1
|
Lebrun S, Chavez S, Nguyen L, Chan R. Expansion of the application domain of a macromolecular ocular irritation test (OptiSafe™). Toxicol In Vitro 2023; 86:105515. [PMID: 36351539 PMCID: PMC9802687 DOI: 10.1016/j.tiv.2022.105515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
The OptiSafe (OS) test is shelf-stable, macromolecular eye irritation test that does not include any animal ingredient or component ("vegan"). The purpose of this study was to evaluate the test's accuracy for an expanded application domain for both the original and recently updated OS method. This study involved the testing of additional ocular corrosives and previously excluded foaming agents ("surfactants") using both the original and updated OS methods and then combining these data with prior validation data for a total of 147 chemicals. Predictivity was evaluated by a statistical comparison of the OptiSafe predictions with historical in vivo "Draize" rabbit eye data for the same chemicals (from public databases). We report that for the detection of chemicals not requiring classification for eye irritation [Globally Harmonized System of Classification and Labeling of Chemicals (GHS) No Category], the accuracy, specificity, and sensitivity were 92.8%, 79.6%, and 100.0%, respectively, for the updated method; for the detection of chemicals inducing extreme eye damage/corrosion (GHS Category 1), the accuracy, specificity, and sensitivity were 79.4%, 71.8%, and 91.7%, respectively, for the updated method. Results indicate that both the original and updated methods have a high accuracy for the expanded application domain that included ocular corrosives and surfactants.
Collapse
Affiliation(s)
| | - Sara Chavez
- Lebrun Labs LLC, Anaheim, CA, United States of America
| | - Linda Nguyen
- Lebrun Labs LLC, Anaheim, CA, United States of America
| | - Roxanne Chan
- Lebrun Labs LLC, Anaheim, CA, United States of America
| |
Collapse
|
2
|
Development of a novel ex vivo model for chemical ocular toxicity assessment and its applicability for hair straightening products. Food Chem Toxicol 2022; 170:113457. [DOI: 10.1016/j.fct.2022.113457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
|
3
|
Krakowian D, Gądarowska D, Daniel-Wójcik A, Mrzyk I. Cytotoxicity assay to assess eye irritation – A comparison with other methods and possible strategies for use. Toxicol In Vitro 2022; 81:105343. [DOI: 10.1016/j.tiv.2022.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 11/27/2022]
|
4
|
Bonneau N, Baudouin C, Réaux-Le Goazigo A, Brignole-Baudouin F. An overview of current alternative models in the context of ocular surface toxicity. J Appl Toxicol 2021; 42:718-737. [PMID: 34648674 DOI: 10.1002/jat.4246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 11/06/2022]
Abstract
The 21st century has seen a steadily increasing social awareness of animal suffering, with increased attention to ethical considerations. Developing new integrated approaches to testing and assessment (IATA) strategies is an Organisation for Economic Co-operation and Development (OECD) goal to reduce animal testing. Currently, there is a lack of alternative models to test for ocular surface toxicity (aside from irritation) in lieu of the Draize eye irritation test (OECD guideline No. 405) performed in rabbits. Five alternative in vitro or ex vivo methods have been validated to replace this reference test, but only in combination. However, pathologies like Toxicity-Induced Dry Eye (TIDE), cataract, glaucoma, and neuropathic pain can occur after exposure to a pharmaceutical product or chemical and therefore need to be anticipated. To do so, new models of lacrimal glands, lens, and neurons innervating epithelia are required. These models must take into account real-life exposure (dose, time, and tear film clearance). The scientific community is working hard to develop new, robust, alternative, in silico, and in vitro models, while attempting to balance ethics and availability of biological materials. This review provides a broad overview of the validated methods for analyzing ocular irritation and those still used by some industries, as well as promising models that need to be optimized according to the OECD. Finally, we give an overview of recently developed innovative models, which could become new tools in the evaluation of ocular surface toxicity within the scope of IATAs.
Collapse
Affiliation(s)
- Noémie Bonneau
- Sorbonne Université, INSERM, CNRS, IHU FOReSight, Institut de la Vision, Paris, France.,Horus Pharma, Saint-Laurent-du-Var, France
| | - Christophe Baudouin
- Sorbonne Université, INSERM, CNRS, IHU FOReSight, Institut de la Vision, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, IHU FOReSight, Paris, France.,Université Versailles-Saint-Quentin-en-Yvelines, Hôpital Ambroise Paré, APHP, Boulogne-Billancourt, France
| | | | - Françoise Brignole-Baudouin
- Sorbonne Université, INSERM, CNRS, IHU FOReSight, Institut de la Vision, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, IHU FOReSight, Paris, France.,Laboratoire d'Ophtalmobiologie, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, IHU FOReSight, Paris, France.,Université de Paris, Faculté de Pharmacie de Paris, Département de Toxicologie, Paris, France
| |
Collapse
|
5
|
Irimia T, Dinu-Pîrvu CE, Ghica MV, Lupuleasa D, Muntean DL, Udeanu DI, Popa L. Chitosan-Based In Situ Gels for Ocular Delivery of Therapeutics: A State-of-the-Art Review. Mar Drugs 2018; 16:E373. [PMID: 30304825 PMCID: PMC6212818 DOI: 10.3390/md16100373] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/01/2018] [Accepted: 10/06/2018] [Indexed: 11/16/2022] Open
Abstract
Ocular in situ gels are a promising alternative to overcome drawbacks of conventional eye drops because they associate the advantages of solutions such as accuracy and reproducibility of dosing, or ease of administration with prolonged contact time of ointments. Chitosan is a natural polymer suitable for use in ophthalmic formulations due to its biocompatibility, biodegradability, mucoadhesive character, antibacterial and antifungal properties, permeation enhancement and corneal wound healing effects. The combination of chitosan, pH-sensitive polymer, with other stimuli-responsive polymers leads to increased mechanical strength of formulations and an improved therapeutic effect due to prolonged ocular contact time. This review describes in situ gelling systems resulting from the association of chitosan with various stimuli-responsive polymers with emphasis on the mechanism of gel formation and application in ophthalmology. It also comprises the main techniques for evaluation of chitosan in situ gels, along with requirements of safety and ocular tolerability.
Collapse
Affiliation(s)
- Teodora Irimia
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Dumitru Lupuleasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Daniela-Lucia Muntean
- Department of Analytical Chemistry and Analysis of Medicines, Faculty of Pharmacy, University of Medicine and Pharmacy of Târgu Mureş, Târgu Mureş 540138, Romania.
| | - Denisa Ioana Udeanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| |
Collapse
|
6
|
da Silva ACG, Chialchia AR, de Ávila RI, Valadares MC. Mechanistic-based non-animal assessment of eye toxicity: Inflammatory profile of human keratinocytes cells after exposure to eye damage/irritant agents. Chem Biol Interact 2018; 292:1-8. [DOI: 10.1016/j.cbi.2018.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/11/2018] [Accepted: 06/24/2018] [Indexed: 11/29/2022]
|
7
|
Ophthalmic gels: Past, present and future. Adv Drug Deliv Rev 2018; 126:113-126. [PMID: 29288733 DOI: 10.1016/j.addr.2017.12.017] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/06/2017] [Accepted: 12/22/2017] [Indexed: 11/21/2022]
Abstract
Aqueous gels formulated using hydrophilic polymers (hydrogels) along with those based on stimuli responsive polymers (in situ gelling or gel forming systems) continue to attract increasing interest for various eye health-related applications. They allow the incorporation of a variety of ophthalmic pharmaceuticals to achieve therapeutic levels of drugs and bioactives at target ocular sites. The integration of sophisticated drug delivery technologies such as nanotechnology-based ones with intelligent and environment responsive systems can extend current treatment duration to provide more clinically relevant time courses (weeks and months instead of hours and days) which will inevitably reduce dose frequency, increase patient compliance and improve clinical outcomes. Novel applications and design of contact lenses and intracanalicular delivery devices along with the move towards integrating gels into various drug delivery devices like intraocular pumps, injections and implants has the potential to reduce comorbidities caused by glaucoma, corneal keratopathy, cataract, diabetic retinopathies and age-related macular degeneration. This review describes ophthalmic gelling systems with emphasis on mechanism of gel formation and application in ophthalmology. It provides a critical appraisal of the techniques and methods used in the characterization of ophthalmic preformed gels and in situ gelling systems along with a thorough insight into the safety and biocompatibility of these systems. Newly developed ophthalmic gels, hydrogels, preformed gels and in situ gelling systems including the latest in the area of stimuli responsive gels, molecularly imprinted gels, nanogels, 3D printed hydrogels; 3D printed devices comprising ophthalmic gels are covered. Finally, new applications of gels in the production of artificial corneas, corneal wound healing and hydrogel contact lenses are described.
Collapse
|
8
|
Assessment of the eye irritation potential of chemicals: A comparison study between two test methods based on human 3D hemi-cornea models. Toxicol In Vitro 2015; 30:561-8. [PMID: 26362509 DOI: 10.1016/j.tiv.2015.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 09/02/2015] [Accepted: 09/06/2015] [Indexed: 11/21/2022]
Abstract
We have recently developed two hemi-cornea models (Bartok et al., Toxicol in Vitro 29, 72, 2015; Zorn-Kruppa et al. PLoS One 9, e114181, 2014), which allow the correct prediction of eye irritation potential of chemicals according to the United Nations globally harmonized system of classification and labeling of chemicals (UN GHS). Both models comprise a multilayered epithelium and a stroma with embedded keratocytes in a collagenous matrix. These two models were compared, using a set of fourteen test chemicals. Their effects after 10 and 60 minutes (min) exposure were assessed from the quantification of cell viability using the MTT reduction assay. The first approach separately quantifies the damage inflicted to the epithelium and the stroma. The second approach quantifies the depth of injury by recording cell death as a function of depth. The classification obtained by the two models was compared to the Draize rabbit eye test and an ex vivo model using rabbit cornea (Jester et al. Toxicol in Vitro. 24, 597-604, 2010). With a 60 min exposure, both of our models are able to clearly differentiate UN GHS Category 1 and UN GHS Category 2 test chemicals.
Collapse
|