1
|
da Silva ACG, de Morais Carvalho Filho S, Valadares MC. Biological effects triggered by chemical respiratory sensitizers on THP-1 monocytic cells. Toxicol In Vitro 2023; 90:105602. [PMID: 37146919 DOI: 10.1016/j.tiv.2023.105602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/07/2023]
Abstract
Respiratory sensitization encompasses a group of diseases that manifest through airway hyperresponsiveness and airflow limitation. Although the concerns regarding human health, to date there are still no validated methods for preclinical assessment of this class of toxicants once the chemical respiratory allergy mechanistic framework is not fully understood. As Dendritic Cells (DCs) are the bridging elements between innate and adaptative immune responses, we preliminarily investigated the biological alterations triggered by seven different LMW respiratory allergens in the DC model THP-1. The results have shown that exposure to respiratory allergens promoted alterations in DCs maturation/activation status and triggered pro-inflammatory changes in these cells through increased expression for the CD86/HLA-DR/CD11c surface biomarkers and enhancement in IL-8 and IL-6 production by exposed THP-1 cells. Therefore, evidence was found to support the startpoint for chemical respiratory allergy pathogenesis elucidation, subsidizing the contribution of dendritic cells in such pathomechanisms.
Collapse
Affiliation(s)
- Artur Christian Garcia da Silva
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Sérgio de Morais Carvalho Filho
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Marize Campos Valadares
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
2
|
Zhao J, Yan S, Ma X, Song Y, Pan Y. Nrf2 regulates the activation of THP-1 cells induced by chloral hydrate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114841. [PMID: 36989555 DOI: 10.1016/j.ecoenv.2023.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Trichloroethylene (TCE) triggers a severe hypersensitivity syndrome in the occupational population dependent on dendritic cells (DCs). Chloral hydrate (CH), the major oxidative metabolite of TCE, has been proved to be the culprit causative substance of TCE-induced hypersensitivity by human patch tests. Because redox imbalance is essential for chemical sensitizers-induced maturation of DCs, we predicted that CH would activate DCs by the nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant response. This study selected THP-1 cells as the in vitro DC model, and we evaluated the cell activation markers, intracellular oxidative stress, and Nrf2 pathway related genes expression in response to CH in THP-1 cells. CH displayed significant stimulation of THP-1 cells activation, including CD54 and CD86 expression, IL-8 release, and cell migration, and damaged the redox balance by triggering ROS generation, GSH consumption, and antioxidase activities modulation. The levels of Nrf2 and its downstream genes (HO-1 and NQO1) in mRNA and protein expressions were upregulated by CH, and CH also promoted the nuclear translocation of Nrf2. Subsequently, we investigated the effects of antioxidant on Nrf2-mediated cell defense in CH treated cells. Pretreatment with curcumin dramatically reduced cell activation and oxidative stress triggered by CH in THP-1 cells. We also confirmed the specific role of Nrf2 in CH-induced cell activation using NRF2-knockout cells. Deficiency of Nrf2 inhibited cell activation and downregulated HO-1 and NQO1 expression in CH-challenged cells. These findings suggest that Nrf2-dependent redox homeostasis plays a pivotal role in CH-induced activation of THP-1 cells, thereby providing new knowledge of the allergen as well as the molecular mechanism involving in TCE-induce hypersensitivity syndrome.
Collapse
Affiliation(s)
- Jinfeng Zhao
- Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Shiyu Yan
- Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Xue Ma
- Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Yanqing Song
- Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Yao Pan
- Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China.
| |
Collapse
|
3
|
Rynikova M, Adamkova P, Hradicka P, Stofilova J, Harvanova D, Matejova J, Demeckova V. Transcriptomic Analysis of Macrophage Polarization Protocols: Vitamin D 3 or IL-4 and IL-13 Do Not Polarize THP-1 Monocytes into Reliable M2 Macrophages. Biomedicines 2023; 11:biomedicines11020608. [PMID: 36831144 PMCID: PMC9953291 DOI: 10.3390/biomedicines11020608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Two main types of macrophages (Mφ) include inflammatory (M1) and anti-inflammatory (M2) macrophages. These cells can be obtained in vitro by polarization of monocytic cell lines using various stimuli. Since there is currently no consensus on the best method for the acquisition of reliable M1 and M2 macrophages from the THP-1 cell line, we decided to compare three different polarization protocols at the transcriptomic level. Whole transcriptomes of Mφ polarized according to the chosen protocols were analyzed using RNA-seq. Differential expression of genes and functional enrichment for gene ontology terms were assessed. Compared with other protocols, M1 macrophages polarized using PMA (61.3 ng/mL) and IFN-γ along with LPS had the highest expression of M1-associated regulatory genes and genes for M1 cytokines and chemokines. According to the GO enrichment analysis, genes involved in defensive and inflammatory processes were differentially expressed in these Mφ. However, all three chosen protocols which use Vit D3, IL-13/IL-4, and IL-4, respectively, failed to promote the polarization of macrophages with a reliable M2 phenotype. Therefore, optimization or development of a new M2 polarization protocol is needed to achieve macrophages with a reliable anti-inflammatory phenotype.
Collapse
Affiliation(s)
- Maria Rynikova
- Department of Animal Physiology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
| | - Petra Adamkova
- Department of Animal Physiology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
| | - Petra Hradicka
- Department of Animal Physiology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Jana Stofilova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia
| | - Denisa Harvanova
- Associated Tissue Bank, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia
| | - Jana Matejova
- Associated Tissue Bank, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia
| | - Vlasta Demeckova
- Department of Animal Physiology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
- Correspondence:
| |
Collapse
|
4
|
Gądarowska D, Kalka J, Daniel-Wójcik A, Mrzyk I. Alternative Methods for Skin-Sensitization Assessment. TOXICS 2022; 10:740. [PMID: 36548573 PMCID: PMC9783525 DOI: 10.3390/toxics10120740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Skin sensitization is a term used to refer to the regulatory hazard known as allergic contact dermatitis (ACD) in humans or contact hypersensitivity in rodents, an important health endpoint considered in chemical hazard and risk assessments. Information on skin sensitization potential is required in various regulatory frameworks, such as the Directive of the European Parliament and the Council on Registration, Evaluation and Authorization of Chemicals (REACH). The identification of skin-sensitizing chemicals previously required the use of animal testing, which is now being replaced by alternative methods. Alternative methods in the field of skin sensitization are based on the measurement or prediction of key events (KE), i.e., (i) the molecular triggering event, i.e., the covalent binding of electrophilic substances to nucleophilic centers in skin proteins; (ii) the activation of keratinocytes; (iii) the activation of dendritic cells; (iv) the proliferation of T cells. This review article focuses on the current state of knowledge regarding the methods corresponding to each of the key events in skin sensitization and considers the latest trends in the development and modification of these methods.
Collapse
Affiliation(s)
- Dominika Gądarowska
- The Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
- Łukasiewicz Research Network—Institute of Industrial Organic Chemistry Branch Pszczyna, Doświadczalna 27, 43-200 Pszczyna, Poland
| | - Joanna Kalka
- The Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
| | - Anna Daniel-Wójcik
- Łukasiewicz Research Network—Institute of Industrial Organic Chemistry Branch Pszczyna, Doświadczalna 27, 43-200 Pszczyna, Poland
| | - Inga Mrzyk
- Łukasiewicz Research Network—Institute of Industrial Organic Chemistry Branch Pszczyna, Doświadczalna 27, 43-200 Pszczyna, Poland
| |
Collapse
|
5
|
Bezerra SF, Dos Santos Rodrigues B, da Silva ACG, de Ávila RI, Brito HRG, Cintra ER, Veloso DFMC, Lima EM, Valadares MC. Application of the adverse outcome pathway framework for investigating skin sensitization potential of nanomaterials using new approach methods. Contact Dermatitis 2020; 84:67-74. [PMID: 32683706 DOI: 10.1111/cod.13669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Currently, considerable efforts to standardize methods for accurate assessment of properties and safety aspects of nanomaterials are being made. However, immunomodulation effects upon skin exposure to nanomaterial have not been explored. OBJECTIVES To investigate the immunotoxicity of single-wall carbon nanotubes, titanium dioxide, and fullerene using the current mechanistic understanding of skin sensitization by applying the concept of adverse outcome pathway (AOP). METHODS Investigation of the ability of nanomaterials to interact with skin proteins using the micro-direct peptide reactivity assay; the expression of CD86 cell surface marker using the U937 cell activation test (OECD No. 442E/2018); and the effects of nanomaterials on modulating inflammatory response through inflammatory cytokine release by U937 cells. RESULTS The nanomaterials easily internalized into keratinocytes cells, interacted with skin proteins, and triggered activation of U937 cells by increasing CD86 expression and modulating inflammatory cytokine production. Consequently, these nanomaterials were classified as skin sensitizers in vitro. CONCLUSIONS Our study suggests the potential immunotoxicity of nanomaterials and highlights the importance of studying the immunotoxicity and skin sensitization potential of nanomaterials to anticipate possible human health risks using standardized mechanistic nonanimal methods with high predictive accuracy. Therefore, it contributes toward the applicability of existing OECD (Organisation for Economic Co-operation and Development) testing guidelines for accurate assessment of nanomaterial skin sensitization potential.
Collapse
Affiliation(s)
- Soraia F Bezerra
- Laboratory of Education and Research in in vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Bruna Dos Santos Rodrigues
- Laboratory of Education and Research in in vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Artur C G da Silva
- Laboratory of Education and Research in in vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Renato I de Ávila
- Laboratory of Education and Research in in vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Hallison R G Brito
- Laboratory of Education and Research in in vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Emílio R Cintra
- Laboratory of Pharmaceutical Technology-Farmatec, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Danillo F M C Veloso
- Laboratory of Pharmaceutical Technology-Farmatec, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Eliana M Lima
- Laboratory of Pharmaceutical Technology-Farmatec, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Marize C Valadares
- Laboratory of Education and Research in in vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
6
|
Kinaret PAS, Scala G, Federico A, Sund J, Greco D. Carbon Nanomaterials Promote M1/M2 Macrophage Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907609. [PMID: 32250056 DOI: 10.1002/smll.201907609] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 05/07/2023]
Abstract
Toxic effects of certain carbon nanomaterials (CNM) have been observed in several exposure scenarios both in vivo and in vitro. However, most of the data currently available has been generated in a high-dose/acute exposure setup, limiting the understanding of their immunomodulatory mechanisms. Here, macrophage-like THP-1 cells, exposed to ten different CNM for 48 h in low-cytotoxic concentration of 10 µg mL-1 , are characterized by secretion of different cytokines and global transcriptional changes. Subsequently, the relationships between cytokine secretion and transcriptional patterns are modeled, highlighting specific pathways related to alternative macrophage activation. Finally, time- and dose-dependent activation of transcription and secretion of M1 marker genes IL-1β and tumor necrosis factor, and M2 marker genes IL-10 and CSF1 is confirmed among the three most responsive CNM, with concentrations of 5, 10, and 20 µg mL-1 at 24, 48, and 72 h of exposure. These results underline CNM effects on the formation of cell microenvironment and gene expression leading to specific patterns of macrophage polarization. Taken together, these findings imply that, instead of a high and toxic CNM dose, a sub-lethal dose in controlled exposure setup can be utilized to alter the cell microenvironment and program antigen presenting cells, with fascinating implications for novel therapeutic strategies.
Collapse
Affiliation(s)
- Pia Anneli Sofia Kinaret
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00790, Finland
| | - Giovanni Scala
- Faculty of Biological Sciences, University of Naples, Naples, 80100, Italy
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Jukka Sund
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Dario Greco
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00790, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| |
Collapse
|
7
|
de Ávila RI, Lindstedt M, Valadares MC. The 21st Century movement within the area of skin sensitization assessment: From the animal context towards current human-relevant in vitro solutions. Regul Toxicol Pharmacol 2019; 108:104445. [PMID: 31430506 DOI: 10.1016/j.yrtph.2019.104445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/30/2022]
Abstract
In a regulatory context, skin sensitization hazard and risk evaluations of manufactured products and their ingredients (e.g. cosmetics) are mandatory in several regions. Great efforts have been made within the field of 21st Century Toxicology to provide non-animal testing approaches to assess the skin allergy potential of materials (e.g. chemicals, mixtures, nanomaterials, particles). Mechanistic understanding of skin sensitization process through the adverse outcome pathway (AOP) has promoted the development of in vitro methods, demonstrating accuracies superior to the traditional animal testing. These in vitro testing approaches are based on one of the four AOP key events (KE) of skin sensitization: formation of immunogenic hapten-protein complexes (KE-1 or the molecular initiating event, MIE), inflammatory keratinocyte responses (KE-2), dendritic cell activation (KE-3), and T-lymphocyte activation and proliferation (KE-4). This update provides an overview of the historically used in vivo methods as well as the current in chemico and in cell methods with and without OECD guideline designations to analyze the progress towards human-relevant in vitro test methods for safety assessment of the skin allergenicity potential of materials. Here our focus is to review 96 in vitro testing approaches directed to the KEs of the skin sensitization AOP.
Collapse
Affiliation(s)
- Renato Ivan de Ávila
- Laboratory of Education and Research in In Vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás State, Brazil
| | - Malin Lindstedt
- Department of Immunotechnology, Medicon Village, Lund University, Lund, Sweden
| | - Marize Campos Valadares
- Laboratory of Education and Research in In Vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás State, Brazil.
| |
Collapse
|
8
|
Narita K, Vo PTH, Yamamoto K, Kojima H, Itagaki H. Preventing false-negatives in the in vitro skin sensitization testing of acid anhydrides using interleukin-8 release assays. Toxicol In Vitro 2017; 42:69-75. [DOI: 10.1016/j.tiv.2017.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/15/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
|
9
|
Zwicker P, Schultze N, Niehs S, Methling K, Wurster M, Albrecht D, Bernhardt J, Wachlin G, Lalk M, Lindequist U, Haertel B. A proteomic approach for the identification of immunotoxic properties of Tulipalin A. Proteomics 2016; 16:2997-3008. [DOI: 10.1002/pmic.201600130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Paula Zwicker
- Institute of Pharmacy, Pharmaceutical Biology; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Nadin Schultze
- Institute of Pharmacy, Pharmaceutical Biology; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Sarah Niehs
- Institute of Biochemistry, Biochemistry of Metabolism/Metabolomics; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Karen Methling
- Institute of Biochemistry, Biochemistry of Metabolism/Metabolomics; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Martina Wurster
- Institute of Biochemistry, Biochemistry of Metabolism/Metabolomics; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Dirk Albrecht
- Institute of Microbiology, Microbial Physiology and Molecular Biology; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Jörg Bernhardt
- Institute of Microbiology, Microbial Physiology and Molecular Biology; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Gerhild Wachlin
- Institute of Microbiology, Microbial Physiology and Molecular Biology; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Michael Lalk
- Institute of Biochemistry, Biochemistry of Metabolism/Metabolomics; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Ulrike Lindequist
- Institute of Pharmacy, Pharmaceutical Biology; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Beate Haertel
- Institute of Pharmacy, Pharmaceutical Biology; Ernst-Moritz-Arndt-University; Greifswald Germany
| |
Collapse
|