1
|
Zhang TX, Li MR, Liu C, Wang SP, Yan ZG. A review of the toxic effects of ammonia on invertebrates in aquatic environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122374. [PMID: 37634564 DOI: 10.1016/j.envpol.2023.122374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Abstract
Aquatic invertebrates are the organisms most susceptible to ammonia toxicity. However, the toxic effects of ammonia on invertebrates are still poorly understood. This study reviews the research progress in ammonia toxicology for the period from 1986 to 2023, focusing on the effects on invertebrates. Through examining the toxic effects of ammonia at different levels of organization (community, individual, tissue and physiology, and molecular) as well as the results from omics studies, we determined that the most significant effects were on the reproductive capacity of invertebrates and the growth of offspring, although different populations show variation in their tolerance to ammonia, and tissues have varied potential to respond to ammonia stress. A multicomponent analysis is an in-depth technique employed in toxicological studies, as it can be used to explore the enrichment pathways and functional genes expressed under ammonia stress. This study comprehensively discusses ammonia toxicity from multiple aspects in order to provide new insights into the toxic effects of ammonia on aquatic invertebrates.
Collapse
Affiliation(s)
- Tian-Xu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ming-Rui Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shu-Ping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhen-Guang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
2
|
Dias FRP, de Souza Almeida RR, Sovrani V, Thomaz NK, Gonçalves CA, Quincozes-Santos A, Bobermin LD. Glioprotective Effects of Resveratrol Against BMAA-Induced Astroglial Dysfunctions. Neurotox Res 2022; 40:530-541. [PMID: 35320508 DOI: 10.1007/s12640-022-00492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022]
Abstract
Astroglial cells play important roles in maintaining central nervous system (CNS) homeostasis. The neurotoxin β-N-methylamino-L-alanine (BMAA) has usually been associated with neurodegeneration due to its toxic effects on neurons. However, little is known about the effects of BMAA on astroglial cells. Resveratrol, a natural polyphenol, represents a potential protective strategy against brain injuries. In the present study, we sought to investigate BMAA-induced astroglial dysfunctions and the glioprotective roles of resveratrol. BMAA did not impair astroglial cellular viability, but increased glutamate uptake, glutamate metabolism into glutamine, and reactive oxygen species production, while decreased glutathione (GSH) and superoxide dismutase (SOD)-based antioxidant defenses and triggers an inflammatory response. In contrast, resveratrol was able to prevent most of these BMAA-induced functional changes in astroglial cells. Moreover, both BMAA and resveratrol modulated the gene expression of molecular pathways associated with glutamate metabolism, redox homeostasis, and inflammatory response, which characterize their roles on astroglial functions. In this regard, BMAA downregulated adenosine receptors, peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α), phosphoinositide-3-kinase (PI3K), and Akt, while resveratrol prevented these effects and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Our study, for the first time, demonstrates that BMAA directly impacts key astroglial functions, contributing to elucidating the cellular and molecular mechanisms of this toxin in the CNS. In addition, we reinforce the glioprotective effects of resveratrol against BMAA-induced astroglial dysfunctions.
Collapse
Affiliation(s)
- Filipe Renato Pereira Dias
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rua Ramiro Barcelos, 2600 - Anexo, 90035-003, RS, Brazil
| | - Rômulo Rodrigo de Souza Almeida
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rua Ramiro Barcelos, 2600 - Anexo, 90035-003, RS, Brazil
| | - Vanessa Sovrani
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rua Ramiro Barcelos, 2600 - Anexo, 90035-003, RS, Brazil
| | - Natalie K Thomaz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rua Ramiro Barcelos, 2600 - Anexo, 90035-003, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rua Ramiro Barcelos, 2600 - Anexo, 90035-003, RS, Brazil
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rua Ramiro Barcelos, 2600 - Anexo, 90035-003, RS, Brazil
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rua Ramiro Barcelos, 2600 - Anexo, 90035-003, RS, Brazil.
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Quincozes-Santos A, Santos CL, de Souza Almeida RR, da Silva A, Thomaz NK, Costa NLF, Weber FB, Schmitz I, Medeiros LS, Medeiros L, Dotto BS, Dias FRP, Sovrani V, Bobermin LD. Gliotoxicity and Glioprotection: the Dual Role of Glial Cells. Mol Neurobiol 2021; 58:6577-6592. [PMID: 34581988 PMCID: PMC8477366 DOI: 10.1007/s12035-021-02574-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023]
Abstract
Glial cells (astrocytes, oligodendrocytes and microglia) are critical for the central nervous system (CNS) in both physiological and pathological conditions. With this in mind, several studies have indicated that glial cells play key roles in the development and progression of CNS diseases. In this sense, gliotoxicity can be referred as the cellular, molecular, and neurochemical changes that can mediate toxic effects or ultimately lead to impairment of the ability of glial cells to protect neurons and/or other glial cells. On the other hand, glioprotection is associated with specific responses of glial cells, by which they can protect themselves as well as neurons, resulting in an overall improvement of the CNS functioning. In addition, gliotoxic events, including metabolic stresses, inflammation, excitotoxicity, and oxidative stress, as well as their related mechanisms, are strongly associated with the pathogenesis of neurological, psychiatric and infectious diseases. However, glioprotective molecules can prevent or improve these glial dysfunctions, representing glial cells-targeting therapies. Therefore, this review will provide a brief summary of types and functions of glial cells and point out cellular and molecular mechanisms associated with gliotoxicity and glioprotection, potential glioprotective molecules and their mechanisms, as well as gliotherapy. In summary, we expect to address the relevance of gliotoxicity and glioprotection in the CNS homeostasis and diseases.
Collapse
Affiliation(s)
- André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| | - Camila Leite Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Rômulo Rodrigo de Souza Almeida
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Amanda da Silva
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Natalie K Thomaz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Naithan Ludian Fernandes Costa
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Becker Weber
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Izaviany Schmitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Lara Scopel Medeiros
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Lívia Medeiros
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Bethina Segabinazzi Dotto
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Filipe Renato Pereira Dias
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Vanessa Sovrani
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Sovrani V, Bobermin LD, Schmitz I, Leipnitz G, Quincozes-Santos A. Potential Glioprotective Strategies Against Diabetes-Induced Brain Toxicity. Neurotox Res 2021; 39:1651-1664. [PMID: 34258694 DOI: 10.1007/s12640-021-00393-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022]
Abstract
Astrocytes are crucial for the maintenance of brain homeostasis by actively participating in the metabolism of glucose, which is the main energy substrate for the central nervous system (CNS), in addition to other supportive functions. More specifically, astrocytes support neurons through the metabolic coupling of synaptic activity and glucose utilization. As such, diabetes mellitus (DM) and consequent glucose metabolism disorders induce astrocyte damage, affecting CNS functionality. Glioprotective molecules can promote protection by improving glial functions and avoiding toxicity in different pathological conditions, including DM. Therefore, this review discusses specific pathomechanisms associated with DM/glucose metabolism disorder-induced gliotoxicity, namely astrocyte metabolism, redox homeostasis/mitochondrial activity, inflammation, and glial signaling pathways. Studies investigating natural products as potential glioprotective strategies against these deleterious effects of DM/glucose metabolism disorders are also reviewed herein. These products include carotenoids, catechins, isoflavones, lipoic acid, polysaccharides, resveratrol, and sulforaphane.
Collapse
Affiliation(s)
- Vanessa Sovrani
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Izaviany Schmitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação Em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600 - Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil. .,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600 - Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
5
|
Gap Junction Intercellular Communication Mediates Ammonia-Induced Neurotoxicity. Neurotox Res 2015; 29:314-24. [PMID: 26646155 DOI: 10.1007/s12640-015-9581-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022]
Abstract
Astrocytes are important brain targets of ammonia, a neurotoxin implicated in the development of hepatic encephalopathy. During hyperammonemia, the pivotal role of astrocytes in brain function and homeostasis is impaired. These cells are abundantly interconnected by gap junctions (GJ), which are intercellular channels that allow the exchange of signaling molecules and metabolites. This communication may also increase cellular vulnerability during injuries, while GJ uncoupling could limit the extension of a lesion. Therefore, the current study was performed to investigate whether astrocyte coupling through GJ contributes to ammonia-induced cytotoxicity. We found that carbenoxolone (CBX), an effective GJ blocker, prevented the following effects induced by ammonia in astrocyte primary cultures: (1) decrease in cell viability and membrane integrity; (2) increase in reactive oxygen species production; (3) decrease in GSH intracellular levels; (4) GS activity; (5) pro-inflammatory cytokine release. On the other hand, CBX had no effect on C6 astroglial cells, which are poorly coupled via GJ. To our knowledge, this study provides the first evidence that GJ play a role in ammonia-induced cytotoxicity. Although more studies in vivo are required to confirm our hypothesis, our data suggest that GJ communication between astrocytes may transmit damage signals and excitotoxic components from unhealthy to normal cells, thereby contributing to the propagation of the neurotoxicity of ammonia.
Collapse
|
6
|
Bobermin LD, Hansel G, Scherer EBS, Wyse ATS, Souza DO, Quincozes-Santos A, Gonçalves CA. Ammonia impairs glutamatergic communication in astroglial cells: protective role of resveratrol. Toxicol In Vitro 2015; 29:2022-9. [PMID: 26318273 DOI: 10.1016/j.tiv.2015.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/18/2015] [Accepted: 08/22/2015] [Indexed: 01/09/2023]
Abstract
Ammonia is a key toxin in the precipitation of hepatic encephalopathy (HE), a neuropsychiatric disorder associated with liver failure. In response to ammonia, various toxic events are triggered in astroglial cells, and alterations in brain glutamate communication are common. Resveratrol is a polyphenolic compound that has been extensively studied in pathological events because it presents several beneficial effects, including some in the central nervous system (CNS). We previously described that resveratrol is able to significantly modulate glial functioning and has a protective effect during ammonia challenge in vitro. In this study, we addressed the mechanisms by which resveratrol can protect C6 astroglial cells from glutamatergic alterations induced by ammonia. Resveratrol was able to prevent all the effects triggered by ammonia: (i) decrease in glutamate uptake activity and expression of the EAAC1 glutamate transporter, the main glutamate transporter present in C6 cells; (ii) increase of glutamate release, which was also dependent on the activation of the Na(+)-K(+)-Cl(-) co-transporter NKCC1; (iii) reduction in GS activity and intracellular GSH content; and (iv) impairment of Na(+)K(+)-ATPase activity. Interestingly, resveratrol, per se, also positively modulated the astroglial functions evaluated. Moreover, we demonstrated that heme oxygenase 1 (HO1), an enzyme that is part of the cellular defense system, mediated some of the effects of resveratrol. In conclusion, the mechanisms of the putative protective role of resveratrol against ammonia toxicity involve the modulation of pathways and molecules related to glutamate communication in astroglial cells.
Collapse
Affiliation(s)
- Larissa Daniele Bobermin
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Gisele Hansel
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Emilene B S Scherer
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diogo Onofre Souza
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Boneh A. Signal transduction in inherited metabolic disorders: a model for a possible pathogenetic mechanism. J Inherit Metab Dis 2015; 38:729-40. [PMID: 25735935 DOI: 10.1007/s10545-015-9820-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/20/2015] [Accepted: 02/02/2015] [Indexed: 01/08/2023]
Abstract
Signal transduction is the process by which external or internal signals exert their intracellular biological effects and by which intracellular communication is regulated. An important component of the signalling pathway is the second messenger, which is produced upon stimulation of the cell and mediates its effects downstream through phosphorylation and dephosphorylation of target proteins. Intracellular accumulation or deficiency of metabolites that serve as second messengers, due to inborn errors of their metabolism, may lead to perturbation of signalling pathways and disruption of the balance between them, serving as a missing link between the genotype, biochemical phenotype and clinical phenotype. The main second messengers that are putatively associated with the pathogenesis of IEM are 'bioactive lipids' (complex lipids and long-chain fatty acids), 'calcium', 'stress' (osmotic, reactive oxygen/nitorgen species, misfolded proteins and others) and 'metabolic' (AMP/ATP ratio, leucine, glutamine). They act through protein kinase C, calcium dependent kinases (CamK) and phosphatase (CN), 'stress-mediated' kinases (MAPK) and AMP/ATP-dependent kinase (AMPK). These signalling pathways lead to cell proliferation, inflammatory response, autophagy (and mitophagy) and apoptosis, suggesting that there are only few final common pathways involved in this pathogenetic mechanism. Questions remain regarding the complexity of the effects of the accumulating metabolites on different signalling pathways, and regarding the relative role and origin of 'proxy' second messengers such as reactive oxygen species. A better understanding of the signalling pathways in IEM may enhance the development of novel therapies in situations where normalising intracellular concentrations of the second messenger is impossible or impractical.
Collapse
Affiliation(s)
- Avihu Boneh
- Metabolic Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Vic, 3052, Melbourne, Australia,
| |
Collapse
|
8
|
Santos CL, Bobermin LD, Souza DG, Bellaver B, Bellaver G, Arús BA, Souza DO, Gonçalves CA, Quincozes-Santos A. Lipoic acid and N-acetylcysteine prevent ammonia-induced inflammatory response in C6 astroglial cells: The putative role of ERK and HO1 signaling pathways. Toxicol In Vitro 2015; 29:1350-7. [PMID: 26043815 DOI: 10.1016/j.tiv.2015.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/03/2015] [Accepted: 05/30/2015] [Indexed: 02/05/2023]
Abstract
Hyperammonemia induces significant changes in the central nervous system (CNS) in direct association with astroglial functions, such as oxidative damage, glutamatergic excitotoxicity, and impaired glutamine synthetase (GS) activity and pro-inflammatory cytokine release. Classically, lipoic acid (LA) and N-acetylcysteine (NAC) exhibit antioxidant and anti-inflammatory activities by increasing glutathione (GSH) biosynthesis and decreasing pro-inflammatory mediator levels in glial cells. Thus, we evaluated the protective effects of LA and NAC against ammonia cytotoxicity in C6 astroglial cells. Ammonia decreased GSH levels and increased cytokine release and NFκB transcriptional activation. LA and NAC prevented these effects by the modulation of ERK and HO1 pathways. Taken together, these observations show that LA and NAC prevent the ammonia-induced inflammatory response.
Collapse
Affiliation(s)
- Camila Leite Santos
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Débora Guerini Souza
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruna Bellaver
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Bellaver
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bernardo Assein Arús
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Bobermin LD, Wartchow KM, Flores MP, Leite MC, Quincozes-Santos A, Gonçalves CA. Ammonia-induced oxidative damage in neurons is prevented by resveratrol and lipoic acid with participation of heme oxygenase 1. Neurotoxicology 2015; 49:28-35. [PMID: 26003724 DOI: 10.1016/j.neuro.2015.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/29/2022]
Abstract
Ammonia is a metabolite that, at high concentrations, is implicated in neurological disorders, such as hepatic encephalopathy (HE), which is associated with acute or chronic liver failure. Astrocytes are considered the primary target of ammonia toxicity in the central nervous system (CNS) because glutamine synthetase (GS), responsible for ammonia metabolism in CNS, is an astrocytic enzyme. Thus, neuronal dysfunction has been associated as secondary to astrocytic impairment. However, we demonstrated that ammonia can induce direct effects on neuronal cells. The cell viability was decreased by ammonia in SH-SY5Y cells and cerebellar granule neurons. In addition, ammonia induced increased reactive oxygen species (ROS) production and decreased GSH intracellular content, the main antioxidant in CNS. As ammonia neurotoxicity is strongly associated with oxidative stress, we also investigated the potential neuroprotective roles of the antioxidants, resveratrol (RSV) and lipoic acid (LA), against ammonia toxicity in cerebellar granule neurons. RSV and LA were able to prevent the oxidative damage induced by ammonia, maintaining the levels of ROS production and GSH close to basal values. Both antioxidants also decreased ROS production and increased GSH content under basal conditions (in the absence of ammonia). Moreover, we showed that heme oxygenase 1 (HO1), a protein associated with protection against stress conditions, is involved in the beneficial effects of RSV and LA in cerebellar granule neurons. Thus, this study reinforces the neuroprotective effects of RSV and LA. Although more studies in vivo are required, RSV and LA could represent interesting therapeutic strategies for the management of HE.
Collapse
Affiliation(s)
- Larissa Daniele Bobermin
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Krista Minéia Wartchow
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marianne Pires Flores
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marina Concli Leite
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
10
|
Ramalingam M, Kim SJ. Insulin involved Akt/ERK and Bcl-2/Bax pathways against oxidative damages in C6 glial cells. J Recept Signal Transduct Res 2014; 36:14-20. [DOI: 10.3109/10799893.2014.970276] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Jiang S, Zhu W, Wu J, Li C, Zhang X, Li Y, Cao K, Liu L. α-Lipoic acid protected cardiomyoblasts from the injury induced by sodium nitroprusside through ROS-mediated Akt/Gsk-3β activation. Toxicol In Vitro 2014; 28:1461-73. [PMID: 25193743 DOI: 10.1016/j.tiv.2014.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 07/05/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
It has been long noted that cardiac cell apoptosis provoked by excessive production of nitric oxide (NO) plays important roles in the pathogenesis of variant cardiac diseases. Attenuation of NO-induced injury would be an alternative therapeutic approach for the development of cardiac disorders. This study investigated the effects of α-lipoic acid (LA) on the injury induced by sodium nitroprusside (SNP), a widely used NO donor, in rat cardiomyoblast H9c2 cells. SNP challenge significantly decreased cell viability and increased apoptosis, as evidenced by morphological abnormalities, nuclear condensation and decline of mitochondrial potential (ΔΨm). These changes induced by SNP were significantly attenuated by LA pretreatment. Furthermore, LA pretreatment prevented the SNP-triggered suppression of Akt and Gsk-3β activation. Blockade of Akt activation with triciribin (API) completely abolished the cytoprotection of LA against SNP challenge. In addition, LA moderately increased intracellular ROS production. Interestingly, inhibition of ROS with N-acetylcysteine abrogated Akt/Gsk-3β activation and the LA-induced cytoprotection following SNP stimulation. Taken together, the results indicate that LA protected the SNP-induced injury in cardiac H9c2 cells through, at least in part, the activation of Akt/Gsk-3β signaling in a ROS-dependent mechanism.
Collapse
Affiliation(s)
- Surong Jiang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Department of Cardiology, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Weina Zhu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Jun Wu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Johnson City, TN 37614, United States
| | - Xiaojin Zhang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Yuehua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing 210029, China
| | - Kejiang Cao
- Department of Cardiology, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Li Liu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
12
|
Ramalingam M, Kim SJ. The role of insulin against hydrogen peroxide-induced oxidative damages in differentiated SH-SY5Y cells. J Recept Signal Transduct Res 2014; 34:212-20. [PMID: 24456325 DOI: 10.3109/10799893.2013.876043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Exogenous hydrogen peroxide (H2O2) can easily penetrate into biological membranes and enhance the formation of other reactive oxygen species (ROS). In the present study, we have investigated the neuroprotective effects of insulin on H2O2-induced toxicity of retinoic acid (RA)-differentiated SH-SY5Y cells. To measure the changes in the cell viability of SH-SY5Y cells at different concentrations of H2O2 for 24 h, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT)-based assay was used and a 100 µM H2O2 was selected to establish a model of H2O2-induced oxidative stress. Further assays showed that 24 h of 100 µM H2O2-induced significant changes in the levels of lactate dehydrogenase (LDH), nitric oxide (NO), ROS, and calcium ion (Ca2+) in neuronal cells, but insulin can effectively diminish the H2O2-induced oxidative damages to these cells. Moreover, cells treated with insulin increased H2O2-induced suppression of glutathione levels and exerted an apparent suppressive effect on oxidative products. The results of insulin treatment with SH-SY5Y cells increased the Bcl-2 levels and decreased the Akt levels. The treatment of insulin had played a protective effect on H2O2-induced oxidative stress related to the Akt/Bcl-2 pathways.
Collapse
Affiliation(s)
- Mahesh Ramalingam
- Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University , Seoul , Republic of Korea
| | | |
Collapse
|