilex paraguariensis) consumption has been associated with beneficial effects on bone health. AIM OF THE STUDY The purpose of this study was to evaluate the mechanism by which soluble yerba mate (SYM) stimulates osteoblast differentiation of bone marrow-derived mesenchymal stromal cells (BM-MSCs). MATERIALS AND METHODS BM-MSCs from male Wistar rats were induced towards osteoblastic differentiation with different concentrations of SYM (10, 20, and 50 μg/mL). Osteoblastic differentiation was evaluated by measuring proliferation rates, alkaline phosphatase activity, MMP-2 activity, mineralization, and gene expression of Runx2, Osterix, β-catenin (Catnb), collagen type I (Col1a1), osteopontin (Opn), osteocalcin (Ocn), bone sialoprotein (Bsp), bone morphogenetic protein-2 (Bmp2), osteoprotegerin (Opg), and Rankl. We also analyzed cytokine production and MAP kinase pathways. RESULTS SYM (10 μg/mL) did not show a cytotoxic effect and induced a slight increase in ALP activity; however, a great increase in mineralization was observed. SYM was also able to reduce TNF-α and IL-10 production; increase the expression of transcription factors Runx2, Osterix, and Catnb; and increase matrix proteins Opn, Bsp, Ocn, and Bmp2. We also observed a decrease in intracellular signaling of ERK, JNK, and p38 MAPK, which seemed to be related to the SYM response. CONCLUSIONS Together, these results help to explain the promoting effect on osteoblast differentiation produced by a low SYM concentration. However, a higher SYM concentration presented deleterious effects, including cytotoxicity, decreased ALP activity, increased cytokine production, decreased bone marker gene expression, increased MAPK signaling, and significant mineralization reduction. In conclusion, our results suggest a concentration-specific direct stimulatory effect of SYM on osteoblastic differentiation in vitro.
Collapse
Affiliation(s)
- Victor Gustavo Balera Brito
- Programa Multicêntrico de Pós-Graduaçãoem Ciências Fisiológicas, SBFis/UNESP, Brazil; Laboratory of Pharmacology, Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil; Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil.
| | - Antonio Hernandes Chaves-Neto
- Programa Multicêntrico de Pós-Graduaçãoem Ciências Fisiológicas, SBFis/UNESP, Brazil; Laboratory of Biochemistry, Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil; Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Thamine Landim de Barros
- Programa Multicêntrico de Pós-Graduaçãoem Ciências Fisiológicas, SBFis/UNESP, Brazil; Laboratory of Pharmacology, Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil; Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Sandra Helena Penha Oliveira
- Programa Multicêntrico de Pós-Graduaçãoem Ciências Fisiológicas, SBFis/UNESP, Brazil; Laboratory of Pharmacology, Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil; Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| |
Collapse
|
8
|
Fernández-Villa D, Jiménez Gómez-Lavín M, Abradelo C, San Román J, Rojo L. Tissue Engineering Therapies Based on Folic Acid and Other Vitamin B Derivatives. Functional Mechanisms and Current Applications in Regenerative Medicine. Int J Mol Sci 2018; 19:E4068. [PMID: 30558349 PMCID: PMC6321107 DOI: 10.3390/ijms19124068] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/30/2022] Open
Abstract
B-vitamins are a group of soluble vitamins which are cofactors of some of the enzymes involved in the metabolic pathways of carbohydrates, fats and proteins. These compounds participate in a number of functions as cardiovascular, brain or nervous systems. Folic acid is described as an accessible and multifunctional niche component that can be used safely, even combined with other compounds, which gives it high versatility. Also, due to its non-toxicity and great stability, folic acid has attracted much attention from researchers in the biomedical and bioengineering area, with an increasing number of works directed at using folic acid and its derivatives in tissue engineering therapies as well as regenerative medicine. Thus, this review provides an updated discussion about the most relevant advances achieved during the last five years, where folic acid and other vitamins B have been used as key bioactive compounds for enhancing the effectiveness of biomaterials' performance and biological functions for the regeneration of tissues and organs.
Collapse
Affiliation(s)
- Daniel Fernández-Villa
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain.
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain.
| | - Mirta Jiménez Gómez-Lavín
- Departamento de Química y Bioquímica. Facultad de Farmacia Universidad CEU San Pablo, 28668 Madrid, Spain.
| | - Cristina Abradelo
- Departamento de Química y Bioquímica. Facultad de Farmacia Universidad CEU San Pablo, 28668 Madrid, Spain.
| | - Julio San Román
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain.
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain.
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain.
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain.
| |
Collapse
|
9
|
Liu C, Cao Z, Zhang W, Tickner J, Qiu H, Wang C, Chen K, Wang Z, Tan R, Dong S, Xu J. Lumichrome inhibits osteoclastogenesis and bone resorption through suppressing RANKL‐induced NFAT activation and calcium signaling. J Cell Physiol 2018; 233:8971-8983. [DOI: 10.1002/jcp.26841] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/10/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Chuan Liu
- Department of Anatomy Third Military Medical University Chongqing China
- Department of Biomedical Materials Science School of Biomedical Engineering, Third Military Medical University Chongqing China
- Department of Orthopedics The Army General Hospital Beijing China
| | - Zhen Cao
- Department of Biomedical Materials Science School of Biomedical Engineering, Third Military Medical University Chongqing China
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Wen Zhang
- Department of Surgery Chinese People’s Liberation Army 66325 Hospital Beijing China
| | - Jennifer Tickner
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Heng Qiu
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Chao Wang
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Kai Chen
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Ziyi Wang
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Renxiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules, Nanjing University Nanjing China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy Nanjing University of Chinese Medicine Nanjing China
| | - Shiwu Dong
- Department of Biomedical Materials Science School of Biomedical Engineering, Third Military Medical University Chongqing China
| | - Jiake Xu
- School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| |
Collapse
|
10
|
Chaves Neto AH, Brito VGB, Landim de Barros T, do Amaral CCF, Sumida DH, Oliveira SHP. Chronic high glucose and insulin stimulate bone‐marrow stromal cells adipogenic differentiation in young spontaneously hypertensive rats. J Cell Physiol 2018; 233:6853-6865. [DOI: 10.1002/jcp.26445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/05/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Antonio H. Chaves Neto
- Department of Basic Sciences, School of DentistrySão Paulo State University—UNESPAraçatubaSão PauloBrazil
| | - Victor G. B. Brito
- Department of Basic Sciences, School of DentistrySão Paulo State University—UNESPAraçatubaSão PauloBrazil
- Department of Basic Sciences, Programa de Pós‐graduação Multicêntrico em Ciências Fisiológicas‐SBFIs, School of DentistrySão Paulo State University—UNESPAraçatubaSão PauloBrazil
| | - Thamine Landim de Barros
- Department of Basic Sciences, School of DentistrySão Paulo State University—UNESPAraçatubaSão PauloBrazil
- Department of Basic Sciences, Programa de Pós‐graduação Multicêntrico em Ciências Fisiológicas‐SBFIs, School of DentistrySão Paulo State University—UNESPAraçatubaSão PauloBrazil
| | - Caril C. F. do Amaral
- Department of Basic Sciences, School of DentistrySão Paulo State University—UNESPAraçatubaSão PauloBrazil
- Department of Basic Sciences, Programa de Pós‐graduação Multicêntrico em Ciências Fisiológicas‐SBFIs, School of DentistrySão Paulo State University—UNESPAraçatubaSão PauloBrazil
| | - Dóris H. Sumida
- Department of Basic Sciences, School of DentistrySão Paulo State University—UNESPAraçatubaSão PauloBrazil
- Department of Basic Sciences, Programa de Pós‐graduação Multicêntrico em Ciências Fisiológicas‐SBFIs, School of DentistrySão Paulo State University—UNESPAraçatubaSão PauloBrazil
| | - Sandra H. P. Oliveira
- Department of Basic Sciences, School of DentistrySão Paulo State University—UNESPAraçatubaSão PauloBrazil
- Department of Basic Sciences, Programa de Pós‐graduação Multicêntrico em Ciências Fisiológicas‐SBFIs, School of DentistrySão Paulo State University—UNESPAraçatubaSão PauloBrazil
| |
Collapse
|
11
|
Abstract
UNLABELLED P2 receptors activated by ATP are expressed in the skeletal system. However, the role of P2 receptors in osteoblast differentiation remains unclear. METHODS Participation of P2 receptors in differentiation was investigated in the preosteoblast MC3T3-M1 cell line. Preosteoblasts were stimulated for 7 or 14 days in the presence of osteogenic medium containing ATP and its analogs, and then alkaline phosphatase (ALP) activity, gene expression analyses, and protein expression were assessed. RESULTS We observed that ATP and its analogs promoted increased ALP activity after 7 days of treatment. In contrast, these agonists promoted reductions in ALP activity after 14 days. Some antagonists, such as PPADS (P2 antagonist), MRS2179 (P2Y1 antagonist), MRS2578 (P2Y6 antagonist), and AZ11645373 (P2X7 antagonist) reduced the increases in ALP activity after 7 days. However, only AZ11645373 inhibited the reduction in ALP activity after 14 days. The expression of the P2Y2, P2Y6, P2X4, and P2X7 receptors was observed. Furthermore, treatment with ATP modulated the expression of P2 receptors, increasing P2X4 expression and reducing P2Y6 and P2X7 expression. Similar results were observed after 14 days. In addition, ATP treatment for 7 days increased the expression of transcription factors associated with osteoblast differentiation, such as Runx2, SP7, and Dix5, whereas SP7 and Dix5 expression was reduced at 14 days. These results suggest that P2 receptor activation modulates the differentiation of osteoblasts and is dependent upon the stage of differentiation. These results also suggest that several P2 receptors are involved in this process.
Collapse
|
12
|
B-vitamins and bone health--a review of the current evidence. Nutrients 2015; 7:3322-46. [PMID: 25961321 PMCID: PMC4446754 DOI: 10.3390/nu7053322] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 12/23/2022] Open
Abstract
Because of ongoing global ageing, there is a rapid worldwide increase in incidence of osteoporotic fractures and the resultant morbidity and mortality associated with these fractures are expected to create a substantial economic burden. Dietary modification is one effective approach for prevention of osteoporosis in the general population. Recently, B vitamins have been investigated for their possible roles in bone health in human studies. In this review, we provide different lines of evidence and potential mechanisms of individual B vitamin in influencing bone structure, bone quality, bone mass and fracture risk from published peer-reviewed articles. These data support a possible protective role of B vitamins, particularly, B2, B6, folate and B12, in bone health. However, results from the clinical trials have not been promising in supporting the efficacy of B vitamin supplementation in fracture reduction. Future research should continue to investigate the underlying mechanistic pathways and consider interventional studies using dietary regimens with vitamin B enriched foods to avoid potential adverse effects of high-dose vitamin B supplementation. In addition, observational and interventional studies conducted in Asia are limited and thus require more attention due to a steep rise of osteoporosis and hip fracture incidence projected in this part of the world.
Collapse
|
13
|
Dai Z, Wang R, Ang LW, Yuan JM, Koh WP. Dietary B vitamin intake and risk of hip fracture: the Singapore Chinese Health Study. Osteoporos Int 2013; 24:2049-59. [PMID: 23238962 PMCID: PMC9254692 DOI: 10.1007/s00198-012-2233-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/26/2012] [Indexed: 12/31/2022]
Abstract
UNLABELLED This prospective cohort study that comprehensively examined effects of different B vitamins in an Asian population showed an inverse relationship between dietary intake of pyridoxine and hip fracture risk in elderly women. These findings suggest that maintaining sufficient pyridoxine intake may be beneficial in preserving bone health in postmenopausal women. INTRODUCTION B vitamins have recently been investigated for their possible roles in maintaining bone health. Incidence of osteoporotic hip fracture has been rising in Asia, but epidemiological data on dietary B vitamins and risk of osteoporotic fractures are sparse. We aimed to examine the association between dietary intakes of B vitamins (thiamin, riboflavin, niacin, pyridoxine, folate, and cobalamin) and hip fracture risk among elderly Chinese in Singapore. METHODS The current study was conducted in the Singapore Chinese Health Study, which is a population-based cohort prospective study that enrolled a total of 63,257 men and women aged 45-74 years between 1993 and 1998. Dietary intakes of B vitamins were derived from a validated food frequency questionnaire and the Singapore Food Composition Database. RESULTS After a mean follow-up period of 13.8 years, 1,630 hip fracture incident cases were identified. A statistically significant inverse relationship between dietary pyridoxine intake and hip fracture risk was observed among women (p for trend = 0.002) but not among men. Compared to women in the lowest quartile intake (0.37-0.61 mg/1,000 kcal/day), women in the highest quartile intake (0.78-1.76 mg/1,000 kcal/day) had a 22 % reduction in hip fracture risk (hazard ratio 0.78, 95 % confidence interval 0.66-0.93). Dietary intakes of the other B vitamins of interest were not related to hip fracture risk. CONCLUSIONS Our findings suggest that maintaining adequate intake of pyridoxine may prevent osteoporotic fractures among elderly women.
Collapse
Affiliation(s)
- Z Dai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
14
|
Machado D, Shishido SM, Queiroz KCS, Oliveira DN, Faria ALC, Catharino RR, Spek CA, Ferreira CV. Irradiated riboflavin diminishes the aggressiveness of melanoma in vitro and in vivo. PLoS One 2013; 8:e54269. [PMID: 23342114 PMCID: PMC3546980 DOI: 10.1371/journal.pone.0054269] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/10/2012] [Indexed: 02/01/2023] Open
Abstract
Melanoma is one of the most aggressive skin cancers due to its high capacity to metastasize. Treatment of metastatic melanomas is challenging for clinicians, as most therapeutic agents have failed to demonstrate improved survival. Thus, new candidates with antimetastatic activity are much needed. Riboavin (RF) is a component of the vitamin B complex and a potent photosensitizer. Previously, our group showed that the RF photoproducts (iRF) have potential as an antitumoral agent. Hence, we investigated the capacity of iRF on modulating melanoma B16F10 cells aggressiveness in vitro and in vivo. iRF decreases B16F10 cells survival by inhibiting mTOR as well as Src kinase. Moreover, melanoma cell migration was disrupted after treatment with iRF, mainly by inhibition of metalloproteinase (MMP) activity and expression, and by increasing TIMP expression. Interestingly, we observed that the Hedgehog (HH) pathway was inhibited by iRF. Two mediators of HH signaling, GLI1 and PTCH, were downregulated, while SUFU expression (an inhibitor of this cascade) was enhanced. Furthermore, inhibition of HH pathway signaling by cyclopamine and Gant 61 potentiated the antiproliferative action of RF. Accordingly, when a HH ligand was applied, the effect of iRF was almost completely abrogated. Our findings indicate that Hedgehog pathway is involved on the modulation of melanoma cell aggressiveness by iRF. Moreover, iRF treatment decreased pulmonary tumor formation in a murine experimental metastasis model. Research to clarify the molecular action of flavins, in vivo, is currently in progress. Taken together, the present data provides evidence that riboflavin photoproducts may provide potential candidates for improving the efficiency of melanoma treatment.
Collapse
Affiliation(s)
- Daisy Machado
- Laboratory of Bioassays and Signal Transduction, Department of Biochemistry, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Silvia M. Shishido
- Laboratory of Bioassays and Signal Transduction, Department of Biochemistry, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Karla C. S. Queiroz
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
| | - Diogo N. Oliveira
- Laboratory Innovare of Biomarkers, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Ana L. C. Faria
- Laboratory Innovare of Biomarkers, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Rodrigo R. Catharino
- Laboratory Innovare of Biomarkers, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - C. Arnold Spek
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
| | - Carmen V. Ferreira
- Laboratory of Bioassays and Signal Transduction, Department of Biochemistry, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
15
|
Hassan I, Chibber S, Khan AA, Naseem I. Cisplatin-induced neurotoxicity in vivo can be alleviated by riboflavin under photoillumination. Cancer Biother Radiopharm 2012; 28:160-8. [PMID: 23215961 DOI: 10.1089/cbr.2012.1312] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cisplatin (CP)-induced neurotoxicity is one of the major clinical problems in CP-based chemoradiotherapy, leading to its discontinuation depending upon their severity. In the present investigation, the photosensitizing property of riboflavin (RF) has been used to ameliorate the CP-induced neurotoxicity. According to dosing plan, the healthy mice were given RF, CP, and their combinations under photoillumination with their controls without any light exposure. After the treatment, antioxidant enzymes, cellular reductants, glutathione-S-transferase, brain markers, and oxidation products were assessed besides histopathology in their brain samples. These parameters revealed that RF ameliorates CP-induced neurotoxicity in a dose-dependent manner under photoillumination. Hence, inclusion of RF in CP-based chemoradiotherapy can be an effective strategy to counter CP-induced neurotoxicity.
Collapse
Affiliation(s)
- Iftekhar Hassan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | | | | | | |
Collapse
|
16
|
Oliveira SH, Santos VA. Studies on the Expression of Fibroblast Growth Factor-2 from Odontoblast-like Cells. J Endod 2011; 37:1520-4. [DOI: 10.1016/j.joen.2011.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/22/2011] [Accepted: 08/02/2011] [Indexed: 01/09/2023]
|