1
|
Maria OM, Heram A, Tran SD. Bioengineering from the laboratory to clinical translation in oral and maxillofacial reconstruction. Saudi Dent J 2024; 36:955-962. [PMID: 39035556 PMCID: PMC11255950 DOI: 10.1016/j.sdentj.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 07/23/2024] Open
Abstract
Background Conventional techniques used in oral and maxillofacial reconstruction focus mainly on utilizing autologous tissues that have unquestionably improved function and esthetics for many patients, worldwide. However, the success depends on countless factors such as: donor and recipient sites conditions, patient's medical history, surgeon's experience, restricted availability of high-quality autogenous tissues or stem cells, and increased surgical cost and time. Materials and Methods Lately, teaming researchers, scientists, surgeons, and engineers, to address these limitations, have allowed tremendous progress in recombinant protein therapy, cell-based therapy, and gene therapy. Results Over the past few years, biomedical engineering has been evolving from the laboratory to clinical applications, for replacement of damaged body tissues due to trauma, cancer, congenital or acquired disorders. Conclusions This review provides an outlook on the content, benefits, recent advances, limitations, and future expectations of biomedical engineering for salivary glands, oral mucosa, dental structures, and maxillofacial reconstruction.
Collapse
Affiliation(s)
- Ola M. Maria
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Ashraf Heram
- Grand Strand Facial and Jaw Surgery, Myrtle Beach, SC, United States
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Alamo L, Cassiano FB, Bordini EAF, Stuani VT, Pacheco LE, Gallinari MDO, Souza Costa CA, Mondelli RFL, Soares DG. An organotypic model of oral mucosa cells for the biological assessment of 3D printed resins for interim restorations. J Prosthet Dent 2024; 132:251-259. [PMID: 35864023 DOI: 10.1016/j.prosdent.2022.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 10/17/2022]
Abstract
STATEMENT OF PROBLEM Three-dimensionally (3D) printed resins have become popular as a new class of materials for making interim restorations. However, little is known about how the fabrication parameters can influence biological compatibility with oral tissues. PURPOSE The purpose of this in vitro study was to evaluate the effect of the postpolymerization time on the cytotoxicity of resins for printing interim restorations by using a 3D organotypic model of the oral mucosa. MATERIAL AND METHODS Cylindrical specimens were prepared with conventional acrylic resin (AR), computer-aided design and computer-aided manufacture (CAD-CAM) resin (CC), composite resin (CR), and 2 resins for 3D printing (3DP) marketed as being biocompatible. The 3DPs were submitted to postpolymerization in an ultraviolet (UV) light chamber for 1, 10, or 20 minutes (90 W, 405 nm). Standard specimens of the materials were incubated for 1, 3, and 7 days in close contact with an organotypic model of keratinocytes (NOK-Si) in coculture with gingival fibroblasts (HGF) in a 3D collagen matrix, or directly with 3D HGF cultures. Then, the viability (Live/Dead n=2) and metabolism (Alamar Blue n=6) of the cells were assessed. Spectral scanning of the culture medium was performed to detect released components (n=6) and assessed statistically with ANOVA and the Tukey post hoc test (α=.05). RESULTS Severe reduction of metabolism (>70%) and viability of keratinocytes occurred for 3DP resin postpolymerized for 1 minute in all periods of analysis in a time-dependent manner. The decrease in cell metabolism and viability was moderate for the 3D culture of HGFs in both experimental models, correlated with the intense presence of resin components in the culture medium. The resins postpolymerized for 10 and 20 minutes promoted a mild-moderate cytotoxic effect in the period of 1 day, similar to AR. However, recovery of cell viability occurred at the 7-day incubation period. The 3DP resins submitted to postpolymerization for 20 minutes showed a pattern similar to that of CR and CC at the end of the experiment. CONCLUSIONS The cytotoxic potential of the tested 3DP resins on oral mucosa cells was influenced by postprinting processing, which seemed to have been related with the quantity of residual components leached.
Collapse
Affiliation(s)
- Larissa Alamo
- MS student, Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), São Paulo, Brazil
| | - Fernanda Balestrero Cassiano
- PhD student, Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), São Paulo, Brazil
| | - Ester Alves Ferreira Bordini
- Postdoctoral Researcher, Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), São Paulo, Brazil
| | - Vitor Toledo Stuani
- Postdoctoral Researcher, Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), São Paulo, Brazil
| | - Leandro Edgar Pacheco
- PhD student, Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), São Paulo, Brazil
| | - Marjorie de Oliveira Gallinari
- Postdoctoral Researcher, Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), São Paulo, Brazil
| | - Carlos Alberto Souza Costa
- Full Professor, Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Rafael Francisco Lia Mondelli
- Full Professor, Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), São Paulo, Brazil
| | - Diana Gabriela Soares
- Assistant Professor, Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), São Paulo, Brazil.
| |
Collapse
|
3
|
Sahle M, Wachendörfer M, Palkowitz AL, Nasehi R, Aveic S, Fischer H. A Fibrin-Based Human Multicellular Gingival 3D Model Provides Biomimicry and Enables Long-Term In Vitro Studies. Macromol Biosci 2024; 24:e2300162. [PMID: 37716014 DOI: 10.1002/mabi.202300162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/09/2023] [Indexed: 09/18/2023]
Abstract
Collagen-type I gels are widely used for the fabrication of 3D in vitro gingival models. Unfortunately, their long-term stability is low, which limits the variety of in vitro applications. To overcome this problem and achieve better hydrolytic stability of 3D gingival models, fibrin-based hydrogel blends with increased long-term stability in vitro are investigated. Two different fibrin-based hydrogels are tested: fibrin 2.5% (w/v) and fibrin 1% (w/v)/gelatin 5% (w/v). Appropriate numbers of primary human gingival fibroblasts (HGFs) and OKG4/bmi1/TERT (OKG) keratinocytes are optimized to achieve a homogeneous distribution of cells under the assumed 3D conditions. Both hydrogels support the viability of HGFs and the stability of the hydrogel over 28 days. In vitro cultivation at the air-liquid interface triggers keratinization of the epithelium and increases its thickness, allowing the formation of multiple tissue-like layers. The presence of HGFs in the hydrogel further enhances epithelial differentiation. In conclusion, a fibrin-based 3D gingival model mimics the histology of native gingiva in vitro and ensures its long-term stability in comparison with the previously reported collagen paralogs. These results open new perspectives for extending the period within which specific biological or pathological conditions of artificial gingival tissue can be evaluated.
Collapse
Affiliation(s)
- Maike Sahle
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Mattis Wachendörfer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Alena L Palkowitz
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ramin Nasehi
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Sanja Aveic
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
4
|
AlFatlawi Z, Huang M, Chau DYS, D'Aiuto F. Three dimensional (3D) gingival models in periodontal research: a systematic review. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:58. [PMID: 37938480 PMCID: PMC10632299 DOI: 10.1007/s10856-023-06761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
The aim of this study is to systematically appraise the evidence on available full thickness 3D gingival and mucosal models (3D culture in scaffold base system) and their application in periodontal and peri-implant research. This study involved a systematic review of twenty-two studies obtained from searching from five electronic databases: MEDLINE-OVID, EMBASE, EBSCOhost, Web of Science Core Collection and LILACS, as well as a hand search of eligible articles up to September 2022. A total of 2338 studies were initially identified, after removal of duplicates (573), abstracts/title selection (1765), and full text screening (95), twenty-two studies were included, thirty-seven models were identified. Several cellular markers were reported by the studies included. The expression of keratinocytes differentiation markers (K4, K5, K10, K13, K14, K16, K17, K18, K19, involucrin, laminin5), proliferation marker (Ki67, CD90), and vimentin, Type I, II and IV collagen produced by fibroblasts were investigated in thirty models. No quantitative analyses were performed, and results of the review confirmed a substantial level of heterogeneity across experiments. In conclusion, there is currently insufficient evidence to conclude that the available 3D gingival and mucosal models can entirely recapitulate the human gingival tissue/mucosa and provide a useful research tool for periodontal and peri-implant research. This review also highlighted the lack of a standardized protocol to construct and characterize 3D gingival models. A new protocol is proposed for the characterization of in vitro gingival models for future research.
Collapse
Affiliation(s)
- Z AlFatlawi
- Periodontology Unit, UCL Eastman Dental Institute, 21 University Street, London, WC1E 6DE, UK
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - M Huang
- Periodontology Unit, UCL Eastman Dental Institute, 21 University Street, London, WC1E 6DE, UK
| | - D Y S Chau
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
| | - F D'Aiuto
- Periodontology Unit, UCL Eastman Dental Institute, 21 University Street, London, WC1E 6DE, UK
| |
Collapse
|
5
|
Nasarudin NA, Razali M, Goh V, Chai WL, Muchtar A. Expression of Interleukin-1β and Histological Changes of the Three-Dimensional Oral Mucosal Model in Response to Yttria-Stabilized Nanozirconia. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2027. [PMID: 36903142 PMCID: PMC10003861 DOI: 10.3390/ma16052027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Over the years, advancement in ceramic-based dental restorative materials has led to the development of monolithic zirconia with increased translucency. The monolithic zirconia fabricated from nano-sized zirconia powders is shown to be superior in physical properties and more translucent for anterior dental restorations. Most in vitro studies on monolithic zirconia have focused mainly on the effect of surface treatment or the wear of the material, while the nanotoxicity of this material is yet to be explored. Hence, this research aimed to assess the biocompatibility of yttria-stabilized nanozirconia (3-YZP) on the three-dimensional oral mucosal models (3D-OMM). The 3D-OMMs were constructed using human gingival fibroblast (HGF) and immortalized human oral keratinocyte cell line (OKF6/TERT-2), co-cultured on an acellular dermal matrix. On day 12, the tissue models were exposed to 3-YZP (test) and inCoris TZI (IC) (reference material). The growth media were collected at 24 and 48 h of exposure to materials and assessed for IL-1β released. The 3D-OMMs were fixed with 10% formalin for the histopathological assessments. The concentration of the IL-1β was not statistically different between the two materials for 24 and 48 h of exposure (p = 0.892). Histologically, stratification of epithelial cells was formed without evidence of cytotoxic damage and the epithelial thickness measured was the same for all model tissues. The excellent biocompatibility of nanozirconia, as evidenced by the multiple endpoint analyses of the 3D-OMM, may indicate the potential of its clinical application as a restorative material.
Collapse
Affiliation(s)
- Naziratul Adirah Nasarudin
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Masfueh Razali
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Victor Goh
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Wen Lin Chai
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Andanastuti Muchtar
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
6
|
Tissue Engineering of Oral Mucosa and Salivary Gland: Disease Modeling and Clinical Applications. MICROMACHINES 2020; 11:mi11121066. [PMID: 33266093 PMCID: PMC7761376 DOI: 10.3390/mi11121066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/23/2022]
Abstract
Oral mucosa and salivary gland are composed of complex and dynamic networks of extracellular matrix, multiple cell types, vasculature, and various biochemical agents. Two-dimensional (2D) cell culture is commonly used in testing new drugs and experimental therapies. However, 2D cell culture cannot fully replicate the architecture, physiological, and pathological microenvironment of living human oral mucosa and salivary glands. Recent microengineering techniques offer state of the science cell culture models that can recapitulate human organ structures and functions. This narrative review describes emerging in vitro models of oral and salivary gland tissue such as 3D cell culture models, spheroid and organoid models, tissue-on-a-chip, and functional decellularized scaffolds. Clinical applications of these models are also discussed in this review.
Collapse
|
7
|
Ren X, Gao R, van der Mei HC, Ren Y, Peterson BW, Busscher HJ. Eradicating Infecting Bacteria while Maintaining Tissue Integration on Photothermal Nanoparticle-Coated Titanium Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34610-34619. [PMID: 32633488 PMCID: PMC7404209 DOI: 10.1021/acsami.0c08592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/07/2020] [Indexed: 05/03/2023]
Abstract
Photothermal nanoparticles locally release heat when irradiated by near-infrared (NIR). Clinical applications initially involved tumor treatment, but currently extend toward bacterial infection control. Applications toward much smaller, micrometer-sized bacterial infections, however, bear the risk of collateral damage by dissipating heat into tissues surrounding an infection site. This can become a complication when photothermal nanoparticle coatings are clinically applied on biomaterial surfaces requiring tissue integration, such as titanium-made, bone-anchored dental implants. Dental implants can fail due to infection in the pocket formed between the implant screw and the surrounding soft tissue ("peri-implantitis"). We address the hitherto neglected potential complication of collateral tissue damage by evaluating photothermal, polydopamine nanoparticle (PDA-NP) coatings on titanium surfaces in different coculture models. NIR irradiation of PDA-NP-coated (200 μg/cm2) titanium surfaces with adhering Staphylococcus aureus killed staphylococci within an irradiation time window of around 3 min. Alternatively, when covered with human gingival fibroblasts, this irradiation time window maintained surface coverage by fibroblasts. Contaminating staphylococci on PDA-NP-coated titanium surfaces, as can be per-operatively introduced, reduced surface coverage by fibroblasts, and this could be prevented by NIR irradiation for 5 min or longer prior to allowing fibroblasts to adhere and grow. Negative impacts of early postoperative staphylococcal challenges to an existing fibroblast layer covering a coated surface were maximally prevented by 3 min NIR irradiation. Longer irradiation times caused collateral fibroblast damage. Late postoperative staphylococcal challenges to a protective keratinocyte layer covering a fibroblast layer required 10 min NIR irradiation for adverting a staphylococcal challenge. This is longer than foreseen from monoculture studies because of additional heat uptake by the keratinocyte layer. Summarizing, photothermal treatment of biomaterial-associated infection requires precise timing of NIR irradiation to prevent collateral damage to tissues surrounding the infection site.
Collapse
Affiliation(s)
- Xiaoxiang Ren
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ruifang Gao
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Henny C. van der Mei
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Yijin Ren
- University
of Groningen and University Medical Center Groningen, Department of Orthodontics, Hanzeplein 1, 9700
RB Groningen, The Netherlands
| | - Brandon W. Peterson
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henk J. Busscher
- University
of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
8
|
Bugueno IM, Batool F, Keller L, Kuchler-Bopp S, Benkirane-Jessel N, Huck O. Porphyromonas gingivalis bypasses epithelial barrier and modulates fibroblastic inflammatory response in an in vitro 3D spheroid model. Sci Rep 2018; 8:14914. [PMID: 30297793 PMCID: PMC6175856 DOI: 10.1038/s41598-018-33267-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023] Open
Abstract
Porphyromonas gingivalis-induced inflammatory effects are mostly investigated in monolayer cultured cells. The aim of this study was to develop a 3D spheroid model of gingiva to take into account epithelio-fibroblastic interactions. Human gingival epithelial cells (ECs) and human oral fibroblasts (FBs) were cultured by hanging drop method to generate 3D microtissue (MT) whose structure was analyzed on histological sections and the cell-to-cell interactions were observed by scanning and transmission electron microscopy (SEM and TEM). MTs were infected by P. gingivalis and the impact on cell death (Apaf-1, caspase-3), inflammatory markers (TNF-α, IL-6, IL-8) and extracellular matrix components (Col-IV, E-cadherin, integrin β1) was evaluated by immunohistochemistry and RT-qPCR. Results were compared to those observed in situ in experimental periodontitis and in human gingival biopsies. MTs exhibited a well-defined spatial organization where ECs were organized in an external cellular multilayer, while, FBs constituted the core. The infection of MT demonstrated the ability of P. gingivalis to bypass the epithelial barrier in order to reach the fibroblastic core and induce disorganization of the spheroid structure. An increased cell death was observed in fibroblastic core. The development of such 3D model may be useful to define the role of EC–FB interactions on periodontal host-immune response and to assess the efficacy of new therapeutics.
Collapse
Affiliation(s)
- Isaac Maximiliano Bugueno
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Fédération de Médecine Translationnelle de Strasbourg (FMTS), 11 rue Humann, Strasbourg, 67000, France.,Université de Strasbourg (UDS), Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, Strasbourg, 67000, France
| | - Fareeha Batool
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Fédération de Médecine Translationnelle de Strasbourg (FMTS), 11 rue Humann, Strasbourg, 67000, France.,Université de Strasbourg (UDS), Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, Strasbourg, 67000, France
| | - Laetitia Keller
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Fédération de Médecine Translationnelle de Strasbourg (FMTS), 11 rue Humann, Strasbourg, 67000, France.,Université de Strasbourg (UDS), Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, Strasbourg, 67000, France
| | - Sabine Kuchler-Bopp
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Fédération de Médecine Translationnelle de Strasbourg (FMTS), 11 rue Humann, Strasbourg, 67000, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Fédération de Médecine Translationnelle de Strasbourg (FMTS), 11 rue Humann, Strasbourg, 67000, France.,Université de Strasbourg (UDS), Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, Strasbourg, 67000, France
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Fédération de Médecine Translationnelle de Strasbourg (FMTS), 11 rue Humann, Strasbourg, 67000, France. .,Université de Strasbourg (UDS), Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, Strasbourg, 67000, France. .,Hôpitaux Universitaires de Strasbourg (HUS), Department of Periodontology, 1 place de l'Hôpital, Strasbourg, 67000, France.
| |
Collapse
|