1
|
Xi Y, Chen J, Guo S, Wang S, Liu Z, Zheng L, Qi Y, Xu P, Li L, Zhang Z, Ding B. Effects of tannic acid on growth performance, relative organ weight, antioxidative status, and intestinal histomorphology in broilers exposed to aflatoxin B 1. Front Vet Sci 2022; 9:1037046. [PMID: 36337182 PMCID: PMC9634217 DOI: 10.3389/fvets.2022.1037046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/03/2022] [Indexed: 08/31/2023] Open
Abstract
A total of 480 one-day-old AA broiler chicks were randomly allocated to one of four treatments in a 2 × 2 factorial to investigate the effects of tannic acid (TA) on growth performance, relative organ weight, antioxidant capacity, and intestinal health in broilers dietary exposed to aflatoxin B1 (AFB1). Treatments were as follows: (1) CON, control diet; (2) TA, CON + 250 mg/kg TA; (3) AFB1, CON + 500 μg/kg AFB1; and (4) TA+AFB1, CON + 250 mg/kg TA + 500 μg/kg AFB1. There were 10 replicate pens with 12 broilers per replicate. Dietary AFB1 challenge increased the feed conversion ratio during days 1 to 21 (P < 0.05). The TA in the diet did not show significant effects on the growth performance of broilers during the whole experiment period (P > 0.05). The liver and kidney relative weight was increased in the AF challenge groups compared with the CON (P < 0.05). The addition of TA could alleviate the relative weight increase of liver and kidney caused by AFB1 (P < 0.05). Broilers fed the AFB1 diets had lower activity of glutathione peroxidase, catalase, total superoxide dismutase, S-transferase, and total antioxidant capacity in plasma, liver and jejunum, and greater malondialdehyde content (P < 0.05). Dietary supplemented with 250 mg/kg TA increased the activities of antioxidative enzymes, and decreased malondialdehyde content (P < 0.05). In addition, AFB1 significantly reduced the villus height and crypt depth ratio in the ileum on day 42 (P < 0.05). In conclusion, supplementation with 250 mg/kg TA could partially protect the antioxidant capacity and prevent the enlargement of liver in broilers dietary challenged with 500 μg/kg AFB1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhengfan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Binying Ding
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
2
|
Jing W, Xiaolan C, Yu C, Feng Q, Haifeng Y. Pharmacological effects and mechanisms of tannic acid. Biomed Pharmacother 2022; 154:113561. [PMID: 36029537 DOI: 10.1016/j.biopha.2022.113561] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 12/18/2022] Open
Abstract
In recent years, increasing attention has been paid to the pharmacological efficacy of tannins. Tannic acid (TA), the simplest hydrolysable tannin that has been approved by the FDA as a safe food additive, is one of the most important components of these traditional medicines. Studies have shown that TA displays a wide range of pharmacological activities, such as anti-inflammatory, neuroprotective, antitumor, cardioprotective, and anti-pathogenic effects. Here, we summarize the known pharmacological effects and associated mechanisms of TA. We focus on the effect and mechanism of TA in various animal models of inflammatory disease and organ, brain, and cardiovascular injury. Moreover, we discuss the possible molecular targets and signaling pathways of TA, in addition to the pharmacological effects of TA-based nanoparticles and TA in combination with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Wang Jing
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China.
| | - Chen Xiaolan
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China
| | - Chen Yu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China
| | - Qin Feng
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, PR China
| | - Yang Haifeng
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China
| |
Collapse
|
3
|
Xiong Z, Liu L, Zhang Z, Cao L, Cao D, Du Z, Tang Y. Unravelling the role of surface modification in the dermocompatibility of silver nanoparticles in vitro and in vivo. CHEMOSPHERE 2022; 291:133111. [PMID: 34848219 DOI: 10.1016/j.chemosphere.2021.133111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
A clearer picture of interactions between differently coated silver nanoparticles (AgNPs) and biological interfaces that are confronted with by the dermal exposure route is of utmost importance for the risk assessment of various AgNPs-based formulations utilized in the medical and dermocosmetic fields. This work sought to understand how surface modification of AgNPs, especially those produced by green synthesis strategy, affects the surface chemistry and dermocompatibility. Phytosynthetized AgNPs diverse in bio-reducing/capping agents i.e. chlorogenic acid, glycyrrhizic acid and gallic acid, were prepared by a bioinspired green approach and characterized in terms of size, shape, crystal phase, surface charge, structure and antioxidant activity. Chemically synthetized AgNPs stabilized by trisodium citrate or polyvinylpyrrolidone were also analyzed for comparison. The biological test results illustrate that varying coating material for AgNP stabilization results in differential toxicity against dermal microbes and HaCaT keratinocytes in vitro and affects dermal absorption through intact/compromised skin in vivo. Among all test samples, the citrate-stabilized AgNPs displayed the maximum cytotoxicity and dermal absorption. It is also of interest to note that the phytosynthetized AgNPs with chlorogenic acid exhibited superior antioxidant activity, attenuated cytotoxicity and minimal skin deposition, while those modified with glycyrrhizic acid demonstrated a preferentially antibacterial activity against the pathogenic (Escherichia coli and Staphylococcus aureus) over the beneficial strains (Staphylococcus epidermidis) inhabiting human skin. Furthermore, percutaneous absorption of AgNPs into live epidermis was observed on all 7-13 nm sized AgNPs, irrespective of surface coating, with more pronounced skin deposition of silver species occurring for the chemically-synthetized AgNPs within compromised skin. Given all these results, it is concluded that surface modification with particular phytochemicals may render AgNPs with enhanced dermocompatibility or antimicrobial activity. This study provides a basis for risk assessments of phytosynthetized AgNPs in consumer products and suggests the possibility of tailoring AgNPs applicability via green chemistry approach.
Collapse
Affiliation(s)
- Ziyi Xiong
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China; Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Lei Liu
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China; Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Zhaolun Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China; Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Lihua Cao
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China; Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Ding Cao
- College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhenxia Du
- College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Ying Tang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China; Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
4
|
Krzyzowska M, Chodkowski M, Janicka M, Dmowska D, Tomaszewska E, Ranoszek-Soliwoda K, Bednarczyk K, Celichowski G, Grobelny J. Lactoferrin-Functionalized Noble Metal Nanoparticles as New Antivirals for HSV-2 Infection. Microorganisms 2022; 10:microorganisms10010110. [PMID: 35056558 PMCID: PMC8780146 DOI: 10.3390/microorganisms10010110] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 01/19/2023] Open
Abstract
(1) Background: Lactoferrin has been recognized as a potent inhibitor of human herpetic viruses, such as herpes simplex type 1 (HSV-1) and 2 (HSV-2). In this work, we tested if silver and gold nanoparticles modified with lactoferrin (LF-Ag/AuNPs) can become novel microbicides with additional adjuvant properties to treat genital herpes infection. (2) Methods: The antiviral and cytotoxic activities of LF-Ag/AuNPs were tested in human skin HaCaT and vaginal VK-2-E6/E7 keratinocytes. Viral titers and immune responses after treatment with LF-Ag/AuNPs were tested in murine vaginal HSV-2 infection. (3) Results: LF-Ag/AuNPs inhibited attachment and entry of HSV-2 in human keratinocytes much better than lactoferrin. Furthermore, pretreatment with LF-AgNPs led to protection from infection. Infected mice treated intravaginally with LF-Ag/AuNPs showed lower virus titers in the vaginal tissues and spinal cords in comparison to treatment with lactoferrin. Following treatment, vaginal tissues showed a significant increase in CD8+/granzyme B + T cells, NK cells and dendritic cells in comparison to NaCl-treated group. LF-Ag/AuNPs-treated animals also showed significantly better expression of IFN-γ, CXCL9, CXCL10, and IL-1β in the vaginal tissues. (4) Conclusions: Our findings show that LF-Ag/AuNPs could become effective novel antiviral microbicides with immune-stimulant properties to be applied upon the mucosal tissues.
Collapse
Affiliation(s)
- Malgorzata Krzyzowska
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (M.C.); (M.J.); (D.D.)
- Correspondence:
| | - Marcin Chodkowski
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (M.C.); (M.J.); (D.D.)
| | - Martyna Janicka
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (M.C.); (M.J.); (D.D.)
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02‐786 Warsaw, Poland
| | - Dominika Dmowska
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (M.C.); (M.J.); (D.D.)
| | - Emilia Tomaszewska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland; (E.T.); (K.R.-S.); (K.B.); (G.C.); (J.G.)
| | - Katarzyna Ranoszek-Soliwoda
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland; (E.T.); (K.R.-S.); (K.B.); (G.C.); (J.G.)
| | - Katarzyna Bednarczyk
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland; (E.T.); (K.R.-S.); (K.B.); (G.C.); (J.G.)
| | - Grzegorz Celichowski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland; (E.T.); (K.R.-S.); (K.B.); (G.C.); (J.G.)
| | - Jaroslaw Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland; (E.T.); (K.R.-S.); (K.B.); (G.C.); (J.G.)
| |
Collapse
|
5
|
Gangwar C, Yaseen B, Kumar I, Singh NK, Naik RM. Growth Kinetic Study of Tannic Acid Mediated Monodispersed Silver Nanoparticles Synthesized by Chemical Reduction Method and Its Characterization. ACS OMEGA 2021; 6:22344-22356. [PMID: 34497923 PMCID: PMC8412910 DOI: 10.1021/acsomega.1c03100] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/09/2021] [Indexed: 05/22/2023]
Abstract
The complex process of nanoparticle formation in an aqueous solution is governed by kinetics and thermodynamic factors. This paper describes a room-temperature growth kinetic study and evaluation of thermodynamic activation parameters of monodispersed silver nanoparticles (AgNPs) synthesized in alkaline medium by chemical reduction method using AgNO3 as a source of Ag+ ions and tannic acid (TA) as a reductant (reducing agent) as well as a capping or stabilizing agent in the absence of any other external stabilizer. A simple and conveniently handled reaction process was monitored spectrophotometrically to study the growth kinetics in an aqueous solution as a function of the concentration of silver ion, hydroxide ion, and TA, respectively. The neutral nucleophilic group donates the electron density via a lone pair of electrons to Ag+ ions for the reduction process, i.e., for the nucleation of AgNPs colloid. Also, a few silver ions form a silver oxide, which also facilitates the nucleation center to enhance the growth of AgNPs colloid. The decrease and increase in rate constant on varying the TA concentration showed its adsorption onto the surface of metallic AgNPs and stabilized by polygalloyl units of TA and were the main elements to control the growth kinetics. Consequently, stabilized TA-mediated AgNPs are formed using the electron donated by quinone form of TA followed by a pseudo-first-order reaction. Apart from this, nanoparticles formed were characterized using UV-visible spectrophotometry, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and powder X-ray diffraction techniques to confirm its formation during the present kinetic study.
Collapse
|
6
|
McLaughlin M, Gilea MA, Earle MJ, Seddon KR, Gilmore BF, Kelly SA. Characterization of ionic liquid cytotoxicity mechanisms in human keratinocytes compared with conventional biocides. CHEMOSPHERE 2021; 270:129432. [PMID: 33422997 DOI: 10.1016/j.chemosphere.2020.129432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The ability to chemically modify ionic liquids (ILs) has led to an expansion in interest in their use in a diversity of applications, not least as antimicrobials and biocides. Relatively little is known about cytotoxicity mechanisms of ILs in comparison to other biocides currently in widespread use, as well as their practical significance for the ecological environment and human health. Using NCTC 2544 and HaCat human keratinocyte cells, this study aimed to characterize cytotoxicity rates and mechanisms of a range of ILs. Using both lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) based cytotoxicity assays, it was confirmed that at biocide-relevant concentrations, ILs with longer alkyl chains exhibited greater biocidal activity than those with shorter alkyl chains, with comparable activity to the commonly used biocides chlorhexidine, benzalkonium chloride and cetylpyridinium chloride, at relevant in-use biocide concentrations. Mode of cell death, measured using fluorescence-activated cell sorting (FACS) and caspase 3/7 activity, determined necrosis to be the primary cytotoxic mechanism at higher concentrations of the biocides stated above, and with ILs [C14MIM]Cl and [C14quin]Br, with apoptosis observed at borderline necrotic concentrations. Perhaps most interestingly, modification of anion had a significant effect on cytotoxicity. The use of N[SO2CF3] as an anion to [C16MIM] attenuated cytotoxicity 10-fold in comparison to other anions, suggesting cytotoxicity may also be a tuneable property when using ILs as biocides.
Collapse
Affiliation(s)
- Martin McLaughlin
- School of Pharmacy, Queens University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK; Institute for Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Manuela A Gilea
- The QUILL Research Centre, School of Chemistry, Queen's University of Belfast, Belfast, BT9 5AG, UK
| | - Martyn J Earle
- The QUILL Research Centre, School of Chemistry, Queen's University of Belfast, Belfast, BT9 5AG, UK
| | - Kenneth R Seddon
- The QUILL Research Centre, School of Chemistry, Queen's University of Belfast, Belfast, BT9 5AG, UK
| | - Brendan F Gilmore
- School of Pharmacy, Queens University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Stephen A Kelly
- School of Pharmacy, Queens University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
7
|
Orlowski P, Zmigrodzka M, Tomaszewska E, Ranoszek-Soliwoda K, Pajak B, Slonska A, Cymerys J, Celichowski G, Grobelny J, Krzyzowska M. Polyphenol-Conjugated Bimetallic Au@AgNPs for Improved Wound Healing. Int J Nanomedicine 2020; 15:4969-4990. [PMID: 32764930 PMCID: PMC7369312 DOI: 10.2147/ijn.s252027] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Background Polyphenols possess antioxidant, anti-inflammatory and antimicrobial properties and have been used in the treatment of skin wounds and burns. We previously showed that tannic acid-modified AgNPs sized >26 nm promote wound healing, while tannic acid-modified AgNPs sized 13 nm can elicit strong local inflammatory response. In this study, we tested bimetallic Au@AgNPs sized 30 nm modified with selected flavonoid and non-flavonoid compounds for wound healing applications. Methods Bimetallic Au@AgNPs were obtained by growing an Ag layer on AuNPs and further modified with selected polyphenols. After toxicity tests and in vitro scratch assay in HaCaT cells, modified lymph node assay as well as the mouse splint wound model were further used to access the wound healing potential of selected non-toxic modifications. Results Tannic acid, gallic acid, polydatin, resveratrol, catechin, epicatechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate and procyanidin B2 used to modify Au@AgNPs exhibited good toxicological profiles in HaCaT cells. Au@AgNPs modified with 15 μM tannic acid, 200 μM resveratrol, 200 μM epicatechin gallate, 1000 μM gallic acid and 200 μM procyanidin B2 induced wound healing in vivo and did not lead to the local irritation or inflammation. Tannic acid-modified Au@AgNPs induced epithelial-to-mesenchymal transition (EMT) - like re-epithelialization, while other polyphenol modifications of Au@AgNPs acted through proliferation and wound closure. Conclusion Bimetallic Au@AgNPs can be used as a basis for modification with selected polyphenols for topical uses. In addition, we have demonstrated that particular polyphenols used to modify bimetallic nanoparticles may show different effects upon different stages of wound healing.
Collapse
Affiliation(s)
- Piotr Orlowski
- Laboratory of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Magdalena Zmigrodzka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Emilia Tomaszewska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | | | - Beata Pajak
- Laboratory of Genetics and Molecular Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Anna Slonska
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw 02-786, Poland
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw 02-786, Poland
| | - Grzegorz Celichowski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Jaroslaw Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Malgorzata Krzyzowska
- Laboratory of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| |
Collapse
|
8
|
Oxidative Degradation of Tannic Acid in Aqueous Solution by UV/S2O82− and UV/H2O2/Fe2+ Processes: A Comparative Study. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9010156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tannic acid (TA) is a major pollutant present in the wastewater generated from vegetable tanneries process and food processing. This work studied TA degradation by two advanced oxidation processes (APOs): UV irradiation at the wavelength of 254 nm in the presence of hydrogen peroxide (H2O2) and ferrous iron (photo-Fenton) and in the presence of potassium persulfate. The influence of certain experimental parameters such as K2S2O8, H2O2, Fe2+, and TA concentrations, initial pH and temperature was evaluated in order to obtain the highest efficiency in terms of aromatics (decay in UV absorbance at 276 nm) and TOC removals. Chemical oxidation of TA (0.1 mM) by UV/persulfate achieved 96.32% of aromatics removal and 54.41% of TOC removal under optimized conditions of pH = 9 and 53.10 mM of K2S2O8 after 60 min. The treatment of TA by photo-Fenton process successfully led to almost complete aromatics removal (99.32%) and high TOC removal (94.27%) from aqueous solutions containing 0.1 mM of TA at natural pH = 3 using 29.4 mM of H2O2 and 0.18 mM of Fe2+ at 25 °C after 120 min. More efficient degradation of TA by photo-Fenton process than UV/persulfate was obtained, which confirms that hydroxyl radicals are more powerful oxidants than sulfate radicals. The complete removal of organic pollution from natural waters can be accomplished by direct chemical oxidation via hydroxyl radicals generated from photocatalytic decomposition of H2O2.
Collapse
|
9
|
Antiviral Activity of Tannic Acid Modified Silver Nanoparticles: Potential to Activate Immune Response in Herpes Genitalis. Viruses 2018; 10:v10100524. [PMID: 30261662 PMCID: PMC6213294 DOI: 10.3390/v10100524] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022] Open
Abstract
(1) Background: Tannic acid is a plant-derived polyphenol showing antiviral activity mainly because of an interference with the viral adsorption. In this work, we tested whether the modification of silver nanoparticles with tannic acid (TA-AgNPs) can provide a microbicide with additional adjuvant properties to treat genital herpes infection. (2) Methods: The mouse model of the vaginal herpes simplex virus 2 (HSV-2) infection was used to test immune responses after treatment of the primary infection with TA-AgNPs, and later, after a re-challenge with the virus. (3) Results: The mice treated intravaginally with TA-AgNPs showed better clinical scores and lower virus titers in the vaginal tissues soon after treatment. Following a re-challenge, the vaginal tissues treated with TA-AgNPs showed a significant increase in the percentages of IFN-gamma+ CD8+ T-cells, activated B cells, and plasma cells, while the spleens contained significantly higher percentages of IFN-gamma+ NK cells and effector-memory CD8+ T cells in comparison to NaCl-treated group. TA-AgNPs-treated animals also showed significantly better titers of anti-HSV-2 neutralization antibodies in sera; and (4) Conclusions: Our findings suggest that TA-AgNPs sized 33 nm can be an effective anti-viral microbicide to be applied upon the mucosal tissues with additional adjuvant properties enhancing an anti-HSV-2 immune response following secondary challenge.
Collapse
|
10
|
Orlowski P, Tomaszewska E, Ranoszek-Soliwoda K, Gniadek M, Labedz O, Malewski T, Nowakowska J, Chodaczek G, Celichowski G, Grobelny J, Krzyzowska M. Tannic Acid-Modified Silver and Gold Nanoparticles as Novel Stimulators of Dendritic Cells Activation. Front Immunol 2018; 9:1115. [PMID: 29872440 PMCID: PMC5972285 DOI: 10.3389/fimmu.2018.01115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/03/2018] [Indexed: 01/31/2023] Open
Abstract
Silver nanoparticles (AgNPs) are promising new antimicrobial agents against a wide range of skin and mucosal pathogens. However, their interaction with the immune system is currently not fully understood. Dendritic cells (DCs) are crucial during development of T cell-specific responses against bacterial and viral pathogens. We have previously shown that tannic acid-modified silver nanoparticles (TA-AgNPs) consist of a promising microbicide against HSV-2. The aim of this study was to compare the ability of TA-AgNPs or TA-AuNPs of similar sizes (TA-Ag/AuNPs) to induce DCs maturation and activation in the presence of HSV-2 antigens when used at non-toxic doses. First, we used JAWS II DC line to test toxicity, ultrastructure as well as activation markers (MHC I and II, CD40, CD80, CD86, PD-L1) and cytokine production in the presence of TA-Ag/AuNPs. Preparations of HSV-2 treated with nanoparticles (TA-Ag/AuNPs-HSV-2) were further used to investigate HSV-2 antigen uptake, activation markers, TLR9 expression, and cytokine production. Additionally, we accessed proliferation and activation of HSV-2-specific T cells by DCs treated with TA-AgNP/AuNPs-HSV-2. We found that both TA-AgNPs and TA-AuNPs were efficiently internalized by DCs and induced activated ultrastructure. Although TA-AgNPs were more toxic than TA-AuNPs in corresponding sizes, they were also more potent stimulators of DCs maturation and TLR9 expression. TA-Ag/AuNPs-HSV-2 helped to overcome inhibition of DCs maturation by live or inactivated virus through up-regulation of MHC II and CD86 and down-regulation of CD80 expression. Down-regulation of CD40 expression in HSV-2-infected DCs was reversed when HSV-2 was treated with TA-NPs sized >30 nm. On the other hand, small-sized TA-AgNPs helped to better internalize HSV-2 antigens. HSV-2 treated with both types of NPs stimulated activation of JAWS II and memory CD8+ T cells, while TA-AgNPs treatment induced IFN-γ producing CD4+ and CD8+ T cells. Our study shows that TA-AgNPs or TA-AuNPs are good activators of DCs, albeit their final effect upon maturation and activation may be metal and size dependent. We conclude that TA-Ag/AuNPs consist of a novel class of nano-adjuvants, which can help to overcome virus-induced suppression of DCs activation.
Collapse
Affiliation(s)
- Piotr Orlowski
- Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Emilia Tomaszewska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | | | | | - Olga Labedz
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Tadeusz Malewski
- Museum and Institute of Zoology, Polish Academy of Science, Warsaw, Poland
| | - Julita Nowakowska
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Grzegorz Celichowski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Jaroslaw Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Malgorzata Krzyzowska
- Military Institute of Hygiene and Epidemiology, Warsaw, Poland
- Wroclaw Research Centrum EIT+, Wroclaw, Poland
| |
Collapse
|
11
|
Orlowski P, Zmigrodzka M, Tomaszewska E, Ranoszek-Soliwoda K, Czupryn M, Antos-Bielska M, Szemraj J, Celichowski G, Grobelny J, Krzyzowska M. Tannic acid-modified silver nanoparticles for wound healing: the importance of size. Int J Nanomedicine 2018; 13:991-1007. [PMID: 29497293 PMCID: PMC5818815 DOI: 10.2147/ijn.s154797] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction Silver nanoparticles (AgNPs) have been shown to promote wound healing and to exhibit antimicrobial properties against a broad range of bacteria. In our previous study, we prepared tannic acid (TA)-modified AgNPs showing a good toxicological profile and immunomodulatory properties useful for potential dermal applications. Methods In this study, in vitro scratch assay, antimicrobial tests, modified lymph node assay as well as a mouse splint wound model were used to access the wound healing potential of TA-modified and unmodified AgNPs. Results TA-modified but not unmodified AgNPs exhibited effective antibacterial activity against Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli and stimulated migration of keratinocytes in vitro. The tests using the mouse splint wound model showed that TA-modified 33 and 46 nm AgNPs promoted better wound closure, epithelialization, angiogenesis and formation of the granulation tissue. Additionally, AgNPs elicited expression of VEGF-α, PDGF-β and TGF-β1 cytokines involved in wound healing more efficiently in comparison to control and TA-treated wounds. However, both the lymph node assay and the wound model showed that TA-modified AgNPs sized 13 nm can elicit strong inflammatory response not only during wound healing but also when applied to the damaged skin. Conclusion TA-modified AgNPs sized >26 nm promote wound healing better than TA-modified or unmodified AgNPs. These findings suggest that TA-modified AgNPs sized >26 nm may have a promising application in wound management.
Collapse
Affiliation(s)
- Piotr Orlowski
- Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Magdalena Zmigrodzka
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Emilia Tomaszewska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | | | - Monika Czupryn
- Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | | | | | - Grzegorz Celichowski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Jaroslaw Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | | |
Collapse
|
12
|
Multifunctional Tannic Acid/Silver Nanoparticle-Based Mucoadhesive Hydrogel for Improved Local Treatment of HSV Infection: In Vitro and In Vivo Studies. Int J Mol Sci 2018; 19:ijms19020387. [PMID: 29382085 PMCID: PMC5855609 DOI: 10.3390/ijms19020387] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 12/31/2022] Open
Abstract
Mucoadhesive gelling systems with tannic acid modified silver nanoparticles were developed for effective treatment of herpes virus infections. To increase nanoparticle residence time after local application, semi solid formulations designed from generally regarded as safe (GRAS) excipients were investigated for their rheological and mechanical properties followed with ex vivo mucoadhesive behavior to the porcine vaginal mucosa. Particular effort was made to evaluate the activity of nanoparticle-based hydrogels toward herpes simplex virus (HSV) type 1 and 2 infection in vitro in immortal human keratinocyte cell line and in vivo using murine model of HSV-2 genital infection. The effect of infectivity was determined by real time quantitative polymerase chain reaction, plaque assay, inactivation, attachment, penetration and cell-to-cell assessments. All analyzed nanoparticle-based hydrogels exhibited pseudoplastic and thixotropic properties. Viscosity and mechanical measurements of hydrogels were found to correlate with the mucoadhesive properties. The results confirmed the ability of nanoparticle-based hydrogels to affect viral attachment, impede penetration and cell-to-cell transmission, although profound differences in the activity evoked by tested preparations toward HSV-1 and HSV-2 were noted. In addition, these findings demonstrated the in vivo potential of tannic acid modified silver nanoparticle-based hydrogels for vaginal treatment of HSV-2 genital infection.
Collapse
|
13
|
Pudlarz AM, Czechowska E, Ranoszek-Soliwoda K, Tomaszewska E, Celichowski G, Grobelny J, Szemraj J. Immobilization of Recombinant Human Catalase on Gold and Silver Nanoparticles. Appl Biochem Biotechnol 2018; 185:717-735. [PMID: 29299755 DOI: 10.1007/s12010-017-2682-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/19/2017] [Indexed: 01/20/2023]
Abstract
Human catalase cDNA was cloned into a pEX-C-His vector. Purified recombinant catalase was immobilized on nanoparticles. Gold and silver nanoparticles were synthesized in a variety of sizes by chemical reduction; no agglomerates or aggregates were observed in any of the colloids during dynamic light scattering or scanning transmission electron microscopy analysis. After immobilization on gold nanoparticles, recombinant catalase activity was found to be lower than that of the same amount of enzyme in aqueous solution. However, after 10 days of storage at room temperature, the activity of catalase immobilized on gold nanoparticles (AuNPs) of 13 and 20 nm and coverage of 133% was 68 and 83% greater than catalase in aqueous solution, respectively. During 10 days of experiment, percentage activity of catalase immobilized on those gold nanoparticles was higher in comparison to CAT in aqueous solution. Catalase immobilized on silver nanoparticles did not lose activity as significantly as catalase immobilized on AuNPs. Those results confirm the ability to produce recombinant human enzymes in a bacterial expression system and its potential use while immobilized on silver or gold nanoparticles.
Collapse
Affiliation(s)
- Agnieszka Małgorzata Pudlarz
- Department of Medical Biochemistry, Faculty of Health Sciences with the Division of Nursing and Midwifery, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland.
| | - Ewa Czechowska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Katarzyna Ranoszek-Soliwoda
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Emilia Tomaszewska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Grzegorz Celichowski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Jarosław Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Faculty of Health Sciences with the Division of Nursing and Midwifery, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
14
|
Roszak J, Domeradzka-Gajda K, Smok-Pieniążek A, Kozajda A, Spryszyńska S, Grobelny J, Tomaszewska E, Ranoszek-Soliwoda K, Cieślak M, Puchowicz D, Stępnik M. Genotoxic effects in transformed and non-transformed human breast cell lines after exposure to silver nanoparticles in combination with aluminium chloride, butylparaben or di-n-butylphthalate. Toxicol In Vitro 2017; 45:181-193. [PMID: 28893613 DOI: 10.1016/j.tiv.2017.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/22/2017] [Accepted: 09/04/2017] [Indexed: 12/11/2022]
Abstract
In the present study genotoxic effects after combined exposure of human breast cell lines (MCF-10A, MCF-7 and MDB-MB-231) to silver nanoparticles (AgNP, citrate stabilized, 15 and 45nm by STEM, Ag15 and Ag45, respectively) with aluminium chloride, butylparaben, or di-n-butylphthalate were studied. In MCF-10A cells exposed for 24h to Ag15 at the concentration of 23.5μg/mL a statistically significant increase in DNA damage in comet assay (SSB) was observed. In the presence of the test chemicals the genotoxic effect was decreased to a level comparable to control values. In MCF-7 cells a significant increase in SSB level was observed after exposure to Ag15 at 16.3μg/mL. The effect was also diminished in the presence of the three test chemicals. In MDA-MB-231 cells no significant increase in SSB was observed, however increased level of oxidative DNA damage (incubation with Fpg enzyme) was observed after exposure to combinations of both AgNP with aluminium chloride. No increase in micronuclei formation was observed in neither cell line after the single nor combined treatments. Our results point to a low risk of increased genotoxic effects of AgNP when used in combination with aluminium salts, butylparaben or di-n-butylphthalate in consumer products.
Collapse
Affiliation(s)
- J Roszak
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - K Domeradzka-Gajda
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - A Smok-Pieniążek
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - A Kozajda
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - S Spryszyńska
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - J Grobelny
- Department of Materials Technology and Chemistry, University of Łódź, Poland
| | - E Tomaszewska
- Department of Materials Technology and Chemistry, University of Łódź, Poland
| | - K Ranoszek-Soliwoda
- Department of Materials Technology and Chemistry, University of Łódź, Poland
| | - M Cieślak
- Scientific Department of Unconventional Technologies and Textiles, Textile Research Institute, Łódź, Poland
| | - D Puchowicz
- Scientific Department of Unconventional Technologies and Textiles, Textile Research Institute, Łódź, Poland
| | - M Stępnik
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, Łódź, Poland.
| |
Collapse
|
15
|
Ahmad F, Zhou Y. Pitfalls and Challenges in Nanotoxicology: A Case of Cobalt Ferrite (CoFe 2O 4) Nanocomposites. Chem Res Toxicol 2017; 30:492-507. [PMID: 28118545 DOI: 10.1021/acs.chemrestox.6b00377] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nanotechnology is developing at a rapid pace with promises of a brilliant socio-economic future. The apprehensions of vivid future involvement with nanotechnology make nanoobjects ubiquitous in the macroscopic world of humans. Nanotechnology helps us to visualize the new mysterious horizons in engineering, sophisticated electronics, environmental remediation, biosensing, and nanomedicine. In all these hotspots, cobalt ferrite (CoFe) nanoparticles (NPs) are outstanding contestants because of their astonishing controllable physicochemical and magnetic properties with ease of synthesis methods. The extensive use of CoFe NPs may result in CoFe NPs easily penetrating the human body unintentionally by ingestion, inhalation, adsorption, etc. and intentionally being instilled into the human body during biomedical diagnostics and treatment. After being housed in the human body, it might induce oxidative stress, cytotoxicity, genotoxicity, inflammation, apoptosis, and developmental, metabolic and hormonal abnormalities. In this review, we compiled the toxicity knowledge of CoFe NPs aimed to provide the safe usage of this breed of nanomaterials.
Collapse
Affiliation(s)
- Farooq Ahmad
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310032, China.,State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Zhou
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310032, China.,Research Center of Analysis and Measurement, Zhejiang University of Technology , 18 Chaowang Road, Hangzhou 310032, China
| |
Collapse
|