1
|
Development and Challenges of Diclofenac-Based Novel Therapeutics: Targeting Cancer and Complex Diseases. Cancers (Basel) 2022; 14:cancers14184385. [PMID: 36139546 PMCID: PMC9496891 DOI: 10.3390/cancers14184385] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Diclofenac is a widely used drug for its anti-inflammatory and pain alleviating properties. This review summarizes the current understanding about the drug diclofenac. The potential applications of diclofenac beyond its well-known anti-inflammatory properties for other diseases such as cancer are discussed, along with existing limitations. Abstract Diclofenac is a highly prescribed non-steroidal anti-inflammatory drug (NSAID) that relieves inflammation, pain, fever, and aches, used at different doses depending on clinical conditions. This drug inhibits cyclooxygenase-1 and cyclooxygenase-2 enzymes, which are responsible for the generation of prostaglandin synthesis. To improve current diclofenac-based therapies, we require new molecular systematic therapeutic approaches to reduce complex multifactorial effects. However, the critical challenge that appears with diclofenac and other drugs of the same class is their side effects, such as signs of stomach injuries, kidney problems, cardiovascular issues, hepatic issues, and diarrhea. In this article, we discuss why defining diclofenac-based mechanisms, pharmacological features, and its medicinal properties are needed to direct future drug development against neurodegeneration and imperfect ageing and to improve cancer therapy. In addition, we describe various advance molecular mechanisms and fundamental aspects linked with diclofenac which can strengthen and enable the better designing of new derivatives of diclofenac to overcome critical challenges and improve their applications.
Collapse
|
2
|
Järvinen E, Deng F, Kiander W, Sinokki A, Kidron H, Sjöstedt N. The Role of Uptake and Efflux Transporters in the Disposition of Glucuronide and Sulfate Conjugates. Front Pharmacol 2022; 12:802539. [PMID: 35095509 PMCID: PMC8793843 DOI: 10.3389/fphar.2021.802539] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Glucuronidation and sulfation are the most typical phase II metabolic reactions of drugs. The resulting glucuronide and sulfate conjugates are generally considered inactive and safe. They may, however, be the most prominent drug-related material in the circulation and excreta of humans. The glucuronide and sulfate metabolites of drugs typically have limited cell membrane permeability and subsequently, their distribution and excretion from the human body requires transport proteins. Uptake transporters, such as organic anion transporters (OATs and OATPs), mediate the uptake of conjugates into the liver and kidney, while efflux transporters, such as multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP), mediate expulsion of conjugates into bile, urine and the intestinal lumen. Understanding the active transport of conjugated drug metabolites is important for predicting the fate of a drug in the body and its safety and efficacy. The aim of this review is to compile the understanding of transporter-mediated disposition of phase II conjugates. We review the literature on hepatic, intestinal and renal uptake transporters participating in the transport of glucuronide and sulfate metabolites of drugs, other xenobiotics and endobiotics. In addition, we provide an update on the involvement of efflux transporters in the disposition of glucuronide and sulfate metabolites. Finally, we discuss the interplay between uptake and efflux transport in the intestine, liver and kidneys as well as the role of transporters in glucuronide and sulfate conjugate toxicity, drug interactions, pharmacogenetics and species differences.
Collapse
Affiliation(s)
- Erkka Järvinen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Feng Deng
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wilma Kiander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alli Sinokki
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Carvacrol exerts nephroprotective effect in rat model of diclofenac-induced renal injury through regulation of oxidative stress and suppression of inflammatory response. Heliyon 2021; 7:e08358. [PMID: 34816045 PMCID: PMC8591494 DOI: 10.1016/j.heliyon.2021.e08358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/27/2021] [Accepted: 11/05/2021] [Indexed: 12/02/2022] Open
Abstract
Diclofenac (DIC) is an NSAID that can cause toxic effects in animals and humans and carvacrol (CAR) is a monoterpene compound that displays effective pharmacological and biological actions. The purpose of this work was to assess the influences of CAR on DIC-induced renal injury and oxidative stress in male rats. The rats were segregated into four groups. Group 1, control group; Group 2 received DIC-only; Groups 3, received CAR-only and group 4 received DIC plus CAR. Changes in biochemical indexes, pathological changes, molecular biological indexes, and genes related to the inflammation of main organs were evaluated. The results of this work indicated that the amounts of the serum protein carbonyl, sGOT, sGPT, urea, creatinine, uric acid, nitrite content, MDA, serum TNF-α, and renal TNF-α gene expression were remarkably increased and the levels of the GPx, GSH, CAT, and SOD were significantly reduced in DIC-only treated animals compared to the control group. On the other hand, treatment with CAR after exposure to DIC led to significant improvements in abnormalities of DIC-induced renal injury and serum biochemical factors. The data approve that CAR diminished the deleterious effects of DIC exposure. In this regard, the findings of this study indicated that the administration of CAR could alleviate the noxious effects of DIC on the antioxidant defense system and renal tissue.
Collapse
|
4
|
Sathishkumar P, Mohan K, Meena RAA, Balasubramanian M, Chitra L, Ganesan AR, Palvannan T, Brar SK, Gu FL. Hazardous impact of diclofenac on mammalian system: Mitigation strategy through green remediation approach. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126135. [PMID: 34157463 DOI: 10.1016/j.jhazmat.2021.126135] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/24/2021] [Accepted: 05/12/2021] [Indexed: 05/22/2023]
Abstract
Diclofenac is an anti-inflammatory drug used as an analgesic. It is often detected in various environmental sources around the world and is considered as one of the emerging contaminants (ECs). This paper reviews the distribution of diclofenac at high concentrations in diverse environments and its adverse ecological impact. Recent studies observed strong evidence of the hazardous effect of diclofenac on mammals, including humans. Diclofenac could cause gastrointestinal complications, neurotoxicity, cardiotoxicity, hepatotoxicity, nephrotoxicity, hematotoxicity, genotoxicity, teratogenicity, bone fractures, and skin allergy in mammals even at a low concentration. Collectively, this comprehensive review relates the mode of toxicity, level of exposure, and route of administration as a unique approach for addressing the destructive consequence of diclofenac in mammalian systems. Finally, the mitigation strategy to eradicate the diclofenac toxicity through green remediation is critically discussed. This review will undoubtedly shed light on the toxic effects of pseudo-persistent diclofenac on mammals as well as frame stringent guidelines against its common usage.
Collapse
Affiliation(s)
- Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, PR China
| | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India
| | | | - Murugesan Balasubramanian
- Department of Biotechnology, K.S. Rangasamy College of Technology, Tiruchengode 637 215, Tamil Nadu, India
| | - Loganathan Chitra
- Department of Biochemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Abirami Ramu Ganesan
- Group of Fermentation and Distillation, Laimburg Research Center, Vadena (BZ), Italy
| | | | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Heidarian E, Nouri A. Hepatoprotective effects of silymarin against diclofenac-induced liver toxicity in male rats based on biochemical parameters and histological study. Arch Physiol Biochem 2021; 127:112-118. [PMID: 31165636 DOI: 10.1080/13813455.2019.1620785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diclofenac (DIC) is a phenyl acetic acid derivative which is well known for its analgesic and anti-inflammatory. In our study, the rats were divided into four groups. Group 1, control group; Group 2 received DIC-only; Groups 3 and 4 received DIC plus silymarin. The results showed that levels of CAT, SOD, GPx and GSH significantly reduced and levels of ALT, AST, ALP, total bilirubin, nitrite content, MDA, serum TNF-α and TNF-α gene expression were significantly elevated in second group compared to control group. In other hand, treatment with silymarin resulted in a significant elevation in CAT, SOD, GPx, GSH and a significant reduction in MDA, ALT, AST, ALP, total bilirubin, nitrite content, serum TNF-α, and gene expression of TNF-α in comparison with second group. Histopathological injuries were also improved by silymarin administration. The results confirm that silymarin has a protective effect on DIC-induced liver toxicity and oxidative stress in male rats.
Collapse
Affiliation(s)
- Esfandiar Heidarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Nouri
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
6
|
Moradi A, Abolfathi M, Javadian M, Heidarian E, Roshanmehr H, Khaledi M, Nouri A. Gallic Acid Exerts Nephroprotective, Anti-Oxidative Stress, and Anti-Inflammatory Effects Against Diclofenac-Induced Renal Injury in Malerats. Arch Med Res 2020; 52:380-388. [PMID: 33358172 DOI: 10.1016/j.arcmed.2020.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/24/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIM Diclofenac (DIC) is a Nonsteroidal anti-inflammatory drug (NSAID) and consumption of this drug creates side effects such as renal injury. The purpose of this work was to assess the influences of gallic acid (GA) on DIC-induced renal injury in rats. MATERIAL AND METHODS Rats were segregated into five groups. Group 1, control group; Group 2 received DIC-only (50 mg/kg bw, i.p.) for 7 consecutive days; Groups 3, received GA-only (100 mg/kg bw, po) for 7 consecutive days; group 4 received DIC (50 mg/kg bw, i.p.) plus GA (50 mg/kg, po) for 7 consecutive days and group 5 received DIC (50 mg/kg bw, i.p.) plus GA (100 mg/kg, po) for 7 consecutive days. RESULTS The data indicated that the levels of the serum protein carbonyl, sGOT, sGPT, urea, creatinine, uric acid, nitrite content, MDA, serum IL-1β, and the renal IL-1β gene expression were remarkably increased in DIC-only treated animals compared to control group. In the other hand, treatment with gallic acid led to significant improvements in abnormalities of DIC-induced oxidative stress and serum biochemical parameters. Histological changes were also ameliorated by GA oral administration. CONCLUSION The results indicated that oral injection of GA could alleviate the noxious effects of DIC on the antioxidant defense system and renal tissue.
Collapse
Affiliation(s)
- Alireza Moradi
- Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Abolfathi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahsa Javadian
- Medical Plant Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Esfandiar Heidarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hoshang Roshanmehr
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mansoor Khaledi
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Ali Nouri
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Esmaeilzadeh M, Heidarian E, Shaghaghi M, Roshanmehr H, Najafi M, Moradi A, Nouri A. Gallic acid mitigates diclofenac-induced liver toxicity by modulating oxidative stress and suppressing IL-1β gene expression in male rats. PHARMACEUTICAL BIOLOGY 2020; 58:590-596. [PMID: 32633182 PMCID: PMC7470116 DOI: 10.1080/13880209.2020.1777169] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/28/2020] [Indexed: 05/20/2023]
Abstract
CONTEXT Diclofenac (DIC) is an NSAID and consumption of this drug creates side effects such as liver injury. Gallic acid (GA), a natural component of many plants, is used as an antioxidant agent. OBJECTIVE This study assesses the hepatoprotective effects of GA in the rat model of DIC-induced liver toxicity. MATERIALS AND METHODS In this research, the male Wistar rats were separated into five groups (n = 6). Group 1, control, received normal saline (1 mL/kg bw, i.p.); Group 2 received DIC-only (50 mg/kg bw, i.p.); Groups 3, received DIC (50 mg/kg bw, i.p.) plus silymarin (100 mg/kg bw, po), groups 4 and 5 received DIC (50 mg/kg bw, i.p.) plus GA (50 and 100 mg/kg, po, respectively). RESULTS The data demonstrated that the liver levels of the GSH, GPx, SOD, and CAT significantly reduced and the levels of the serum protein carbonyl, AST, ALP, ALT, total bilirubin, MDA, serum IL-1β, and the liver IL-1β gene expression were remarkably increased in the second group compared to control group. On the other hand, treatment with GA led to a significant elevation in GSH, GPx, SOD, CAT, and a significant decrease in protein carbonyl, AST, ALP, ALT, total bilirubin, MDA, serum IL-1β, and gene expression of IL-1β in comparison with the second group. Histological changes were also ameliorated by GA oral administration. Discussion and Conclusions: The data show that the oral administration of GA could alleviate the noxious effects of DIC on the antioxidant defense system and liver tissue.
Collapse
Affiliation(s)
| | - Esfandiar Heidarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrnoosh Shaghaghi
- Department of Biology, Faculty of Basic Science, Tehran Payamenoor University, Tehran, Iran
| | - Hoshang Roshanmehr
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Najafi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Moradi
- Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Nouri
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- CONTACT Ali Nouri , Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Ikeyama Y, Sato T, Takemura A, Sekine S, Ito K. Hypoxia/reoxygenation exacerbates drug-induced cytotoxicity by opening mitochondrial permeability transition pore: Possible application for toxicity screening. Toxicol In Vitro 2020; 67:104889. [PMID: 32417306 DOI: 10.1016/j.tiv.2020.104889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022]
Abstract
Recently, mitochondrial dysfunction is thought of as an important factor leading to a drug-induced liver injury. Our previous reports show that mitochondria-related toxicity, including respiratory chain inhibition (RCI) and reactive oxygen species (ROS) induction, can be detected by the modification of sugar resource substitution and high oxygen condition. However, this in vitro model does not detect mitochondrial permeability transition (MPT)-induced toxicity. Another study with a lipopolysaccharide-pre-administered rodent model showed that ischemia/reperfusion induced ROS, sensitized the susceptibility of MPT pore opening and, finally developed drug-induced liver toxicity. Based on this result, the present study investigated the effect of hypoxia/reoxygenation (H/R) treatment mimicking the ischemia/reperfusion on MPT-dependent toxicity, aiming to construct a system that can evaluate MPT by drugs in hepatocytes. Mitochondrial ROS were enhanced by H/R treatment only in the galactose culture condition. Amiodarone, benzbromarone, flutamide and troglitazone which induced MPT pore opening led to hepatocyte death only in combination with H/R and galactose. Moreover, this alteration was significantly suppressed in hepatocytes lacking cyclophilin D. In conclusion, MPT-induced cytotoxicity can be detected by activating mitochondrial function and H/R. This cell-based assay system could evaluate MPT induced-cytotoxicity by drugs, besides RCI and ROS induction.
Collapse
Affiliation(s)
- Yugo Ikeyama
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Tomoyuki Sato
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Akinori Takemura
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Shuichi Sekine
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Kousei Ito
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
9
|
Ramezannezhad P, Nouri A, Heidarian E. Silymarin mitigates diclofenac-induced liver toxicity through inhibition of inflammation and oxidative stress in male rats. JOURNAL OF HERBMED PHARMACOLOGY 2019. [DOI: 10.15171/jhp.2019.34] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Diclofenac (DIC) is one of the compounds derived from acetic acid which isknown for its anti-inflammatory and analgesic attributes. Silymarin is a flavonoid compoundwhich is derivate from Silybum marianum seeds. This research was done to assess the protectiverole of silymarin against liver toxicity induced by DIC in male rats.Methods: Randomly, 40 male Wistar rats were assigned into five groups as follows: Group 1:control group, Group 2: DIC-only treated (50 mg/kg, i.p), Group 3: silymarin-only treated (200mg/kg, p.o); Groups 4 and 5: DIC (50 mg/kg, i.p) plus silymarin (100 mg/kg and 200 mg/kg, p.o,respectively) treated. Various biochemical, molecular, and histological parameters were evaluatedin serum and tissue.Results: In the DIC-only treated group, the levels of liver glutathione peroxidase (GPx), superoxidedismutase (SOD), intracellular glutathione (GSH) and catalase (CAT) significantly diminished andthe levels of total bilirubin, alkaline phosphatase (ALP), nitrite, alanine aminotransferase (ALT),malondialdehyde (MDA), serum tumor necrosis factor-α (TNF-α), aspartate aminotransferase(AST), and TNF-α gene expression were remarkably elevated relative to control animals. In otherhands, treatment with silymarin caused a noticeable elevation in GPx, SOD, GSH, CAT and aremarkable reduction in levels of total bilirubin, ALP, nitrite content, ALT, MDA, serum TNF-α,AST and TNF-α gene expression relative to DIC-only treated group. Histopathological injurieswere also improved by silymarin administration.Conclusion: The results confirm that silymarin has an ameliorative effect on liver toxicity inducedby DIC and oxidative stress in male rats.
Collapse
Affiliation(s)
- Pantea Ramezannezhad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Nouri
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Esfandiar Heidarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
10
|
Li M, de Graaf IAM, Groothuis GMM. Precision-cut intestinal slices: alternative model for drug transport, metabolism, and toxicology research. Expert Opin Drug Metab Toxicol 2016; 12:175-90. [DOI: 10.1517/17425255.2016.1125882] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ming Li
- Pharmacokinetics, Toxicology & Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Inge A. M. de Graaf
- Pharmacokinetics, Toxicology & Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Geny M. M. Groothuis
- Pharmacokinetics, Toxicology & Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|