1
|
Toumi HR, Sallabi SM, Lubbad L, Al-Salam S, Hammad FT. The Effect of Nerolidol on Renal Dysfunction following Bilateral Ureteral Obstruction. Biomedicines 2024; 12:2285. [PMID: 39457599 PMCID: PMC11505435 DOI: 10.3390/biomedicines12102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Obstructive uropathy is a common cause of renal impairment. Recently, there has been a burgeoning interest in exploring natural products as potential alternative remedies for many conditions due to their low toxicity, affordability and wide availability. Methods: We investigated the effect of nerolidol in a rat model of bilateral ureteral obstruction (BUO) injury. Nerolidol, dissolved in a vehicle, was administered orally as a single daily dose of 200 mg/kg to Wistar rats. Sham group (n = 12) underwent sham surgery, whereas the BUO (n = 12) and BUO/NR groups (n = 12) underwent reversible 24-h BUO and received the vehicle or nerolidol, respectively. The treatment started 9 days prior to the BUO/sham surgery and continued for 3 days after reversal. Renal functions were assessed before starting the treatment, just prior to the intervention and 3 days after BUO reversal. Results: Neither nerolidol nor the vehicle affected the basal renal functions. Nerolidol resulted in a significant attenuation in the BUO-induced alterations in renal functional parameters such as serum creatinine and urea, creatinine clearance and urinary albumin-creatinine ratio. Nerolidol also attenuated the changes in several markers associated with renal injury, inflammation, apoptosis and oxidative stress and mitigated the histological alterations. Conclusions: The findings of this study demonstrated the potent reno-protective effects of nerolidol in mitigating the adverse renal effects of bilateral ureteral obstruction. This is attributed to its anti-inflammatory, anti-fibrotic, anti-apoptotic and anti-oxidant properties. These effects were reflected in the partial recovery of renal functions and histological features. These findings may have potential therapeutic implications.
Collapse
Affiliation(s)
- Harun R. Toumi
- Department of Surgery, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (H.R.T.); (S.M.S.); (L.L.)
| | - Sundus M. Sallabi
- Department of Surgery, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (H.R.T.); (S.M.S.); (L.L.)
| | - Loay Lubbad
- Department of Surgery, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (H.R.T.); (S.M.S.); (L.L.)
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
| | - Fayez T. Hammad
- Department of Surgery, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (H.R.T.); (S.M.S.); (L.L.)
| |
Collapse
|
2
|
Zhao X, Chinnathambi A, Alharbi SA, Natarajan N, Raman M. Nerolidol, Bioactive Compound Suppress Growth of HCT-116 Colorectal Cancer Cells Through Cell Cycle Arrest and Induction of Apoptosis. Appl Biochem Biotechnol 2024; 196:1365-1375. [PMID: 37395945 DOI: 10.1007/s12010-023-04612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
Colon cancer is the most prevalent cancer and causes the highest cancer-associated mortality in both men and women globally. It has a high incidence and fatality rate, which places a significant burden on the healthcare system. The current work was performed to understand the beneficial roles of nerolidol on the viability and cytotoxic mechanisms in the colon cancer HCT-116 cells. The MTT cytotoxicity assay was done to investigate the effect of nerolidol at different doses (5-100 µM) on the HCT-116 cell viability. The impacts of nerolidol on ROS accumulation and apoptosis were investigated using DCFH-DA, DAPI, and dual staining assays, respectively. The flow cytometry analysis was performed to study the influence of nerolidol on the cell cycle arrest in the HCT-116 cells. The outcomes of the MTT assay demonstrated that nerolidol at different doses (5-100 µM) substantially inhibited the HCT-116 cell viability with an IC50 level of 25 µM. The treatment with nerolidol appreciably boosted the ROS level in the HCT-116 cells. The findings of DAPI and dual staining revealed higher apoptotic incidences in the nerolidol-exposed HCT-116 cells, which supports its ability to stimulate apoptosis. The flow cytometry analysis demonstrated the considerable inhibition in cell cycle at the G0/G1 phase in the nerolidol-exposed HCT-116 cells. Our research showed that nerolidol can inhibit the cell cycle, increase ROS accumulation, and activate apoptosis in HCT-116 cells. In light of this, it may prove to be a potent and salutary candidate to treat colon cancer.
Collapse
Affiliation(s)
- Xiaoqian Zhao
- Nuclear Medicine Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Nandakumar Natarajan
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX, 75708, USA
| | - Muthusamy Raman
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
3
|
Hai CT, Van Thanh D, Xuan VT, Nam MH, Tam KT. Anticancer activity of Piper chaudocanum essential oils and essential oil-mediated silver nanoparticles. BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2023.104621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Zhang J, Li Y, Zhou T. Nerolidol Attenuates Cerebral Ischemic Injury in Middle Cerebral Artery Occlusion-Induced Rats via Regulation of Inflammation, Apoptosis, and Oxidative Stress Markers. Pharmacogn Mag 2023. [DOI: 10.1177/09731296221137380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Background Cerebral ischemia is a syndrome that occurs due to the restricted flow of oxygen-rich blood to the brain, causing damage to the brain cells. Globally, ischemia ranks second in causing mortality and third in causing disability in stroke patients. Nerolidol is a bioactive compound present in the essential oil of plants with a floral odour. It is a natural sesquiterpene alcohol used in cosmetics, perfumes, and as a food flavouring agent. It also possesses antioxidant, antimicrobial, anti-inflammatory, and anticancer properties. Materials and Methods In this study, we assessed the anti-ischemic property of nerolidol in cerebral ischemia-induced mice. Healthy male Wistar rats were induced into cerebral ischemia with middle cerebral artery occlusion (MCAO) and treated with 10 mg and 20 mg nerolidol for 21 days. The brain morphometric, antioxidant, and MMP levels were estimated in the brain tissue of MCAO-performed and nerolidol-treated rats. The cerebral infarct-alleviating potency of nerolidol was analysed by estimating the levels of inflammatory cytokines and apoptotic proteins. It was further confirmed by assessing the levels of COX-2/PGE-2 signalling proteins in brain tissue from MCAO-performed in rats. Results Nerolidol significantly reduced the cerebral infarct volume and brain edema via increased antioxidant levels and decreased MMPs. It also decreased the pro-inflammatory cytokines and proapoptotic proteins in brain tissue. The inflammatory signalling proteins NFκB, COX-2, and PGE-2 were significantly decreased in nerolidol-treated MCAO-performed rats, confirming the antiischemic property of nerolidol. Conclusion Our results prove nerolidol significantly alleviates cerebral ischemia in rats, and it can be subjected to further trials to be formulated as an anti-ischemic drug.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurosurgery, Laizhou City People’s Hospital, Laizhou, Shandong, China
| | - Yanli Li
- School of Health, Binzhou Polytechnical College, Binzhou, Shandong, China
| | - Tao Zhou
- Department of Neurosurgery, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
5
|
Mechanism of cis-Nerolidol-Induced Bladder Carcinoma Cell Death. Cancers (Basel) 2023; 15:cancers15030981. [PMID: 36765938 PMCID: PMC9913136 DOI: 10.3390/cancers15030981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Nerolidol is a naturally occurring sesquiterpene alcohol with multiple properties, including antioxidant, antibacterial, and antiparasitic activities. A few studies investigating the antitumor properties of nerolidol have shown positive results in both cell culture and mouse models. In this study, we investigated the antitumor mechanism of cis-nerolidol in bladder carcinoma cell lines. The results of our experiments on two bladder carcinoma cell lines revealed that nerolidol inhibited cell proliferation and induced two distinct cell death pathways. We confirmed that cis-nerolidol induces DNA damage and ER stress. A mechanistic study identified a common cAMP, Ca2+, and MAPK axis involved in signal propagation and amplification, leading to ER stress. Inhibition of any part of this signaling cascade prevented both cell death pathways. The two cell death mechanisms can be distinguished by the involvement of caspases. The early occurring cell death pathway is characterized by membrane blebbing and cell swelling followed by membrane rupture, which can be prevented by the inhibition of caspase activation. In the late cell death pathway, which was found to be caspase-independent, cytoplasmic vacuolization and changes in cell shape were observed. cis-Nerolidol shows promising antitumor activity through an unorthodox mechanism of action that could help target resistant forms of malignancies, such as bladder cancer.
Collapse
|
6
|
Singh V. F 1F o adenosine triphosphate (ATP) synthase is a potential drug target in non-communicable diseases. Mol Biol Rep 2023; 50:3849-3862. [PMID: 36715790 DOI: 10.1007/s11033-023-08299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023]
Abstract
F1Fo adenosine triphosphate (ATP) synthase, also known as the complex V, is the central ATP-producing unit in the cells arranged in the mitochondrial and plasma membranes. F1Fo ATP synthase also regulates the central metabolic processes in the human body driven by proton motive force (Δp). Numerous studies have immensely contributed toward highlighting its regulation in improving energy homeostasis and maintaining mitochondrial integrity, which otherwise gets compromised in illnesses. Yet, its role in the implication of non-communicable diseases remains unknown. F1Fo ATP synthase dysregulation at gene level leads to reduced activity and delocalization in the cristae and plasma membranes, which is directly associated with non-communicable diseases: cardiovascular diseases, diabetes, neurodegenerative disorders, cancer, and renal diseases. Individual subunits of the F1Fo ATP synthase target ligand-based competitive or non-competitive inhibition. After performing a systematic literature review to understand its specific functions and its novel drug targets, the present article focuses on the central role of F1Fo ATP synthase in primary non-communicable diseases. Next, it discusses its involvement through various pathways and the effects of multiple inhibitors, activators, and modulators specific to non-communicable diseases with a futuristic outlook.
Collapse
Affiliation(s)
- Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
7
|
The Effect of Nerolidol Renal Dysfunction following Ischemia-Reperfusion Injury in the Rat. Nutrients 2023; 15:nu15020455. [PMID: 36678327 PMCID: PMC9866594 DOI: 10.3390/nu15020455] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Efforts to decrease the deleterious effects of renal ischemia-reperfusion injury (IRI) are ongoing. Recently, there has been increasing interest in using natural phytochemical compounds as alternative remedies in several diseases. Nerolidol is a natural product extracted from plants with floral odors and has been proven to be effective for the treatment of some conditions. We investigated the effect of nerolidol in a rat model of renal IRI. Nerolidol was dissolved in a vehicle and administered orally as single daily dose of 200 mg/kg for 5 days prior to IRI and continued for 3 days post IRI. G-Sham (n = 10) underwent sham surgery, whereas G-IRI (n = 10) and G-IRI/NR (n = 10) underwent bilateral warm renal ischemia for 30 min and received the vehicle/nerolidol, respectively. Renal functions and histological changes were assessed before starting the medication, just prior to IRI and 3 days after IRI. Nerolidol significantly attenuated the alterations in serum creatinine and urea, creatinine clearance, urinary albumin and the urinary albumin-creatinine ratio. Nerolidol also significantly attenuated the alterations in markers of kidney injury; proinflammatory, profibrotic and apoptotic cytokines; oxidative stress markers; and histological changes. We conclude that nerolidol has a renoprotective effect on IRI-induced renal dysfunction. These findings might have clinical implications.
Collapse
|
8
|
Abad MHK, Nadaf M. The ethnobotanical properties and medicinal application of essential oils of Ziziphora persica Bunge from different habitats: A review. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2147593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Mohabat Nadaf
- Department of Biology, Payame Noor University, Tehran, Iran
| |
Collapse
|
9
|
Progress in the treatment of drug-induced liver injury with natural products. Pharmacol Res 2022; 183:106361. [PMID: 35882295 DOI: 10.1016/j.phrs.2022.106361] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022]
Abstract
There are numerous prescription drugs and non-prescription drugs that cause drug-induced liver injury (DILI), which is the main cause of liver disease in humans around the globe. Its mechanism becomes clearer as the disease is studied further. For an instance, when acetaminophen (APAP) is taken in excess, it produces N-acetyl-p-benzoquinone imine (NAPQI) that binds to biomacromolecules in the liver causing liver injury. Treatment of DILI with traditional Chinese medicine (TCM) has shown to be effective. For example, activation of the Nrf2 signaling pathway as well as regulation of glutathione (GSH) synthesis, coupling, and excretion are the mechanisms by which ginsenoside Rg1 (Rg1) treats APAP-induced acute liver injury. Nevertheless, reducing the toxicity of TCM in treating DILI is still a problem to be overcome at present and in the future. Accumulated evidences show that hydrogel-based nanocomposite may be an excellent carrier for TCM. Therefore, we reviewed TCM with potential anti-DILI, focusing on the signaling pathway of these drugs' anti-DILI effect, as well as the possibility and prospect of treating DILI by TCM based on hydrogel materials in the future. In conclusion, this review provides new insights to further explore TCM in the treatment of DILI.
Collapse
|
10
|
Ji X, Peng X, Long X, Zhang Y, Lin J, Yin J, Zhang R, Zhao G. Laccase-mediated functionalization of natamycin by gallic acids for the therapeutic effect on Aspergillus fumigatus keratitis. Eur J Pharmacol 2022; 926:175041. [PMID: 35597265 DOI: 10.1016/j.ejphar.2022.175041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
Abstract
To improve the therapeutic effect of natamycin on fungal keratitis (FK), the grafted derivatives of natamycin and gallic acid were obtained, and the effects of the grafted derivatives on Aspergillus fumigatus (A. fumigatus) keratitis were investigated. The structure of natamycin grafted with gallic acid was identified by FT-IR and UV-Vis, and the successful synthesis of Gallic-Natamycin (GA-NAT) was proved. CCK-8 and the Draize eye test showed that GA-NAT had less cytotoxicity. Then, through in vitro antibacterial experiments such as minimum inhibitory concentration (MIC), adhesion, biofilm formation, and calcium fluorescence staining and in vivo experiments such as clinical score and plate counting, the results showed that GA-NAT had similar antifungal activity to natamycin, but had a better therapeutic effect than natamycin. Myeloperoxidase assay and immunofluorescence staining also showed that GA-NAT significantly inhibited neutrophil recruitment and activity. Moreover, It was further found that GA-NAT could inhibit the mRNA and protein expressions of LOX-1, TNF-α, and IL-1β. These results indicated that GA-NAT inhibited the fungal growth, reduced the neutrophil infiltration into cornea, and down-regulated the expression of inflammatory factors in lesions, which provides a new choice for FK treatment.
Collapse
Affiliation(s)
- Xiaoyue Ji
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University NO. 16 Jiangsu Road, Qingdao, Shandong Province, 266000, China.
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University NO. 16 Jiangsu Road, Qingdao, Shandong Province, 266000, China; Department of Ophthalmology, University of Washington, Seattle, WA, 98104, USA.
| | - Xiaojing Long
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong Province, 266071, China.
| | - Yingxue Zhang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, 40201, USA.
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University NO. 16 Jiangsu Road, Qingdao, Shandong Province, 266000, China.
| | - Jiao Yin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University NO. 16 Jiangsu Road, Qingdao, Shandong Province, 266000, China.
| | - Ranran Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University NO. 16 Jiangsu Road, Qingdao, Shandong Province, 266000, China.
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University NO. 16 Jiangsu Road, Qingdao, Shandong Province, 266000, China.
| |
Collapse
|
11
|
Ahmad RM, Greish YE, El-Maghraby HF, Lubbad L, Makableh Y, Hammad FT. Preparation and Characterization of Blank and Nerolidol-Loaded Chitosan–Alginate Nanoparticles. NANOMATERIALS 2022; 12:nano12071183. [PMID: 35407300 PMCID: PMC9000846 DOI: 10.3390/nano12071183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
Recently, there has been a growing interest in using natural products as treatment alternatives in several diseases. Nerolidol is a natural product which has been shown to have protective effects in several conditions. The low water solubility of nerolidol and many other natural products limits their delivery to the body. In this research, a drug delivery system composed of alginate and chitosan was fabricated and loaded with nerolidol to enhance its water solubility. The chitosan–alginate nanoparticles were fabricated using a new method including the tween 80 pre-gelation, followed by poly-ionic crosslinking between chitosan negative and alginate positive groups. Several characterization techniques were used to validate the fabricated nanoparticles. The molecular interactions between the chitosan, alginate, and nerolidol molecules were confirmed using the Fourier transform infrared spectroscopy. The ultraviolet spectroscopy showed an absorbance peak of the blank nanoparticles at 200 nm and for the pure nerolidol at 280 nm. Using both scanning and transmission electron microscopy, the nanoparticles were found to be spherical in shape with an average size of 12 nm and 35 nm for the blank chitosan–alginate nanoparticles and the nerolidol-loaded chitosan–alginate nanoparticles, respectively. The nanoparticles were also shown to have a loading capacity of 51.7% and an encapsulation efficiency of 87%. A controlled release profile of the loaded drug for up to 28 h using an in vitro model was also observed, which is more efficient than the free form of nerolidol. In conclusion, chitosan–alginate nanoparticles and nerolidol loaded chitosan–alginate nanoparticles were successfully fabricated and characterized to show potential encapsulation and delivery using an in vitro model.
Collapse
Affiliation(s)
- Rahaf M. Ahmad
- Department of Surgery, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates or (R.M.A.); (L.L.)
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Yaser E. Greish
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (Y.E.G.); (H.F.E.-M.)
- Department of Ceramics, National Research Centre, NRC, Cairo 12622, Egypt
| | - Hesham F. El-Maghraby
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (Y.E.G.); (H.F.E.-M.)
- Department of Ceramics, National Research Centre, NRC, Cairo 12622, Egypt
| | - Loay Lubbad
- Department of Surgery, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates or (R.M.A.); (L.L.)
| | - Yahia Makableh
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Fayez T. Hammad
- Department of Surgery, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates or (R.M.A.); (L.L.)
- Correspondence: or ; Tel.: +971-50-4880021 or +971-3-7137-590
| |
Collapse
|
12
|
Dong JR, Chang WW, Chen SM. Nerolidol inhibits proliferation of leiomyoma cells via reactive oxygen species-induced DNA damage and downregulation of the ATM/Akt pathway. PHYTOCHEMISTRY 2021; 191:112901. [PMID: 34388663 DOI: 10.1016/j.phytochem.2021.112901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Nerolidol (3,7,11-trimethyl-1,6,10-dodecatrien-3-ol), a sesquiterpene alcohol present in aromatic essential oils of numerous plants, has been reported to possess anticancer activity. The potential therapeutic effect of nerolidol on uterine fibroids (UF), the most common benign tumor of the uterus worldwide, is unknown. In this study, we examined the anti-UF potential of nerolidol in ELT3 cells, a rat leiomyoma cell line widely used as an in vitro model, to identify the potential therapeutic agents for UF. We observed that treatment with cis- or trans-nerolidol inhibited cell proliferation in a dose-dependent manner and induced cell cycle arrest in the G1 phase, which was accompanied by reduction in Akt phosphorylation and downregulation of cyclin D1, cyclin-dependent kinase 4 (CDK4), and CDK6 protein expression. The proliferation-inhibiting activity of nerolidol correlated with the generation of intracellular reactive oxygen species (ROS), which was suppressed by N-acetyl-l-cysteine, a ROS inhibitor. Nerolidol treatment also increased the percentage of cells for which tail moment could be calculated using an alkaline comet assay, and induced p-γH2AXser139 expression, which indicated induction of DNA damage. We also observed downregulation of ATM and its phosphorylation after nerolidol treatment; furthermore, treatment with KU-55933, an ATM kinase inhibitor, mimicked the inhibitory effects of nerolidol treatment on cell proliferation and Akt phosphorylation. In conclusion, nerolidol displayed anti-UF activity in a leiomyoma cell model via ROS-induced DNA damage and G1 phase cell cycle arrest by inhibiting the expression and activation of the ATM/Akt pathway. Our data suggests that nerolidol is a potential therapeutic agent for UF.
Collapse
Affiliation(s)
- Jun-Ren Dong
- School of Biomedical Sciences, Chung Shan Medical University, Taichung, 40201, Taiwan.
| | - Wen-Wei Chang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung, 40201, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan.
| | - Shih-Ming Chen
- Bachelor Program in Health Care and Social Work for Indigenous Students, Providence University, Taichung, 43301, Taiwan.
| |
Collapse
|
13
|
Lawson SK, Satyal P, Setzer WN. Phytochemical Analysis of the Essential Oils From Aerial Parts of Four Scutellaria “Skullcap” Species Cultivated in South Alabama: Scutellaria baicalensis Georgi , S. Barbata D. Don , S. Incana Biehler , and S. Lateriflora L. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211025930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Scutellaria (skullcap) are important medicinal plants. Scutellaria baicalensis and S.barbata have been used in Chinese traditional medicine, while S. incana and S. lateriflora were used as herbal medicines by Native Americans. In this work, the essential oils of Scutellaria baicalensis Georgi, Scutellaria barbata D. Don , Scutellaria incana Biehler, and Scutellaria lateriflora L. were obtained from plants cultivated in south Alabama and analyzed by gas chromatographic techniques, including chiral gas chromatography. The most abundant components in the Scutellaria essential oils were 1-octen-3-ol (31.2% in S. incana), linalool (6.8% in S. incana), thymol (7.7% in S. barbata), carvacrol (9.3% in S. baicalensis), ( E)-β caryophyllene (11.6% in S. baicalensis), germacrene D (39.3% in S. baicalensis), ( E)-nerolidol (10.5% in S. incana), palmitic acid (15.6% in S. barbata), phytol (19.7% in S. incana), and linolenic acid (8.0% in S. barbata). These analyses of the essential oil compositions and enantiomeric ratios of predominant aromatic molecules add to our understanding of the medicinal phytochemistry of the genus Scutellaria.
Collapse
Affiliation(s)
- Sims K. Lawson
- Department of Ecosystem Science and Management, Penn State College of Agricultural Sciences, University Park, PA, USA
| | | | - William N. Setzer
- Aromatic Plant Research Center, Lehi, UT, USA
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, USA
| |
Collapse
|
14
|
Natural products and other inhibitors of F 1F O ATP synthase. Eur J Med Chem 2020; 207:112779. [PMID: 32942072 DOI: 10.1016/j.ejmech.2020.112779] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022]
Abstract
F1FO ATP synthase is responsible for the production of >95% of all ATP synthesis within the cell. Dysregulation of its expression, activity or localization is linked to various human diseases including cancer, diabetes, and Alzheimer's and Parkinson's disease. In addition, ATP synthase is a novel and viable drug target for the development of antimicrobials as evidenced by bedaquiline, which was approved in 2012 for the treatment of tuberculosis. Historically, natural products have been a rich source of ATP synthase inhibitors that help unravel the role of F1FO ATP synthase in cellular bioenergetics. During the last decade, new modulators of ATP synthase have been discovered through the isolation of novel natural products as well as through a ligand-based drug design process. In addition, new data has been obtained with regards to the structure and function of ATP synthase under physiological and pathological conditions. Crystal structure studies have provided a significant insight into the rotary function of the enzyme and may provide additional opportunities to design a new generation of inhibitors. This review provides an update on recently discovered ATP synthase modulators as well as an update on existing scaffolds.
Collapse
|
15
|
Proshkina E, Plyusnin S, Babak T, Lashmanova E, Maganova F, Koval L, Platonova E, Shaposhnikov M, Moskalev A. Terpenoids as Potential Geroprotectors. Antioxidants (Basel) 2020; 9:antiox9060529. [PMID: 32560451 PMCID: PMC7346221 DOI: 10.3390/antiox9060529] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Terpenes and terpenoids are the largest groups of plant secondary metabolites. However, unlike polyphenols, they are rarely associated with geroprotective properties. Here we evaluated the conformity of the biological effects of terpenoids with the criteria of geroprotectors, including primary criteria (lifespan-extending effects in model organisms, improvement of aging biomarkers, low toxicity, minimal adverse effects, improvement of the quality of life) and secondary criteria (evolutionarily conserved mechanisms of action, reproducibility of the effects on different models, prevention of age-associated diseases, increasing of stress-resistance). The number of substances that demonstrate the greatest compliance with both primary and secondary criteria of geroprotectors were found among different classes of terpenoids. Thus, terpenoids are an underestimated source of potential geroprotectors that can effectively influence the mechanisms of aging and age-related diseases.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Sergey Plyusnin
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Tatyana Babak
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Ekaterina Lashmanova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | | | - Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Elena Platonova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
- Correspondence: ; Tel.: +7-8212-312-894
| |
Collapse
|
16
|
Cannabidiol and tetrahydrocannabinol concentrations in commercially available CBD E-liquids in Switzerland. Forensic Sci Int 2020; 310:110261. [DOI: 10.1016/j.forsciint.2020.110261] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 01/12/2023]
|
17
|
Nanospheres as a technological alternative to suppress hepatic cellular damage and impaired bioenergetics caused by nerolidol in Nile tilapia (Oreochromis niloticus). Naunyn Schmiedebergs Arch Pharmacol 2020; 393:751-759. [PMID: 31953674 DOI: 10.1007/s00210-020-01824-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/14/2020] [Indexed: 12/25/2022]
Abstract
Nerolidol is a sesquiterpene found in essential oils of several plant species. It is found commonly in human and animal diets and is approved by the US Food and Drug Administration as a flavoring agent. Nevertheless, recent studies have suggested that nerolidol has potent hepatotoxic effects. Because use of plant-based products in human and animal food has expanded considerably, it is essential to develop approaches such as nanotechnology to avoid or reduce hepatic toxic effects. Therefore, the aim of the study was to determine whether nerolidol dietary supplementation elicited hepatic damage associated with impairment of energy homeostasis, as well as whether supplementation with nerolidol-loaded in nanospheres prevented hepatotoxic effects in Nile tilapia (Oreochromis niloticus). Nile tilapia were divided into five groups (A-E, n = 10 per group) with four replicates each, as follows: group A received basal feed (without supplementation); group B received feed containing 0.5 mL free nerolidol/kg; group C received feed containing 1.0 mL free nerolidol/kg; group D received feed containing 0.5 mL nanospheres nerolidol/kg; and group E received feed containing 1.0 mL nanospheres nerolidol/kg. All groups received experimental feed once a day (10% total biomass) at 2 p.m. for 60 consecutive days. Hepatic liver weight and relative liver weight were significantly lower in fish fed 1.0 mL free nerolidol/kg feed than in fish given basal diet (control group). Hepatic pyruvate kinase (1.0 mL free nerolidol/kg) and adenylate kinase (0.5 and 1.0 mL free nerolidol/kg) activities were significantly lower than in the control group, while hepatic reactive oxygen species and lipid damage levels were significantly higher. Finally, the comet assay revealed significant increases in the frequency of damage and the damage index in fish given 0.5 and 1.0 mL free nerolidol/kg in a dose-dependent manner. Nerolidol-loaded in nanospheres prevented all alterations elicited by free nerolidol. Based on these data, we concluded that dietary supplementation with free nerolidol elicited severe impairment of hepatic bioenergetics homeostasis that appeared to be mediated by excessive ROS production and lipid damage, contributing to a genotoxic effect. Dietary supplementation with nerolidol-loaded in nanospheres did not elicit hepatic damage, and therefore, should be considered as a replacement so as to limit toxicity, permitting its continued use as a dietary supplement.
Collapse
|
18
|
Yang H, Wang Q, Han L, Yang X, Zhao W, Lyu L, Wang L, Yan H, Che C. Nerolidol inhibits the LOX-1 / IL-1β signaling to protect against the Aspergillus fumigatus keratitis inflammation damage to the cornea. Int Immunopharmacol 2020; 80:106118. [PMID: 31926445 DOI: 10.1016/j.intimp.2019.106118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/01/2019] [Accepted: 12/07/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Nerolidol, a naturally occurring sesquiterpene has both anti-microbial and anti-inflammatory properties. The current study aims to investigate the antifungal and the anti-inflammatory effects of nerolidol against mouse Aspergillus fumigatus (A. fumigatus) keratitis. METHODS The minimum inhibitory concentration (MIC) and cytotoxicity tests were used to study the antifungal ability. For in vivo and in vitro studies, the mouse corneas and the human corneal epithelial cells (HCECs) infected with A. fumigatus spores were intervented with nerolidol or phosphate buffer saline (PBS). Thereafter, the effect of the nerolidol on the response against inflammation was analyzed using the following parameters: recruitment of the neutrophils or macrophages and the expression of the lectin-type oxidized low density lipoprotein receptor-1 (LOX-1) and interleukin 1β (IL-1β). Techniques used were the slit lamp, immunofluorescence, myeloperoxidase (MPO) detection, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. RESULTS Nerolidol directly inhibits the growth of A. fumigatus. The administration of nerolidol reduced the severity of fungal keratitis with infiltration of fewer inflammatory cells and reduced levels of the LOX-1, as well the anti-inflammatory cytokines such as IL-1β were reduced compared with the PBS group. Additionally, in vitro studies showed that treatment with nerolidol inhibited the production of the LOX-1 / IL-1β levels in A. fumigatus stimulated HCECs. CONCLUSION Nerolidol attenuated the A. fumigatus keratitis inflammatory response by inhibiting the growth of A. fumigatus, reducing the recruitment of the neutrophils and the macrophages, and inhibiting the LOX-1/ IL-1β signaling.
Collapse
Affiliation(s)
- Hua Yang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qian Wang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lin Han
- Gout Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xuejiao Yang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Wenyi Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Leyu Lyu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Limei Wang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Haijing Yan
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Chengye Che
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
19
|
Asaikumar L, Vennila L, Akila P, Sivasangari S, Kanimozhi K, Premalatha V, Sindhu G. Preventive effect of nerolidol on isoproterenol induced myocardial damage in Wistar rats: Evidences from biochemical and histopathological studies. Drug Dev Res 2019; 80:814-823. [PMID: 31313346 DOI: 10.1002/ddr.21564] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/03/2019] [Accepted: 06/24/2019] [Indexed: 12/18/2022]
Abstract
The present study aimed at investigating the protective effects of nerolidol (NRD) against myocardial infarction (MI) induced by isoproterenol (ISO) in Wistar rats. The rats were randomly divided into five groups, each group consisting of six rats. Group I were treated as control rats, group II received NRD (200 mg/kg b.w.) by intragastric intubation for 21 days, group III received ISO (60 mg/kg b.w) subcutaneously (s.c) for two consecutive days on 22nd and 23rd day, group IV and V received NRD (100 and 200 mg/kg b.w) as in group II and additionally ISO was given for two consecutive days (22nd and 23rd). On 24th day all the rats were sacrificed by cervical dislocation and the blood and heart samples were collected. In the present study, ISO-induced myocardial damage was indicated by the changes in body weight, heart weight and the cardiac and hepatic marker enzymes such as creatine kinase (CK), creatine kinase-MB (CK-MB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and troponin T and I (cTnT, cTnI) in the serum. In addition, the levels of lipid peroxidation products such as thiobarbituric acid reactive substances (TBARS), conjugated dines (CD), and lipid hydroperoxides (LHPs) increased significantly in the plasma and heart tissue. Activities of enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) in erythrocytes and heart tissue and the levels of nonenzymatic antioxidants like vitamin C, vitamin E, and reduced glutathione (GSH) in plasma and heart tissue were decreased in ISO-induced rats. Histopathological observations were also supported with the biochemical parameters. Pretreatment with NRD at different doses (100 and 200 mg/kg b.w) for 21 days prevented the above changes induced by ISO. The 200 mg/kg b.w of NRD was more pronounced than the other dose and brought back all the above parameters near to normalcy.
Collapse
Affiliation(s)
- Loordhurani Asaikumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Lakshmanan Vennila
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Palaniyandi Akila
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Subramanian Sivasangari
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Kaliyamoorthi Kanimozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Vengatesan Premalatha
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Ganapathi Sindhu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| |
Collapse
|
20
|
Kuhn D, Ziem R, Scheibel T, Buhl B, Vettorello G, Pacheco LA, Heidrich D, Kauffmann C, de Freitas EM, Ethur EM, Hoehne L. Antibiofilm activity of the essential oil of Campomanesia aurea O. Berg against microorganisms causing food borne diseases. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Souilem F, El Ayeb A, Djlassi B, Ayari O, Chiboub W, Arbi F, Ascrizzi R, Flamini G, Harzallah-Skhiri F. Chemical Composition and Activity of Essential Oils ofCarissa macrocarpa(Eckl.) A.DC. Cultivated in Tunisia and Its Anatomical Features. Chem Biodivers 2018; 15:e1800188. [DOI: 10.1002/cbdv.201800188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/13/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Fedia Souilem
- Laboratory of Bioresources, Integrative Biology and Valorization (LR14-ES06); High Institute of Biotechnology of Monastir; University of Monastir; Tahar Haddad Street Monastir 5000 Tunisia
| | - Asma El Ayeb
- Laboratory of Bioresources, Integrative Biology and Valorization (LR14-ES06); High Institute of Biotechnology of Monastir; University of Monastir; Tahar Haddad Street Monastir 5000 Tunisia
| | - Brahim Djlassi
- Laboratory of Transmissible Diseases and Biologically Active Substances; Faculty of Pharmacy; University of Monastir; Avicenne Avenue Monastir 5019 Tunisia
| | - Olfa Ayari
- Laboratory of Bioresources, Integrative Biology and Valorization (LR14-ES06); High Institute of Biotechnology of Monastir; University of Monastir; Tahar Haddad Street Monastir 5000 Tunisia
| | - Wiem Chiboub
- Laboratory of Bioresources, Integrative Biology and Valorization (LR14-ES06); High Institute of Biotechnology of Monastir; University of Monastir; Tahar Haddad Street Monastir 5000 Tunisia
| | - Faten Arbi
- Laboratory of Bioresources, Integrative Biology and Valorization (LR14-ES06); High Institute of Biotechnology of Monastir; University of Monastir; Tahar Haddad Street Monastir 5000 Tunisia
| | - Roberta Ascrizzi
- Dipartimento di Farmacia; Università di Pisa; Via Bonanno 6 IT-56126 Pisa Italy
| | - Guido Flamini
- Dipartimento di Farmacia; Università di Pisa; Via Bonanno 6 IT-56126 Pisa Italy
| | - Fethia Harzallah-Skhiri
- Laboratory of Bioresources, Integrative Biology and Valorization (LR14-ES06); High Institute of Biotechnology of Monastir; University of Monastir; Tahar Haddad Street Monastir 5000 Tunisia
| |
Collapse
|
22
|
Mendanha SA, Marquezin CA, Ito AS, Alonso A. Effects of nerolidol and limonene on stratum corneum membranes: A probe EPR and fluorescence spectroscopy study. Int J Pharm 2017; 532:547-554. [DOI: 10.1016/j.ijpharm.2017.09.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/11/2017] [Accepted: 09/16/2017] [Indexed: 02/01/2023]
|
23
|
Biazi BI, Zanetti TA, Baranoski A, Corveloni AC, Mantovani MS. Cis-Nerolidol Induces Endoplasmic Reticulum Stress and Cell Death in Human Hepatocellular Carcinoma Cells through Extensive CYP2C19 and CYP1A2 Oxidation. Basic Clin Pharmacol Toxicol 2017; 121:334-341. [DOI: 10.1111/bcpt.12772] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/21/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Bruna Isabela Biazi
- Laboratory of Toxicological Genetics; Department of General Biology; Biological Sciences Center; State University of Londrina - UEL; Londrina Paraná Brazil
| | - Thalita Alves Zanetti
- Laboratory of Toxicological Genetics; Department of General Biology; Biological Sciences Center; State University of Londrina - UEL; Londrina Paraná Brazil
| | - Adrivanio Baranoski
- Laboratory of Toxicological Genetics; Department of General Biology; Biological Sciences Center; State University of Londrina - UEL; Londrina Paraná Brazil
| | - Amanda Cristina Corveloni
- Laboratory of Toxicological Genetics; Department of General Biology; Biological Sciences Center; State University of Londrina - UEL; Londrina Paraná Brazil
| | - Mário Sérgio Mantovani
- Laboratory of Toxicological Genetics; Department of General Biology; Biological Sciences Center; State University of Londrina - UEL; Londrina Paraná Brazil
| |
Collapse
|
24
|
Saito AY, Marin Rodriguez AA, Menchaca Vega DS, Sussmann RA, Kimura EA, Katzin AM. Antimalarial activity of the terpene nerolidol. Int J Antimicrob Agents 2016; 48:641-646. [DOI: 10.1016/j.ijantimicag.2016.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/30/2016] [Accepted: 08/13/2016] [Indexed: 12/14/2022]
|
25
|
Protective Effect of Nerolidol Against Pentylenetetrazol-Induced Kindling, Oxidative Stress and Associated Behavioral Comorbidities in Mice. Neurochem Res 2016; 41:2859-2867. [DOI: 10.1007/s11064-016-2001-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/02/2016] [Accepted: 07/07/2016] [Indexed: 12/13/2022]
|
26
|
Chan WK, Tan LTH, Chan KG, Lee LH, Goh BH. Nerolidol: A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological Activities. Molecules 2016; 21:molecules21050529. [PMID: 27136520 PMCID: PMC6272852 DOI: 10.3390/molecules21050529] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 11/16/2022] Open
Abstract
Nerolidol (3,7,11-trimethyl-1,6,10-dodecatrien-3-ol) is a naturally occurring sesquiterpene alcohol that is present in various plants with a floral odor. It is synthesized as an intermediate in the production of (3E)-4,8-dimethy-1,3,7-nonatriene (DMNT), a herbivore-induced volatile that protects plants from herbivore damage. Chemically, nerolidol exists in two geometric isomers, a trans and a cis form. The usage of nerolidol is widespread across different industries. It has been widely used in cosmetics (e.g., shampoos and perfumes) and in non-cosmetic products (e.g., detergents and cleansers). In fact, U.S. Food and Drug Administration (FDA) has also permitted the use of nerolidol as a food flavoring agent. The fact that nerolidol is a common ingredient in many products has attracted researchers to explore more medicinal properties of nerolidol that may exert beneficial effect on human health. Therefore, the aim of this review is to compile and consolidate the data on the various pharmacological and biological activities displayed by nerolidol. Furthermore, this review also includes pharmacokinetic and toxicological studies of nerolidol. In summary, the various pharmacological and biological activities demonstrated in this review highlight the prospects of nerolidol as a promising chemical or drug candidate in the field of agriculture and medicine.
Collapse
Affiliation(s)
- Weng-Keong Chan
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Loh Teng-Hern Tan
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Learn-Han Lee
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, 56000 Phayao, Thailand.
| | - Bey-Hing Goh
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, 56000 Phayao, Thailand.
| |
Collapse
|
27
|
Abd El-Gawad AM. Chemical constituents, antioxidant and potential allelopathic effect of the essential oil from the aerial parts of Cullen plicata. INDUSTRIAL CROPS AND PRODUCTS 2016; 80:36-41. [DOI: 10.1016/j.indcrop.2015.10.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
28
|
Transmittance and Autofluorescence of Neonatal Rat Stratum Corneum: Nerolidol Increases the Dynamics and Partitioning of Protoporphyrin IX into Intercellular Membranes. J Fluoresc 2016; 26:709-17. [DOI: 10.1007/s10895-015-1758-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022]
|
29
|
Ornano L, Venditti A, Ballero M, Sanna C, Donno Y, Quassinti L, Bramucci M, Vitali LA, Petrelli D, Tirillini B, Papa F, Maggi F, Bianco A. Essential oil composition and biological activity from Artemisia caerulescens subsp. densiflora (Viv.) Gamisans ex Kerguélen & Lambinon (Asteraceae), an endemic species in the habitat of La Maddalena Archipelago. Nat Prod Res 2015; 30:1802-9. [DOI: 10.1080/14786419.2015.1079190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Luigi Ornano
- Dipartimento di Chimica, Università degli studi di Roma “La Sapienza”, Rome, Italy
- Consorzio Interuniversitario Co.S.Me.Se.,Dipartimento di Scienze Botaniche, Università di Cagliari, Cagliari, Italy
| | - Alessandro Venditti
- Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Rome, Italy
| | - Mauro Ballero
- Consorzio Interuniversitario Co.S.Me.Se.,Dipartimento di Scienze Botaniche, Università di Cagliari, Cagliari, Italy
| | - Cinzia Sanna
- Consorzio Interuniversitario Co.S.Me.Se.,Dipartimento di Scienze Botaniche, Università di Cagliari, Cagliari, Italy
| | - Yuri Donno
- Parco nazionale dell’ Arcipelago di La Maddalena, La Maddalena, Sardinia, Italy
| | - Luana Quassinti
- Scuola di Farmacia e dei Prodotti della Salute, Università di Camerino, Camerino, Italy
| | - Massimo Bramucci
- Scuola di Farmacia e dei Prodotti della Salute, Università di Camerino, Camerino, Italy
| | - Luca A. Vitali
- Scuola di Farmacia e dei Prodotti della Salute, Università di Camerino, Camerino, Italy
| | - Dezemona Petrelli
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Camerino, Italy
| | - Bruno Tirillini
- Dipartimento di Scienze BIomolecolari, Università di Urbino, Urbino, Italy
| | - Fabrizio Papa
- Scuola di Scienze e Tecnologie, Università di Camerino, Camerino, Italy
| | - Filippo Maggi
- Scuola di Farmacia e dei Prodotti della Salute, Università di Camerino, Camerino, Italy
| | - Armanodoriano Bianco
- Dipartimento di Chimica, Università degli studi di Roma “La Sapienza”, Rome, Italy
- Consorzio Interuniversitario Co.S.Me.Se.,Dipartimento di Scienze Botaniche, Università di Cagliari, Cagliari, Italy
| |
Collapse
|
30
|
Assessment of the antioxidant and antiproliferative effects of sesquiterpenic compounds in in vitro Caco-2 cell models. Food Chem 2014; 156:204-11. [PMID: 24629959 DOI: 10.1016/j.foodchem.2014.01.106] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/17/2013] [Accepted: 01/27/2014] [Indexed: 11/23/2022]
Abstract
In this study, the antiradical and antiproliferative effects of the sesquiterpenic compounds trans, trans-farnesol, cis-nerolidol, α-humulene and guaiazulene, commonly found in plants and plant-derived foods and beverages, were evaluated. Chemical (DPPH and hydroxyl radicals) and biological (Caco-2 cells) models were used. Guaiazulene (IC50=0.73mM) showed higher scavenger capacity against DPPH, while trans, trans-farnesol (IC50=1.81mM) and cis-nerolidol (IC50=1.48mM) were more active towards hydroxyl radicals. All compounds, with the exception of α-humulene, were able to protect Caco-2 cells from oxidative stress induced by tert-butyl hydroperoxide. As antiproliferative agents, guaiazulene and cis-nerolidol were more effective than trans, trans-farnesol and α-humulene. The results obtained for the sesquiterpenic compounds by these in vitro assays opens a perspective for their promising use as antioxidants and antiproliferative agents. However, in vivo tests should be carried out in the future to confirm their safety and effectiveness.
Collapse
|
31
|
Sperotto A, Moura D, Péres V, Damasceno F, Caramão E, Henriques J, Saffi J. Cytotoxic mechanism of Piper gaudichaudianum Kunth essential oil and its major compound nerolidol. Food Chem Toxicol 2013; 57:57-68. [DOI: 10.1016/j.fct.2013.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/04/2013] [Accepted: 03/07/2013] [Indexed: 12/22/2022]
|