1
|
Nguyen TTK, Woo SM, Seo SU, Banstola A, Kim H, Duwa R, Vu ATT, Hong IS, Kwon TK, Yook S. Enhanced anticancer efficacy of TRAIL-conjugated and odanacatib-loaded PLGA nanoparticles in TRAIL resistant cancer. Biomaterials 2025; 312:122733. [PMID: 39106819 DOI: 10.1016/j.biomaterials.2024.122733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/27/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) demonstrates unique characteristics in anticancer therapies as it selectively induces apoptosis in cancer cells. However, most cancer cells are TRAIL-resistant. Odanacatib (ODN), a cathepsin K inhibitor, is considered a novel sensitizer for cancer treatment. Combination therapy between TRAIL and sensitizers is considered a potent platform that improves TRAIL-based anticancer therapies beyond TRAIL monotherapy. Herein, we developed ODN loaded poly(lactic-co-glycolic) nanoparticles conjugated to GST-TRAIL (TRAIL-ODN-PLGA-NPs) to target and treat TRAIL-resistant cancer. TRAIL-ODN-PLGA-NPs demonstrated a significant increase in cellular uptake via death receptors (DR5 and DR4) on surface of cancer cells. TRAIL-ODN-PLGA-NPs exposure destroyed more TRAIL-resistant cells compared to a single treatment with free drugs. The released ODN decreased the Raptor protein, thereby increasing damage to mitochondria by elevating reactive oxygen species (ROS) generation. Additionally, Bim protein stabilization improved TRAIL-resistant cell sensitization to TRAIL-induced apoptosis. The in vivo biodistribution study revealed that TRAIL-ODN-PLGA-NPs demonstrated high location and retention in tumor sites via the intravenous route. Furthermore, TRAIL-ODN-PLGA-NPs significantly inhibited xenograft tumor models of TRAIL-resistant Caki-1 and TRAIL-sensitive MDA-MB-231 cells.The inhibition was associated with apoptosis activation, Raptor protein stabilizing Bim protein downregulation, Bax accumulation, and mitochondrial ROS generation elevation. Additionally, TRAIL-ODN-PLGA-NPs affected the tumor microenvironment by increasing tumor necrosis factor-α and reducing interleukin-6. In conclusion, we evealed that our formulation demonstrated synergistic effects against TRAIL compared with the combination of free drug in vitro and in vivo models. Therefore, TRAIL-ODN-PLGA-NPs may be a novel candidate for TRAIL-induced apoptosis in cancer treatment.
Collapse
Affiliation(s)
- Thoa Thi Kim Nguyen
- College of Pharmacy, Keimyung University, Daegu, 42602, Republic of Korea; Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Seon Min Woo
- Department of Immunology, School of medicine, Keimyung University, Daegu, Republic of Korea
| | - Seung Un Seo
- Department of Immunology, School of medicine, Keimyung University, Daegu, Republic of Korea
| | - Asmita Banstola
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Haesoo Kim
- College of Pharmacy, Keimyung University, Daegu, 42602, Republic of Korea
| | - Ramesh Duwa
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Radiology, Molecular Imaging Program at Stanford (MIPS), School of medicine, Stanford University, Stanford, CA, 94305, USA
| | - An Thi Thanh Vu
- College of Pharmacy, Keimyung University, Daegu, 42602, Republic of Korea
| | - In-Sun Hong
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of medicine, Keimyung University, Daegu, Republic of Korea; Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Luo C, He S, Shi F, Zhou J, Shang L. The Role of TRAIL Signaling in Cancer: Searching for New Therapeutic Strategies. BIOLOGY 2024; 13:521. [PMID: 39056714 PMCID: PMC11274015 DOI: 10.3390/biology13070521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Cancer continues to pose a significant threat to global health, with its status as a leading cause of death remaining unchallenged. Within the realm of cancer research, the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) stands out as a critical player, having been identified in the 1990s as the tenth member of the TNF family. This review examines the pivotal role of TRAIL in cancer biology, focusing on its ability to induce apoptosis in malignant cells through both endogenous and exogenous pathways. We provide an in-depth analysis of TRAIL's intracellular signaling and intercellular communication, underscoring its potential as a selective anticancer agent. Additionally, the review explores TRAIL's capacity to reshape the tumor microenvironment, thereby influencing cancer progression and response to therapy. With an eye towards future developments, we discuss the prospects of harnessing TRAIL's capabilities for the creation of tailored, precision-based cancer treatments, aiming to enhance efficacy and improve patient survival rates.
Collapse
Affiliation(s)
- Cheng Luo
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/Xiangya Hospital, Central South University, Changsha 410078, China; (C.L.); (J.Z.)
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Shan He
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Jianhua Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/Xiangya Hospital, Central South University, Changsha 410078, China; (C.L.); (J.Z.)
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
| | - Li Shang
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/Xiangya Hospital, Central South University, Changsha 410078, China; (C.L.); (J.Z.)
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
| |
Collapse
|
3
|
Nakada EM, Sun R, Fujii U, Martin JG. The Impact of Endoplasmic Reticulum-Associated Protein Modifications, Folding and Degradation on Lung Structure and Function. Front Physiol 2021; 12:665622. [PMID: 34122136 PMCID: PMC8188853 DOI: 10.3389/fphys.2021.665622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and induces the unfolded protein response (UPR) and other mechanisms to restore ER homeostasis, including translational shutdown, increased targeting of mRNAs for degradation by the IRE1-dependent decay pathway, selective translation of proteins that contribute to the protein folding capacity of the ER, and activation of the ER-associated degradation machinery. When ER stress is excessive or prolonged and these mechanisms fail to restore proteostasis, the UPR triggers the cell to undergo apoptosis. This review also examines the overlooked role of post-translational modifications and their roles in protein processing and effects on ER stress and the UPR. Finally, these effects are examined in the context of lung structure, function, and disease.
Collapse
Affiliation(s)
- Emily M. Nakada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - Rui Sun
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - Utako Fujii
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - James G. Martin
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Gao Y, Zhou J, Ruan H. Trichothecenes from an Endophytic Fungus Alternaria sp. sb23. PLANTA MEDICA 2020; 86:976-982. [PMID: 32018306 DOI: 10.1055/a-1091-8831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Three new (alterchothecenes A - C, 1: -3: ) and 3 known (4: -6: ) trichothecenes, along with 9 known compounds (7: -15: ), were isolated from the culture of Alternaria sp. sb23, an endophytic fungus separated from the root of Schisandra sphenanthera Rehd. et Wils. Their structures were elucidated by spectroscopic analyses, and the absolute configurations of 1: -3: were determined through comparison of the experimental electronic circular dichroism (ECD) spectra and optical rotations with similar analogues. In vitro cytotoxicity tests of compounds 1: -6: against human HT-29 colon carcinoma and human MCF-7 breast cancer cell lines indicated that 4: -6: exhibited significant cytotoxic effects, with IC50 values ranging from 0.89 to 9.38 µM. And the potential of compounds 1: -6: as tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) sensitizers in HT-29 cells was evaluated. The results revealed that combination treatment of TRAIL with compounds 1: -6: synergistically decreased cell viability compared with the sole treatment with those compounds.
Collapse
Affiliation(s)
- Ying Gao
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan, People's Republic of China
| | - Jia Zhou
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan, People's Republic of China
| | - Hanli Ruan
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan, People's Republic of China
| |
Collapse
|
5
|
Thapa B, Kc R, Uludağ H. TRAIL therapy and prospective developments for cancer treatment. J Control Release 2020; 326:335-349. [PMID: 32682900 DOI: 10.1016/j.jconrel.2020.07.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/01/2020] [Accepted: 07/11/2020] [Indexed: 12/22/2022]
Abstract
Tumor Necrosis Factor (TNF) Related Apoptosis-Inducing Ligand (TRAIL), an immune cytokine of TNF-family, has received much attention in late 1990s as a potential cancer therapeutics due to its selective ability to induce apoptosis in cancer cells. TRAIL binds to cell surface death receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5) and facilitates formation of death-inducing signaling complex (DISC), eventually activating the p53-independent apoptotic cascade. This unique mechanism makes the TRAIL a potential anticancer therapeutic especially for p53-mutated tumors. However, recombinant human TRAIL protein (rhTRAIL) and TRAIL-R agonist monoclonal antibodies (mAb) failed to exert robust anticancer activities due to inherent and/or acquired resistance, poor pharmacokinetics and weak potencies for apoptosis induction. To get TRAIL back on track as a cancer therapeutic, multiple strategies including protein modification, combinatorial approach and TRAIL gene therapy are being extensively explored. These strategies aim to enhance the half-life and bioavailability of TRAIL and synergize with TRAIL action ultimately sensitizing the resistant and non-responsive cells. We summarize emerging strategies for enhanced TRAIL therapy in this review and cover a wide range of recent technologies that will provide impetus to rejuvenate the TRAIL therapeutics in the clinical realm.
Collapse
Affiliation(s)
- Bindu Thapa
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Remant Kc
- Department of Chemical & Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada.
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Chemical & Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada; Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
6
|
The Role of the ER-Induced UPR Pathway and the Efficacy of Its Inhibitors and Inducers in the Inhibition of Tumor Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5729710. [PMID: 30863482 PMCID: PMC6378054 DOI: 10.1155/2019/5729710] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/08/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Cancer is the second most frequent cause of death worldwide. It is considered to be one of the most dangerous diseases, and there is still no effective treatment for many types of cancer. Since cancerous cells have a high proliferation rate, it is pivotal for their proper functioning to have the well-functioning protein machinery. Correct protein processing and folding are crucial to maintain tumor homeostasis. Endoplasmic reticulum (ER) stress is one of the leading factors that cause disturbances in these processes. It is induced by impaired function of the ER and accumulation of unfolded proteins. Induction of ER stress affects many molecular pathways that cause the unfolded protein response (UPR). This is the way in which cells can adapt to the new conditions, but when ER stress cannot be resolved, the UPR induces cell death. The molecular mechanisms of this double-edged sword process are involved in the transition of the UPR either in a cell protection mechanism or in apoptosis. However, this process remains poorly understood but seems to be crucial in the treatment of many diseases that are related to ER stress. Hence, understanding the ER stress response, especially in the aspect of pathological consequences of UPR, has the potential to allow us to develop novel therapies and new diagnostic and prognostic markers for cancer.
Collapse
|
7
|
Elucidation for modulation of death receptor (DR) 5 to strengthen apoptotic signals in cancer cells. Arch Pharm Res 2019; 42:88-100. [DOI: 10.1007/s12272-018-01103-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
|
8
|
Kim C, Kim B. Anti-Cancer Natural Products and Their Bioactive Compounds Inducing ER Stress-Mediated Apoptosis: A Review. Nutrients 2018; 10:nu10081021. [PMID: 30081573 PMCID: PMC6115829 DOI: 10.3390/nu10081021] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer is the second biggest cause of death worldwide. Despite a number of studies being conducted, the effective mechanism for treating cancer has not yet been fully understood. The tumor-microenvironment such as hypoxia, low nutrients could disturb function of endoplasmic reticulum (ER) to maintain cellular homeostasis, ultimately leading to the accumulation of unfolded proteins in ER, so-called ER stress. The ER stress has a close relation with cancer. ER stress initiates unfolded protein response (UPR) to re-establish ER homeostasis as an adaptive pathway in cancer. However, persistent ER stress triggers the apoptotic pathway. Therefore, blocking the adaptive pathway of ER stress or facilitating the apoptotic pathway could be an anti-cancer strategy. Recently, natural products and their derivatives have been reported to have anti-cancer effects via ER stress. Here, we address mechanisms of ER stress-mediated apoptosis and highlight strategies for cancer therapy by utilizing ER stress. Furthermore, we summarize anti-cancer activity of the natural products via ER stress in six major types of cancers globally (lung, breast, colorectal, gastric, prostate and liver cancer). This review deepens the understanding of ER stress mechanisms in major cancers as well as the suppressive impact of natural products against cancers via ER stress.
Collapse
Affiliation(s)
- Changmin Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| |
Collapse
|
9
|
Park SH, Lee DH, Kim JL, Kim BR, Na YJ, Jo MJ, Jeong YA, Lee SY, Lee SI, Lee YY, Oh SC. Metformin enhances TRAIL-induced apoptosis by Mcl-1 degradation via Mule in colorectal cancer cells. Oncotarget 2018; 7:59503-59518. [PMID: 27517746 PMCID: PMC5312327 DOI: 10.18632/oncotarget.11147] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 07/06/2016] [Indexed: 01/09/2023] Open
Abstract
Metformin is an anti-diabetic drug with a promising anti-cancer potential. In this study, we show that subtoxic doses of metformin effectively sensitize human colorectal cancer (CRC) cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), which induces apoptosis. Metformin alone did not induce apoptosis, but significantly potentiated TRAIL-induced apoptosis in CRC cells. CRC cells treated with metformin and TRAIL showed activation of the intrinsic and extrinsic pathways of caspase activation. We attempted to elucidate the underlying mechanism, and found that metformin significantly reduced the protein levels of myeloid cell leukemia 1 (Mcl-1) in CRC cells and, the overexpression of Mcl-1 inhibited cell death induced by metformin and/or TRAIL. Further experiments revealed that metformin did not affect mRNA levels, but increased proteasomal degradation and protein stability of Mcl-1. Knockdown of Mule triggered a significant decrease of Mcl-1 polyubiquitination. Metformin caused the dissociation of Noxa from Mcl-1, which allowed the binding of the BH3-containing ubiquitin ligase Mule followed by Mcl-1ubiquitination and degradation. The metformin-induced degradation of Mcl-1 required E3 ligase Mule, which is responsible for the polyubiquitination of Mcl-1. Our study is the first report indicating that metformin enhances TRAIL-induced apoptosis through Noxa and favors the interaction between Mcl-1 and Mule, which consequently affects Mcl-1 ubiquitination.
Collapse
Affiliation(s)
- Seong Hye Park
- Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - Dae-Hee Lee
- Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul, Republic of Korea.,Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jung Lim Kim
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Bo Ram Kim
- Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - Yoo Jin Na
- Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - Min Jee Jo
- Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul, Republic of Korea
| | - Yoon A Jeong
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Suk-Young Lee
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sun Il Lee
- Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yong Yook Lee
- The Korean Ginseng Research Institute, Daejeon, Republic of Korea
| | - Sang Cheul Oh
- Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul, Republic of Korea.,Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Wu Q, Wang X, Nepovimova E, Miron A, Liu Q, Wang Y, Su D, Yang H, Li L, Kuca K. Trichothecenes: immunomodulatory effects, mechanisms, and anti-cancer potential. Arch Toxicol 2017; 91:3737-3785. [PMID: 29152681 DOI: 10.1007/s00204-017-2118-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022]
Abstract
Paradoxically, trichothecenes have both immunosuppressive and immunostimulatory effects. The underlying mechanisms have not been fully explored. Early studies show that dose, exposure timing, and the time at which immune function is assessed influence whether trichothecenes act in an immunosuppressive or immunostimulatory fashion. Recent studies suggest that the immunomodulatory function of trichothecenes is also actively shaped by competing cell-survival and death-signaling pathways. Autophagy may also promote trichothecene immunosuppression, although the mechanism may be complicated. Moreover, trichothecenes may generate an "immune evasion" milieu that allows pathogens to escape host and vaccine immune defenses. Some trichothecenes, especially macrocyclic trichothecenes, also potently kill cancer cells. T-2 toxin conjugated with anti-cancer monoclonal antibodies significantly suppresses the growth of thymoma EL-4 cells and colon cancer cells. The type B trichothecene diacetoxyscirpenol specifically inhibits the tumor-promoting factor HIF-1 in cancer cells under hypoxic conditions. Trichothecin markedly inhibits the growth of multiple cancer cells with constitutively activated NF-κB. The type D macrocyclic toxin Verrucarin A is also a promising therapeutic candidate for leukemia, breast cancer, prostate cancer, and pancreatic cancer. The anti-cancer activities of trichothecenes have not been comprehensively summarized. Here, we first summarize the data on the immunomodulatory effects of trichothecenes and discuss recent studies that shed light on the underlying cellular and molecular mechanisms. These mechanisms include autophagy and major signaling pathways and their crosstalk. Second, the anti-cancer potential of trichothecenes and the underlying mechanisms will be discussed. We hope that this review will show how trichothecene bioactivities can be exploited to generate therapies against pathogens and cancer.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China. .,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Anca Miron
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy Grigore T. Popa, Iasi, Romania
| | - Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Wang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Dongxiao Su
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Hualin Yang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Li Li
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
11
|
Carnosic acid cooperates with tamoxifen to induce apoptosis associated with Caspase-3 activation in breast cancer cells in vitro and in vivo. Biomed Pharmacother 2017; 89:827-837. [DOI: 10.1016/j.biopha.2017.01.084] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 02/06/2023] Open
|
12
|
Henrich CJ. A Microplate-Based Nonradioactive Protein Synthesis Assay: Application to TRAIL Sensitization by Protein Synthesis Inhibitors. PLoS One 2016; 11:e0165192. [PMID: 27768779 PMCID: PMC5074477 DOI: 10.1371/journal.pone.0165192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 10/08/2016] [Indexed: 02/06/2023] Open
Abstract
Non-radioactive assays based on incorporation of puromycin into newly synthesized proteins and subsequent detection using anti-puromycin antibodies have been previously reported and well-validated. To develop a moderate- to high-throughput assay, an adaptation is here described wherein cells are puromycin-labeled followed by simultaneously probing puromycin-labeled proteins and a reference protein in situ. Detection using a pair of near IR-labeled secondary antibodies (InCell western, ICW format) allows quantitative analysis of protein synthesis in 384-well plates. After optimization, ICW results were compared to western blot analysis using cycloheximide as a model protein synthesis inhibitor and showed comparable results. The method was then applied to several protein synthesis inhibitors and revealed good correlation between potency as protein synthesis inhibitors to their ability to sensitize TRAIL-resistant renal carcinoma cells to TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Curtis J. Henrich
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, United States of America
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, United States of America
| |
Collapse
|
13
|
Farooqi AA, Li KT, Fayyaz S, Chang YT, Ismail M, Liaw CC, Yuan SSF, Tang JY, Chang HW. Anticancer drugs for the modulation of endoplasmic reticulum stress and oxidative stress. Tumour Biol 2015; 36:5743-52. [PMID: 26188905 PMCID: PMC4546701 DOI: 10.1007/s13277-015-3797-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022] Open
Abstract
Prior research has demonstrated how the endoplasmic reticulum (ER) functions as a multifunctional organelle and as a well-orchestrated protein-folding unit. It consists of sensors which detect stress-induced unfolded/misfolded proteins and it is the place where protein folding is catalyzed with chaperones. During this folding process, an immaculate disulfide bond formation requires an oxidized environment provided by the ER. Protein folding and the generation of reactive oxygen species (ROS) as a protein oxidative byproduct in ER are crosslinked. An ER stress-induced response also mediates the expression of the apoptosis-associated gene C/EBP-homologous protein (CHOP) and death receptor 5 (DR5). ER stress induces the upregulation of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) receptor and opening new horizons for therapeutic research. These findings can be used to maximize TRAIL-induced apoptosis in xenografted mice. This review summarizes the current understanding of the interplay between ER stress and ROS. We also discuss how damage-associated molecular patterns (DAMPs) function as modulators of immunogenic cell death and how natural products and drugs have shown potential in regulating ER stress and ROS in different cancer cell lines. Drugs as inducers and inhibitors of ROS modulation may respectively exert inducible and inhibitory effects on ER stress and unfolded protein response (UPR). Reconceptualization of the molecular crosstalk among ROS modulating effectors, ER stress, and DAMPs will lead to advances in anticancer therapy.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), KRL Hospital, Islamabad, Pakistan,
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Urokinase-type plasminogen activator receptor regulates apoptotic sensitivity of colon cancer HCT116 cell line to TRAIL via JNK-p53 pathway. Apoptosis 2015; 19:1532-44. [PMID: 25113506 DOI: 10.1007/s10495-014-1025-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The urokinase-type plasminogen activator receptor (uPAR) serves not only as an anchor for urokinase-type plasminogen activator but also participates in intracellular signal transduction events. In this study, we investigated whether uPAR could modulate TRAIL-induced apoptosis in human colon cancer cells HCT116. Using an antisense strategy, we established a stable HCT116 cell line with down-regulated uPAR. The sensitivity to TRAIL-induced apoptosis was evaluated by FACS analysis. Our results show that the inhibition of uPAR could sensitize HCT116 to TRAIL-induced apoptosis. uPAR inhibition changed the expression of mitochondrial apoptotic pathway proteins, including Bcl-2, Bax, Bid and p53, in a pro-apoptotic manner. We also found that the inhibition of uPAR down-regulated the phosphorylation of FAK, ERK and JNK. The inhibition of p53 by RNA interference rescued cells from enhanced apoptosis, thus indicating that p53 is critical for enhancing TRAIL-induced apoptosis. Furthermore, JNK, but not ERK, inhibition involved in the up-regulation of p53. JNK negatively regulated p53 protein level. Overall, our results show that uPAR inhibition can sensitize colon cancer cells HCT116 to TRAIL-induced apoptosis via active p53 and mitochondrial apoptotic pathways that JNK inhibition is involved.
Collapse
|
15
|
Kim MO, Lee HS, Chin YW, Moon DO, Ahn JS. Gartanin induces autophagy through JNK activation which extenuates caspase-dependent apoptosis. Oncol Rep 2015; 34:139-46. [PMID: 25955534 DOI: 10.3892/or.2015.3948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/08/2015] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Development of novel agents to eradicate liver cancer cells is required for treatment of HCC. Gartanin, a xanthone-type compound isolated from mangosteen, is known to possess potent antioxidant, anti-inflammatory, antifungal and antineoplastic properties. In the present study, we investigated the cytotoxic effect of gartanin on HCC and explored the cell death mechanism. We showed that gartanin induced both the extrinsic and intrinsic apoptotic pathways, which were interconnected by caspase-8, -9 and -3 activation. We also provided convincing evidence that gartanin induced autophagy in various cancer cells, as demonstrated by acridine orange staining of intracellular acidic vesicles, the degradation of p62, the conversion of LC3-I to LC3-II and GFP-LC3 punctate fluorescence. Additionally, gartanin induced the formation of typical autophagosomes and autolysosomes and enhanced the degradation rate of intracellular granule(s), including mitochondria. Notably, gartanin-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitors (3-methyladenine and bafilomycin A1) or small interfering RNAs against the autophagic genes (Atg5). These findings suggested that gartanin-mediated autophagic response protected against eventual cell death induced by gartanin. Moreover, gartanin treatment led to phosphorylation/activation of JNK and JNK-dependent phosphorylation of Bcl-2. Importantly, JNK inhibitor (SP600125) inhibited autophagy yet promoted gartanin-induced apoptosis, indicating a key requirement of the JNK-Bcl-2 pathway in the activation of autophagy by gartanin. Taken together, our data suggested that the JNK-Bcl-2 pathway was the critical regulator of gartanin-induced protective autophagy and a potential drug target for chemotherapeutic combination.
Collapse
Affiliation(s)
- Mun-Ock Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, ChungBuk 363‑883, Republic of Korea
| | - Hyun-Sun Lee
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, ChungBuk 363‑883, Republic of Korea
| | - Young-Won Chin
- Dongguk University-Seoul, Gyeonggi-do, Seoul 410-820, Republic of Korea
| | - Dong-Oh Moon
- Department of Biology Education, Daegu University, Gyungsan, Gyeongbuk 712-714, Republic of Korea
| | - Jong-Seog Ahn
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, ChungBuk 363‑883, Republic of Korea
| |
Collapse
|
16
|
Trivedi R, Mishra DP. Trailing TRAIL Resistance: Novel Targets for TRAIL Sensitization in Cancer Cells. Front Oncol 2015; 5:69. [PMID: 25883904 PMCID: PMC4382980 DOI: 10.3389/fonc.2015.00069] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/09/2015] [Indexed: 12/15/2022] Open
Abstract
Resistance to chemotherapeutic drugs is the major hindrance in the successful cancer therapy. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor (TNF) family of ligands, which initiates apoptosis in cancer cells through interaction with the death receptors DR4 and DR5. TRAIL is perceived as an attractive chemotherapeutic agent as it specifically targets cancer cells while sparing the normal cells. However, TRAIL therapy has a major limitation as a large number of the cancer develop resistance toward TRAIL and escape from the destruction by the immune system. Therefore, elucidation of the molecular targets and signaling pathways responsible for TRAIL resistance is imperative for devising effective therapeutic strategies for TRAIL resistant cancers. Although, various molecular targets leading to TRAIL resistance are well-studied, recent studies have implicated that the contribution of some key cellular processes toward TRAIL resistance need to be fully elucidated. These processes primarily include aberrant protein synthesis, protein misfolding, ubiquitin regulated death receptor expression, metabolic pathways, epigenetic deregulation, and metastasis. Novel synthetic/natural compounds that could inhibit these defective cellular processes may restore the TRAIL sensitivity and combination therapies with such compounds may resensitize TRAIL resistant cancer cells toward TRAIL-induced apoptosis. In this review, we have summarized the key cellular processes associated with TRAIL resistance and their status as therapeutic targets for novel TRAIL-sensitizing agents.
Collapse
Affiliation(s)
- Rachana Trivedi
- Cell Death Research Laboratory, Division of Endocrinology, CSIR-Central Drug Research Institute , Lucknow , India
| | - Durga Prasad Mishra
- Cell Death Research Laboratory, Division of Endocrinology, CSIR-Central Drug Research Institute , Lucknow , India
| |
Collapse
|
17
|
Yan F, Yu Y, Chow DC, Palzkill T, Madoux F, Hodder P, Chase P, Griffin PR, O'Malley BW, Lonard DM. Identification of verrucarin a as a potent and selective steroid receptor coactivator-3 small molecule inhibitor. PLoS One 2014; 9:e95243. [PMID: 24743578 PMCID: PMC3990629 DOI: 10.1371/journal.pone.0095243] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/24/2014] [Indexed: 12/22/2022] Open
Abstract
Members of the steroid receptor coactivator (SRC) family are overexpressed in numerous types of cancers. In particular, steroid receptor coactivator 3 (SRC-3) has been recognized as a critical coactivator associated with tumor initiation, progression, recurrence, metastasis, and chemoresistance where it interacts with multiple nuclear receptors and other transcription factors to enhance their transcriptional activities and facilitate cross-talk between pathways that stimulate cancer progression. Because of its central role as an integrator of growth signaling pathways, development of small molecule inhibitors (SMIs) against SRCs have the potential to simultaneously disrupt multiple signal transduction networks and transcription factors involved in tumor progression. Here, high-throughput screening was performed to identify compounds able to inhibit the intrinsic transcriptional activities of the three members of the SRC family. Verrucarin A was identified as a SMI that can selectively promote the degradation of the SRC-3 protein, while affecting SRC-1 and SRC-2 to a lesser extent and having no impact on CARM-1 and p300 protein levels. Verrucarin A was cytotoxic toward multiple types of cancer cells at low nanomolar concentrations, but not toward normal liver cells. Moreover, verrucarin A was able to inhibit expression of the SRC-3 target genes MMP2 and MMP13 and attenuated cancer cell migration. We found that verrucarin A effectively sensitized cancer cells to treatment with other anti-cancer drugs. Binding studies revealed that verrucarin A does not bind directly to SRC-3, suggesting that it inhibits SRC-3 through its interaction with an upstream effector. In conclusion, unlike other SRC SMIs characterized by our laboratory that directly bind to SRCs, verrucarin A is a potent and selective SMI that blocks SRC-3 function through an indirect mechanism.
Collapse
Affiliation(s)
- Fei Yan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yang Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dar-Chone Chow
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Timothy Palzkill
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Franck Madoux
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Peter Hodder
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Peter Chase
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Patrick R. Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Bert W. O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
18
|
TRAIL combinations: The new 'trail' for cancer therapy (Review). Oncol Lett 2014; 7:1327-1332. [PMID: 24765133 PMCID: PMC3997674 DOI: 10.3892/ol.2014.1922] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 01/21/2014] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) therapy is anticipated to be one of the most effective cancer treatments. However, resistance to TRAIL therapy remains a challenge facing the development of anticancer strategies. To circumvent this problem, TRAIL combinations have been experimented with for over ten years to induce synergism or sensitize resistant cancer cells. By analyzing the signaling pathways triggered by these combinations, this review has defined a set of core targets for novel combinatorial treatments. The review suggests specific pathways to be targeted together with TRAIL for more efficient treatment, including cellular FLICE inhibitory protein and its downstream survival factors, the Bcl-2 family and other prominent targets. The suggested pathways provide new avenues for more effective TRAIL-based cancer therapy.
Collapse
|
19
|
Jayasooriya RGPT, Moon DO, Park SR, Choi YH, Asami Y, Kim MO, Jang JH, Kim BY, Ahn JS, Kim GY. Combined treatment with verrucarin A and tumor necrosis factor-α sensitizes apoptosis by overexpression of nuclear factor-kappaB-mediated Fas. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:303-310. [PMID: 23708311 DOI: 10.1016/j.etap.2013.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/04/2013] [Accepted: 04/10/2013] [Indexed: 06/02/2023]
Abstract
Verrucarin A (VA) is a member of the family of macrocyclic trichothecenes, which exhibit anti-cancer and immune-modulating activities. However, VA has not yet been demonstrated to be involved in the sensitization of tumor necrosis factor-alpha (TNF-α)-mediated apoptosis. In the present study, we found that VA triggers TNF-α-induced apoptosis in human breast cancer MDA-MB-231 and MCF-7 cells. In particular, activation of caspas-3 and caspase-8 as well as release of cytochrome c were significantly enhanced in response to the combined treatment with VA and TNF-α (VA/TNF-α) and the pan-caspase inhibitor z-VAD-fmk completely reversed the apoptosis, suggesting that caspases are the main effector molecules in VA/TNF-α-induced apoptosis via the intrinsic and extrinsic pathway. Moreover, we confirmed that enhanced Fas expression plays a critical role, because the Fas-blocking antibody partially inhibited VA/TNF-α-induced apoptosis. VA also increased specific DNA-binding activity of nuclear factor-kappaB (NF-κB) via nuclear translocation of p50 and p65. In addition, pretreatment with the NF-κB inhibitor MG132 blocked VA/TNF-α-induced apoptosis by suppression of NF-κB-dependent Fas expression. These results indicated that VA enhances TNF-α-induced apoptosis via NF-κB-dependent Fas overexpression.
Collapse
Affiliation(s)
| | - Dong-Oh Moon
- Department of Biology Education, Daegu University, Jillyang, Gyeongsan, Gyeongbuk 712-714, Republic of Korea
| | - Sang Rul Park
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Ara-1 dong, Jeju 690-756, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 614-050, Republic of Korea
| | - Yukihiro Asami
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk 363-883, Republic of Korea
| | - Mun-Ock Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk 363-883, Republic of Korea
| | - Jae-Hyuk Jang
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk 363-883, Republic of Korea
| | - Bo Yeon Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk 363-883, Republic of Korea
| | - Jong Seog Ahn
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk 363-883, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Ara-1 dong, Jeju 690-756, Republic of Korea.
| |
Collapse
|