1
|
Api AM, Bartlett A, Belsito D, Botelho D, Bruze M, Bryant-Freidrich A, Burton GA, Cancellieri MA, Chon H, Dagli ML, Dekant W, Deodhar C, Farrell K, Fryer AD, Jones L, Joshi K, Lapczynski A, Lavelle M, Lee I, Moustakas H, Muldoon J, Penning TM, Ritacco G, Sadekar N, Schember I, Schultz TW, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. RIFM fragrance ingredient safety assessment, cyclohexanol, 2-methoxy-4-propyl-, CAS Registry Number 23950-98-3. Food Chem Toxicol 2024; 189 Suppl 1:114566. [PMID: 38467294 DOI: 10.1016/j.fct.2024.114566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Bartlett
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel for Fragrance Safety, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel for Fragrance Safety, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - A Bryant-Freidrich
- Member Expert Panel for Fragrance Safety, Pharmaceutical Sciences, Wayne State University, 42 W. Warren Ave., Detroit, MI, 48202, USA
| | - G A Burton
- Member Expert Panel for Fragrance Safety, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - H Chon
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel for Fragrance Safety, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - W Dekant
- Member Expert Panel for Fragrance Safety, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Farrell
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel for Fragrance Safety, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - H Moustakas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Muldoon
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel for Fragrance Safety, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Schember
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel for Fragrance Safety, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel for Fragrance Safety, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
2
|
Api AM, Bartlett A, Belsito D, Botelho D, Bruze M, Bryant-Freidrich A, Burton GA, Cancellieri MA, Chon H, Dagli ML, Dekant W, Deodhar C, Farrell K, Fryer AD, Jones L, Joshi K, Lapczynski A, Lavelle M, Lee I, Moustakas H, Muldoon J, Penning TM, Ritacco G, Sadekar N, Schember I, Schultz TW, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. RIFM fragrance ingredient safety assessment, 5-methyl-2-thiophenecarboxaldehyde, CAS registry number 13679-70-4. Food Chem Toxicol 2024; 183 Suppl 1:114515. [PMID: 38382871 DOI: 10.1016/j.fct.2024.114515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/23/2024]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Bartlett
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel for Fragrance Safety, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel for Fragrance Safety, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - A Bryant-Freidrich
- Member Expert Panel for Fragrance Safety, Pharmaceutical Sciences, Wayne State University, 42 W. Warren Ave., Detroit, MI, 48202, USA
| | - G A Burton
- Member Expert Panel for Fragrance Safety, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - H Chon
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel for Fragrance Safety, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - W Dekant
- Member Expert Panel for Fragrance Safety, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Farrell
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel for Fragrance Safety, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - H Moustakas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Muldoon
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel for Fragrance Safety, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Schember
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel for Fragrance Safety, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel for Fragrance Safety, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
3
|
Api AM, Belsito D, Botelho D, Bruze M, Burton GA, Cancellieri MA, Chon H, Dagli ML, Dekant W, Deodhar C, Fryer AD, Jones L, Joshi K, Kumar M, Lapczynski A, Lavelle M, Lee I, Liebler DC, Moustakas H, Muldoon J, Penning TM, Ritacco G, Romine J, Sadekar N, Schultz TW, Selechnik D, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. RIFM fragrance ingredient safety assessment, 1-oxaspiro[4.5]deca-3,6-diene, 2,6,9,10-tetramethyl-, CAS Registry Number 71078-31-4. Food Chem Toxicol 2024; 183 Suppl 1:114336. [PMID: 38065253 DOI: 10.1016/j.fct.2023.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/30/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Expert Panel for Fragrance Safety, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Expert Panel for Fragrance Safety, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - G A Burton
- Expert Panel for Fragrance Safety, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - H Chon
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Expert Panel for Fragrance Safety, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - W Dekant
- Expert Panel for Fragrance Safety, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Expert Panel for Fragrance Safety, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Kumar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Expert Panel for Fragrance Safety, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - H Moustakas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Muldoon
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Expert Panel for Fragrance Safety, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Expert Panel for Fragrance Safety, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - D Selechnik
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Expert Panel for Fragrance Safety, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
4
|
Thakkar Y, Joshi K, Hickey C, Wahler J, Wall B, Etter S, Smith B, Griem P, Tate M, Jones F, Oudraogo G, Pfuhler S, Choi C, Williams G, Greim H, Eisenbrand G, Dekant W, Api AM. OUP accepted manuscript. Mutagenesis 2022; 37:13-23. [PMID: 35302169 PMCID: PMC8976226 DOI: 10.1093/mutage/geac004] [Citation(s) in RCA: 232] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/04/2022] [Indexed: 12/04/2022] Open
Abstract
BlueScreen HC is a mammalian cell-based assay for measuring the genotoxicity and cytotoxicity of chemical compounds and mixtures. The BlueScreen HC assay has been utilized at the Research Institute for Fragrance Materials in a safety assessment program as a screening tool to prioritize fragrance materials for higher-tier testing, as supporting evidence when using a read-across approach, and as evidence to adjust the threshold of toxicological concern. Predictive values for the BlueScreen HC assay were evaluated based on the ability of the assay to predict the outcome of in vitro and in vivo mutagenicity and chromosomal damage genotoxicity assays. A set of 371 fragrance materials was assessed in the BlueScreen HC assay along with existing or newly generated in vitro and in vivo genotoxicity data. Based on a weight-of-evidence approach, the majority of materials in the data set were deemed negative and concluded not to have the potential to be genotoxic, while only a small proportion of materials were determined to show genotoxic effects in these assays. Analysis of the data set showed a combination of high positive agreement but low negative agreement between BlueScreen HC results, in vitro regulatory genotoxicity assays, and higher-tier test results. The BlueScreen HC assay did not generate any false negatives, thereby providing robustness when utilizing it as a high-throughput screening tool to evaluate the large inventory of fragrance materials. From the perspective of protecting public health, it is desirable to have no or minimal false negatives, as a false-negative result may incorrectly indicate the lack of a genotoxicity hazard. However, the assay did have a high percentage of false-positive results, resulting in poor positive predictivity of the in vitro genotoxicity test battery outcome. Overall, the assay generated 100% negative predictivity and 3.9% positive predictivity. In addition to the data set of 371 fragrance materials, 30 natural complex substances were evaluated for BlueScreen HC, Ames, and in vitro micronucleus assay, and a good correlation in all three assays was observed. Overall, while a positive result may have to be further investigated, these findings suggest that the BlueScreen HC assay can be a valuable screening tool to detect the genotoxic potential of fragrance materials and mixtures.
Collapse
Affiliation(s)
- Yax Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Blvd, Woodcliff Lake, NJ 07677, United States
- Corresponding author. Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677-7654, United States. E-mail:
| | - Kaushal Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Blvd, Woodcliff Lake, NJ 07677, United States
| | - Christina Hickey
- Firmenich, Inc., 250 Plainsboro Rd, Plainsboro Township, NJ 08536, United States
| | - Joseph Wahler
- Research Institute for Fragrance Materials, Inc., 50 Tice Blvd, Woodcliff Lake, NJ 07677, United States
- Present address: 15211 North Kierland Blvd Scottsdale, AZ 85254, United States
| | - Brian Wall
- Global Product Safety, Colgate-Palmolive Company, 909 River Rd, Piscataway, NJ 08854, United States
| | - Sylvain Etter
- Firmenich, Inc., Rue de la Bergère 7, 1242 Satigny, Switzerland
| | - Benjamin Smith
- Innovations in Food & Chemical Safety Programme, Agency for Science, Technology and Research (A*STAR), 1, #20-10 Fusionopolis Way, Connexis, North Tower, 138632, Singapore
- Singapore Institute of Food & Biotechnology Innovation, A*STAR, 1, #20-10 Fusionopolis Way, Connexis, North Tower, 138632, Singapore
| | - Peter Griem
- Symrise AG, Mühlenfeldstr 1, 37603, Holzminden, Niedersachsen, Germany
| | - Matthew Tate
- Gentronix, Alderley Edge, Macclesfield SK10 4TG, United Kingdom
| | - Frank Jones
- SC Johnson, 1525 Howe St, Racine, WI 53403, United States
| | - Gladys Oudraogo
- L'Oreal Life Sciences Research, 1, Av Eugene Schueller 93600 Aulnay sous Bois, France
| | - Stefan Pfuhler
- The Procter & Gamble Company, Mason Business Centre, Mason, OH, United States
| | | | - Gary Williams
- New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, United States
| | - Helmut Greim
- Technical University of Munich, Arcisstraße 21, 80333 München, Germany
| | - Gerhard Eisenbrand
- University of Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany (Retired)
| | - Wolfgang Dekant
- Department of Pharmacology and Toxicology of the University of Würzburg, Sanderring 2, 97070 Würzburg, Germany
| | - Anne Marie Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Blvd, Woodcliff Lake, NJ 07677, United States
| |
Collapse
|
5
|
Hung PH, Savidge M, De M, Kang JC, Healy SM, Valerio LG. In vitro and in silico genetic toxicity screening of flavor compounds and other ingredients in tobacco products with emphasis on ENDS. J Appl Toxicol 2020; 40:1566-1587. [PMID: 32662109 DOI: 10.1002/jat.4020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 12/16/2022]
Abstract
Electronic nicotine delivery systems (ENDS) are regulated tobacco products and often contain flavor compounds. Given the concern of increased use and the appeal of ENDS by young people, evaluating the potential of flavors to induce DNA damage is important for health hazard identification. In this study, alternative methods were used as prioritization tools to study the genotoxic mode of action (MoA) of 150 flavor compounds. In particular, clastogen-sensitive (γH2AX and p53) and aneugen-sensitive (p-H3 and polyploidy) biomarkers of DNA damage in human TK6 cells were aggregated through a supervised three-pronged ensemble machine learning prediction model to prioritize chemicals based on genotoxicity. In addition, in silico quantitative structure-activity relationship (QSAR) models were used to predict genotoxicity and carcinogenic potential. The in vitro assay identified 25 flavors as positive for genotoxicity: 15 clastogenic, eight aneugenic and two with a mixed MoA (clastogenic and aneugenic). Twenty-three of these 25 flavors predicted to induce DNA damage in vitro are documented in public literature to be in e-liquid or in the aerosols produced by ENDS products with youth-appealing flavors and names. QSAR models predicted 46 (31%) of 150 compounds having at least one positive call for mutagenicity, clastogenicity or rodent carcinogenicity, 49 (33%) compounds were predicted negative for all three endpoints, and remaining compounds had no prediction call. The parallel use of these predictive technologies to elucidate MoAs for potential genetic damage, hold utility as a screening strategy. This study is the first high-content and high-throughput genotoxicity screening study with an emphasis on flavors in ENDS products.
Collapse
Affiliation(s)
- Pei-Hsuan Hung
- Division of Nonclinical Science, Office of Science, Center for Tobacco Products, United States Food and Drug Administration, Silver Spring, Maryland, USA
| | - Matthew Savidge
- Division of Nonclinical Science, Office of Science, Center for Tobacco Products, United States Food and Drug Administration, Silver Spring, Maryland, USA
| | - Mamata De
- Division of Nonclinical Science, Office of Science, Center for Tobacco Products, United States Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jueichuan Connie Kang
- Division of Nonclinical Science, Office of Science, Center for Tobacco Products, United States Food and Drug Administration, Silver Spring, Maryland, USA.,US Public Health Service Commissioned Corps, Rockville, MD, USA
| | - Sheila M Healy
- Division of Nonclinical Science, Office of Science, Center for Tobacco Products, United States Food and Drug Administration, Silver Spring, Maryland, USA
| | - Luis G Valerio
- Division of Nonclinical Science, Office of Science, Center for Tobacco Products, United States Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
6
|
Kobets T, Duan JD, Brunnemann KD, Iatropoulos MJ, Etter S, Hickey C, Smith B, Williams GM. In ovo testing of flavor and fragrance materials in Turkey Egg Genotoxicity Assay (TEGA), comparison of results to in vitro and in vivo data. Food Chem Toxicol 2018; 115:228-243. [DOI: 10.1016/j.fct.2018.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
|
7
|
Al-Saleh I, Al-Rajudi T, Al-Qudaihi G, Manogaran P. Evaluating the potential genotoxicity of phthalates esters (PAEs) in perfumes using in vitro assays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:23903-23914. [PMID: 28875446 DOI: 10.1007/s11356-017-9978-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
We previously reported high levels of phthalate esters (PAEs) added as solvents or fixatives in 47 brands of perfumes. Diethyl phthalate was the most abundant compound (0.232-23,649 ppm), and 83.3% of the perfumes had levels >1 ppm, the threshold limit cited by a Greenpeace investigation. All samples had dimethyl phthalate levels higher than its threshold limit of 0.1 ppm, and 88, 38, and 7% of the perfumes had benzyl butyl phthalate, di(2-ethylhexyl) phthalate, and dibutyl phthalate levels, respectively, above their threshold limits. The role of PAEs as endocrine disruptors has been well documented, but their effect on genotoxic behavior has received little attention. We used in vitro single-cell gel electrophoresis (comet) and micronucleus (MN) assays with human lymphoblastoid TK6 cells to evaluate the genotoxic potency of 42 of the same perfumes and to determine its association with PAEs. All perfumes induced more DNA damage than a negative control (NEG), ≥ 90% of the samples caused more damage than cells treated with the vehicles possibly used in perfume's preparations such as methanol (ME) and ethanol (ET), and 11.6% of the perfumes caused more DNA damage than a positive control (hydrogen peroxide). Chromosome breakage expressed as MN frequency was higher in cells treated with 71.4, 64.3, 57.1, and 4.8% of the perfumes than in NEG, cells treated with ME or ET, and another positive control (x-rays), respectively. The genotoxic responses in the comet and MN assays were not correlated. The comet assay indicated that the damage in TK6 cells treated with five PAEs at concentrations of 0.05 and 0.2 ppm either individually or as a mixture did not differ significantly from the damage in cells treated with the perfumes. Unlike the comet assay, the sensitivity of the MN assay to PAEs was weak at both low and high concentrations, and MN frequencies were generally low. This study demonstrates for the first time the possible contribution of PAEs in perfumes to DNA damage and suggests that their use as solvents or fixatives should be regulated. Other ingredients with mutagenic/genotoxic properties, however, may also have contributed to the DNA damage. Future studies should focus on applying a series of assays that use different cellular models with various endpoints to identify the spectrum of genotoxic mechanisms involved.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital & Research Centre, PO Box: 3354, Riyadh, 11211, Saudi Arabia.
| | - Tahreer Al-Rajudi
- Environmental Health Program, King Faisal Specialist Hospital & Research Centre, PO Box: 3354, Riyadh, 11211, Saudi Arabia
| | - Ghofran Al-Qudaihi
- Environmental Health Program, King Faisal Specialist Hospital & Research Centre, PO Box: 3354, Riyadh, 11211, Saudi Arabia
| | - Pulicat Manogaran
- Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital & Research Centre, PO Box: 3354, Riyadh, 11211, Saudi Arabia
| |
Collapse
|
8
|
Groh KJ, Muncke J. In Vitro Toxicity Testing of Food Contact Materials: State-of-the-Art and Future Challenges. Compr Rev Food Sci Food Saf 2017; 16:1123-1150. [PMID: 33371616 DOI: 10.1111/1541-4337.12280] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/15/2017] [Accepted: 05/25/2017] [Indexed: 12/22/2022]
Abstract
Currently, toxicological testing of food contact materials (FCMs) is focused on single substances and their genotoxicity. However, people are exposed to mixtures of chemicals migrating from food contact articles (FCAs) into food, and toxic effects other than genotoxic damage may also be relevant. Since FCMs can be made of more than 8 thousand substances, assessing them one-by-one is very resource-consuming. Moreover, finished FCAs usually contain non-intentionally added substances (NIAS). NIAS toxicity can only be tested if a substance's chemical identity is known and if it is available as a pure chemical. Often, this is not the case. Nonetheless, regulations require safety assessments for all substances migrating from FCAs, including NIAS, hence new approaches to meet this legal obligation are needed. Testing the overall migrate or extract from an FCM/FCA is an option. Ideally, such an assessment would be performed by means of in vitro bioassays, as they are rapid and cost-effective. Here, we review the studies using in vitro bioassays to test toxicity of FCMs/FCAs. Three main categories of in vitro assays that have been applied include assays for cytotoxicity, genotoxicity, and endocrine disruption potential. In addition, we reviewed studies with small multicellular animal-based bioassays. Our overview shows that in vitro testing of FCMs is in principle feasible. We discuss future research needs and FCM-specific challenges. Sample preparation procedures need to be optimized and standardized. Further, the array of in vitro tests should be expanded to include those of highest relevance for the most prevalent human diseases of concern.
Collapse
Affiliation(s)
- Ksenia J Groh
- Food Packaging Forum Foundation, Staffelstrasse 8, CH-8045, Zürich, Switzerland
| | - Jane Muncke
- Food Packaging Forum Foundation, Staffelstrasse 8, CH-8045, Zürich, Switzerland
| |
Collapse
|
9
|
Severin I, Souton E, Dahbi L, Chagnon MC. Use of bioassays to assess hazard of food contact material extracts: State of the art. Food Chem Toxicol 2017; 105:429-447. [PMID: 28476634 DOI: 10.1016/j.fct.2017.04.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/10/2017] [Accepted: 04/29/2017] [Indexed: 01/17/2023]
Abstract
This review focuses on the use of in vitro bioassays for the hazard assessment of food contact materials (FCM) as a relevant strategy, in complement to analytical methods. FCM may transfer constituents to foods, not always detected by analytical chemistry, resulting in low but measurable human exposures. Testing FCM extracts with bioassays represents the biological response of a combination of substances, able to be released from the finished materials. Furthermore, this approach is particularly useful regarding the current risk assessment challenges with unpredicted/unidentified non-intentionally added substances (NIAS) that can be leached from the FCM in the food. Bioassays applied to assess hazard of different FCM types are described for, to date, the toxicological endpoints able to be expressed at low levels; cytotoxicity, genotoxicity and endocrine disruption potential. The bioassay strengths and relative key points needed to correctly use and improve the performance of bioassays for an additional FCM risk assessment is developed. This review compiles studies showing that combining both chemical and toxicological analyses presents a very promising and pragmatic tool for identifying new undesirable NIAS (not predicted) which can represent a great part of the migrating substances and/or "cocktail effect".
Collapse
Affiliation(s)
- Isabelle Severin
- Derttech « Packtox », University of Bourgogne Franche-Comté, INSERM LNC UMR 1231, AgroSupDijon, F-21000 Dijon, France
| | - Emilie Souton
- Derttech « Packtox », University of Bourgogne Franche-Comté, INSERM LNC UMR 1231, AgroSupDijon, F-21000 Dijon, France
| | - Laurence Dahbi
- Derttech « Packtox », University of Bourgogne Franche-Comté, INSERM LNC UMR 1231, AgroSupDijon, F-21000 Dijon, France
| | - Marie Christine Chagnon
- Derttech « Packtox », University of Bourgogne Franche-Comté, INSERM LNC UMR 1231, AgroSupDijon, F-21000 Dijon, France.
| |
Collapse
|