1
|
Santos Filipe M, André R, Ferreira M, Diaz-Lanza AM, André V, Alves MM, Pacheco R, Rijo P. Valorizing sardine scales: a circular approach to sustainable collagen for cosmetics and nutrition applications. Front Pharmacol 2024; 15:1443358. [PMID: 39568576 PMCID: PMC11576274 DOI: 10.3389/fphar.2024.1443358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
Background and Objective In recent years, the consumption of fish products has led to a worrying trend where approximately two-thirds of the total amount of fish is discarded as waste. At the same time, scientific interest in exploring natural collagen sources for cosmetics and dietary supplements has increased. This study explores the potential of valorizing sardine scales (Sardina pilchardus), a by-product of the canning industry, through the extraction of collagen for potential use in dermocosmetic formulations and food supplements. Methods Collagen from sardine scales was obtained though acid and enzymatic extraction. The collagen extracts were characterized by UV-Vis, FTIR spectroscopy, SDS-PAGE, powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM). The collagen was hydrolysed with papain to small peptides. Subsequently, the biological activities of acid-soluble collagen as well as the collagen peptides in terms of antioxidant and antimicrobial activity were evaluated. Furthermore, the capacity of collagen peptides to permeate the intestinal barrier, simulated with caco-2 cells, was evaluated. Results Purified collagen extracts were obtained from sardine scales, with enzymatic extraction method having a yield three times higher than the acid method. The SDS-PAGE analysis confirmed the extraction of type I collagen as well as its hydrolysis into small fragments (25-12 kDa). In terms of biological activities, collagen and collagen peptides have not demonstrated antimicrobial activity. However, regarding antioxidant activity, collagen peptides showed three times more capacity compared to non-hydrolyzed collagen. Meanwhile, in 6 h, about 6.37% of collagen peptides could permeate the intestinal barrier. Conclusion This work represents a continuous effort to advance our understanding and utilization of Portuguese marine waste resources, with focus on the valorization of sardine co-products for the development of food supplement or cosmetic formulations, contributing to the sustainable evolution of the circular blue economy.
Collapse
Affiliation(s)
- Marcia Santos Filipe
- Escola de Ciências e Tecnologias da Saúde (ECTS), CBIOS- Universidade Lusófona's Research Center for Biosciences and Health Technologies, Lisbon, Portugal
- Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos Agentes Antitumorales, Acción Tóxica sobre Células Leucémicas), Facultad de Farmacia, Universidad de Alcalá de Henares, Alcalá de Henares, Madrid, Spain
| | - Rebeca André
- Escola de Ciências e Tecnologias da Saúde (ECTS), CBIOS- Universidade Lusófona's Research Center for Biosciences and Health Technologies, Lisbon, Portugal
| | | | - Ana María Diaz-Lanza
- Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos Agentes Antitumorales, Acción Tóxica sobre Células Leucémicas), Facultad de Farmacia, Universidad de Alcalá de Henares, Alcalá de Henares, Madrid, Spain
| | - Vânia André
- Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Lisboa, Portugal
| | - Marta M Alves
- Departamento de Engenharia Química, Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Pacheco
- Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Lisboa, Portugal
- Department of Chemical Engineering, ISEL - Instituto Superior de Engenharia de Lisboa, Lisboa, Portugal
| | - Patrícia Rijo
- Escola de Ciências e Tecnologias da Saúde (ECTS), CBIOS- Universidade Lusófona's Research Center for Biosciences and Health Technologies, Lisbon, Portugal
- Faculdade de Farmácia, Instituto de Investigação do Medicamento (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Chanu KD, Thoithoisana S, Kar A, Mukherjee PK, Radhakrishnanand P, Parmar K, Sharma N. Phytochemically analysed extract of Ageratina adenophora (Sprengel) R.M.King & H. Rob. initiates caspase 3-dependant apoptosis in colorectal cancer cell: A synergistic approach with chemotherapeutic drugs. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117591. [PMID: 38104872 DOI: 10.1016/j.jep.2023.117591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ageratina adenophora (Sprengel) R.M.King & H.Rob. has been used as traditional indigenous medicine all across the globe for its diverse therapeutic applications such as anticancer, analgesic, antipyretic, thermogenic, antiseptic, antimicrobial as well as astringent. The various ethnic groups of India use plant parts to treat cuts and wounds, venomous insect bites, skin lesions, blisters, scabies and other skin irritations, gastritis and indigestion problems, cough, stomach ache and dysentery. The Portuguese traditionally extract the juice from the plant and use it for cancer, diabetes, liver disorder, gallbladder and stomach ailments. Nigerian healers use different parts of the plant to treat diabetes, fever and inflammation. AIM OF THE STUDY The aim of this study is to investigate the cytotoxic potential of A. adenophora hydroalcoholic leaves extract (AHL) on Colorectal cancer (CRC) cell lines (HCT-116, HCT-15 and HT-29), synergistic potential with chemotherapeutic drugs 5FU and Cisplatin as well as reactive oxygen species (ROS) generation, based on the sample collected from Mao district of Manipur, India. Identification of bioactive phytocompounds in AHL was also performed by HRLCMS. METHODS The AHL was evaluated for its cytotoxic as well as antiproliferative activities by 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide (MTT) assay, clonogenic and cell migration assays. The total phenolic content (TPC) and total flavonoid content (TFC) were quantified by Folin-ciocalteu and Aluminium chloride assays respectively. Caspase 3 activation was evaluated using Caspase-3 Assay Kit. Apoptosis detection by flow cytometry was carried out using annexin V-FITC/PI apoptosis detection kit. The apoptotic cells were also visualized by Giemsa and 4',6-Diamidino-2-phenylindole (DAPI) staining. The intracellular Reactive oxygen species (ROS) generation was also evaluated using fluorescent probe 2',7'-dichlorodihydrofluorescein di-acetate (H2DCFDA) in flow cytometry. The combination effects of AHL with chemotherapeutic drugs 5FU and Cisplatin were also evaluated. The identification of phytochemical constituents of AHL were analysed by HR-LCMS. RESULTS The AHL induced cytotoxic activity significantly in HCT-116 with IC50 of 65.65 ± 2.10 μg/mL, but non-cancerous cell HeK-293 was least cytotoxic. Colony formation and cell migration were inhibited in a dose and time dependent manner. The cell morphology upon AHL treatment was significantly altered with apoptotic features. The extract was rich in total phenolic (82.09 ± 0.35mgGAE/g) and total flavonoid (58.31 ± 0.55 mgQAE/g) contents. AHL induced apoptosis as detected by AnnexinV/PI, via activation of caspase 3 and elevated production of Reactive oxygen species (ROS). AHL in combination with 5FU and Cisplatin acts synergistically and potentiates the therapeutic properties of the extract. Sesquiterpenes, phenolic as well as flavonoid derivatives with anticancer properties were detected in AHL by HRLCMS, and these phytoconstituents may be attributed for anticancer property of AHL. CONCLUSION The present study evaluates the effectiveness of AHL against Colorectal cancer cell lines. AHL is cytotoxic and induces apoptosis in HCT-116 cells by caspase 3 activation and increased ROS production that can be attributed to sesquiterpenoids. Thus, the plant A. adenophora has therapeutic potential for Colorectal cancer and can be further exploited for developing anticancer drug.
Collapse
Affiliation(s)
- Khaidem Devika Chanu
- Institute of Bio-resources and Sustainable Development (IBSD), Department of Biotechnology, Ministry of Science and Technology, Government of India, Takyelpat, Imphal, 795001, Manipur, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, Odisha, India.
| | - Soibam Thoithoisana
- Institute of Bio-resources and Sustainable Development (IBSD), Department of Biotechnology, Ministry of Science and Technology, Government of India, Takyelpat, Imphal, 795001, Manipur, India; Department of Zoology, Manipur University (MU), Imphal, 795003, Manipur, India.
| | - Amit Kar
- Institute of Bio-resources and Sustainable Development (IBSD), Department of Biotechnology, Ministry of Science and Technology, Government of India, Takyelpat, Imphal, 795001, Manipur, India.
| | - Pulok Kumar Mukherjee
- Institute of Bio-resources and Sustainable Development (IBSD), Department of Biotechnology, Ministry of Science and Technology, Government of India, Takyelpat, Imphal, 795001, Manipur, India.
| | - P Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research Guwahati (NIPER), Assam, 781101, India.
| | - Keyur Parmar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research Guwahati (NIPER), Assam, 781101, India.
| | - Nanaocha Sharma
- Institute of Bio-resources and Sustainable Development (IBSD), Department of Biotechnology, Ministry of Science and Technology, Government of India, Takyelpat, Imphal, 795001, Manipur, India.
| |
Collapse
|
3
|
Chanu KD, Sharma N, Kshetrimayum V, Chaudhary SK, Ghosh S, Haldar PK, Mukherjee PK. Ageratina adenophora (Spreng.) King & H. Rob. Standardized leaf extract as an antidiabetic agent for type 2 diabetes: An in vitro and in vivo evaluation. Front Pharmacol 2023; 14:1178904. [PMID: 37138848 PMCID: PMC10149788 DOI: 10.3389/fphar.2023.1178904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
Type 2 diabetes has become one of the major health concerns of the 21st century, marked by hyperglycemia or glycosuria, and is associated with the development of several secondary health complications. Due to the fact that chemically synthesized drugs lead to several inevitable side effects, new antidiabetic medications from plants have gained substantial attention. Thus, the current study aims to evaluate the antidiabetic capacity of the Ageratina adenophora hydroalcoholic (AAHY) extract in streptozotocin-nicotinamide (STZ-NA)-induced diabetic Wistar albino rats. The rats were segregated randomly into five groups with six rats each. Group I was normal control, and the other four groups were STZ-NA-induced. Group II was designated diabetic control, and group III, IV, and V received metformin (150 mg/kg b.w.) and AAHY extract (200 and 400 mg/kg b.w.) for 28 days. Fasting blood glucose, serum biochemicals, liver and kidney antioxidant parameters, and pancreatic histopathology were observed after the experimental design. The study concludes that the AAHY extract has a significant blood glucose lowering capacity on normoglycemic (87.01 ± 0.54 to 57.21 ± 0.31), diabetic (324 ± 2.94 to 93 ± 2.04), and oral glucose-loaded (117.75 ± 3.35 to 92.75 ± 2.09) Wistar albino rats. The in vitro studies show that the AAHY extract has α-glucosidase and α-amylase inhibitory activities which can restore the altered blood glucose level, glycated hemoglobin, body weight, and serum enzymes such as serum glutamic pyruvic transaminase, serum glutamic oxaloacetic transaminase, serum alkaline phosphatase, total protein, urea, and creatinine levels close to the normal range in the treated STZ-NA-induced diabetic rats. The evaluation of these serum biochemicals is crucial for monitoring the diabetic condition. The AAHY extract has significantly enhanced tissue antioxidant parameters, such as superoxide dismutase, glutathione, and lipid peroxidation, close to normal levels. The presence of high-quantity chlorogenic (6.47% w/w) and caffeic (3.28% w/w) acids as some of the major phytoconstituents may contribute to the improvement of insulin resistance and oxidative stress. The study provides scientific support for the utilization of A. adenophora to treat type 2 diabetes in the STZ-NA-induced diabetic rat model. Although the preventive role of the AAHY extract in treating Wistar albino rat models against type 2 diabetes mellitus is undeniable, further elaborative research is required for efficacy and safety assessment in human beings.
Collapse
Affiliation(s)
- Khaidem Devika Chanu
- Institute of Bio-resources and Sustainable Development (IBSD), Imphal, Manipur, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, India
| | - Nanaocha Sharma
- Institute of Bio-resources and Sustainable Development (IBSD), Imphal, Manipur, India
- *Correspondence: Nanaocha Sharma,
| | - Vimi Kshetrimayum
- Institute of Bio-resources and Sustainable Development (IBSD), Imphal, Manipur, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, India
| | | | - Suparna Ghosh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University (JU), Kolkata, West Bengal, India
| | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University (JU), Kolkata, West Bengal, India
| | - Pulok K. Mukherjee
- Institute of Bio-resources and Sustainable Development (IBSD), Imphal, Manipur, India
| |
Collapse
|
4
|
Maheo AR, B. SMV, T. AAP. Biosynthesis and characterization of Eupatorium adenophorum and chitosan mediated Copper oxide nanoparticles and their antibacterial activity. RESULTS IN SURFACES AND INTERFACES 2022. [DOI: 10.1016/j.rsurfi.2022.100048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Zong L, Li C, Shi J, Yue J, Wang X. FTIR microspectroscopic study of biomacromolecular changes in As 2O 3 induced MGC803 cells apoptosis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120220. [PMID: 34329848 DOI: 10.1016/j.saa.2021.120220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
It is well-known that As2O3 has significant anticancer effects, however, little is known regarding its mechanism for treating gastric cancer. Thus, we investigated biomacromolecular (DNA, proteins and lipids) changes of human gastric cancer cell line MGC803 to further understand As2O3-induced apoptosis. Conventional methods showed the increase of the apoptosis rate, the decrease of mitochondrial membrane potential (MMP), the accumulation of reactive oxygen species (ROS) and the changes of apoptotic proteins, etc. Fourier transform infrared (FTIR) microspectroscopy sensitively recognized overall biomacromolecular changes caused by the above: Peak-area ratios indicated the content/structure changes in DNA, proteins and lipids. Principle component analysis (PCA) revealed significant changes in intracellular DNA concentration and structure. This study suggests that As2O3 may exert anti-gastric cancer effect by altering intracellular biomacromolecules especially DNA.
Collapse
Affiliation(s)
- Ling Zong
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chao Li
- The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230601, China; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Jie Shi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jianjun Yue
- The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China
| | - Xin Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
6
|
Ren Z, Okyere SK, Wen J, Xie L, Cui Y, Wang S, Wang J, Cao S, Shen L, Ma X, Yu S, Deng J, Hu Y. An Overview: The Toxicity of Ageratina adenophora on Animals and Its Possible Interventions. Int J Mol Sci 2021; 22:11581. [PMID: 34769012 PMCID: PMC8584174 DOI: 10.3390/ijms222111581] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
Ageratina adenophora is one of the major invasive weeds that causes instability of the ecosystem. Research has reported that A. adenophora produces allelochemicals that inhibit the growth and development of food crops, and also contain some toxic compounds that cause toxicity to animals that consume it. Over the past decades, studies on the identification of major toxic compounds of A. adenophora and their toxic molecular mechanisms have been reported. In addition, weed control interventions, such as herbicides application, was employed to reduce the spread of A. adenophora. However, the development of therapeutic and prophylactic measures to treat the various A. adenophora-induced toxicities, such as hepatotoxicity, splenotoxicity and other related disorders, have not been established to date. The main toxic pathogenesis of A. adenophora is oxidative stress and inflammation. However, numerous studies have verified that some extracts and secondary metabolites isolated from A. adenophora possess anti-oxidation and anti-inflammation activities, which implies that these extracts can relieve toxicity and aid in the development of drug or feed supplements to treat poisoning-related disorders caused by A. adenophora. Furthermore, beneficial bacteria isolated from rumen microbes and A. adenophora can degrade major toxic compounds in A. adenophora so as to be developed into microbial feed additives to help ameliorate toxicity mediated by A. adenophora. This review presents an overview of the toxic mechanisms of A. adenophora, provides possible therapeutic strategies that are available to mitigate the toxicity of A. adenophora and introduces relevant information on identifying novel prophylactic and therapeutic measures against A. adenophora-induced toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Yanchun Hu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.R.); (S.K.O.); (J.W.); (L.X.); (Y.C.); (S.W.); (J.W.); (S.C.); (L.S.); (X.M.); (S.Y.); (J.D.)
| |
Collapse
|
7
|
Ferraz AR, Pacheco R, Vaz PD, Pintado CS, Ascensão L, Serralheiro ML. Melanin: Production from Cheese Bacteria, Chemical Characterization, and Biological Activities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010562. [PMID: 34682308 PMCID: PMC8535951 DOI: 10.3390/ijerph182010562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022]
Abstract
Pigments are compounds of importance to several industries, for instance, the food industry, where they can be used as additives, color intensifiers, and antioxidants. As the current trend around the world is shifting to the use of eco-friendly commodities, demand for natural dyes is increasing. Melanins are pigments that are produced by several microorganisms. Pseudomonas putida ESACB 191, isolated from goat cheese rind, was described as a brown pigment producer. This strain produces a brown pigment via the synthetic Müeller-Hinton Broth. This brown compound was extracted, purified, analyzed by FTIR and mass spectrometry, and identified as eumelanin. The maximum productivity was 1.57 mg/L/h. The bioactivity of eumelanin was evaluated as the capacity for scavenging free radicals (antioxidant activity), EC50 74.0 ± 0.2 μg/mL, and as an acetylcholinesterase inhibitor, with IC50 575 ± 4 μg/mL. This bacterial eumelanin did not show cytotoxicity towards A375, HeLa Kyoto, HepG2, or Caco2 cell lines. The effect of melanin on cholesterol absorption and drug interaction was evaluated in order to understand the interaction of melanin present in the cheese rind when ingested by consumers. However, it had no effect either on cholesterol absorption through an intestinal simulated barrier formed by the Caco2 cell line or with the drug ezetimibe.
Collapse
Affiliation(s)
- Ana Rita Ferraz
- BioISI—Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal; (A.R.F.); (R.P.)
| | - Rita Pacheco
- BioISI—Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal; (A.R.F.); (R.P.)
- Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Av. Conselheiro Emídio Navarro, 1959-007 Lisboa, Portugal
| | - Pedro D. Vaz
- Fundação Champalimaud, Av. Brasília, 1400-038 Lisboa, Portugal;
| | - Cristina S. Pintado
- Escola Superior Agrária (ESA), Instituto Politécnico de Castelo Branco (IPCB), Quinta da Sra. de Mércoles, Apartado 119, 6001-909 Castelo Branco, Portugal;
- CERNAS/IPCB, Centro de Recursos Naturais, Ambiente e Sociedade/Instituto Politécnico de Castelo Branco, Av. Pedro Álvares Cabral 12, 6000-084 Castelo Branco, Portugal
| | - Lia Ascensão
- Centro para o Estudo do Ambiente e do Mar (CESAM), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Maria Luisa Serralheiro
- BioISI—Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal; (A.R.F.); (R.P.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Correspondence: ; Tel.: +351-21-7500935
| |
Collapse
|
8
|
Okyere SK, Wen J, Cui Y, Xie L, Gao P, Wang J, Wang S, Hu Y. Toxic mechanisms and pharmacological properties of euptox A, a toxic monomer from A. adenophora. Fitoterapia 2021; 155:105032. [PMID: 34517058 DOI: 10.1016/j.fitote.2021.105032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/07/2021] [Accepted: 09/05/2021] [Indexed: 12/13/2022]
Abstract
A. adenophora (Spreng.) R.M. King & H. Rob. is as invasive plant known to cause toxicity in humans and animals. The plant's toxic activities have been associated with some toxic phytochemicals present in the plant. One of the major phytochemicals that have been reported to induce toxicity in various organs is euptox A (9-oxo-10, 11-dehydroageraphorone). Previous studies have reported that the main target organs of euptox A are the liver and spleen. Although, many studies have reported on euptox A toxicity in rats and mice, the mechanism of action and the beneficial uses of this toxin as well as it potential uses have not been fully established in literatures. Therefore, this review firstly, aims at elaborating on the toxic effects and mechanism of action of euptox A to give basic knowledge to researchers to help in the development of strategies that will reduce its toxicity to the environment. Secondly, this paper will also report on some beneficial uses of euptox A in recent years as well as suggest some future potential applications of this toxin to help in the utilization of this plant resource.
Collapse
Affiliation(s)
- Samuel Kumi Okyere
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Juan Wen
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Yujing Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Lei Xie
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Pei Gao
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Jianchen Wang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Shu Wang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Yanchun Hu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China.
| |
Collapse
|
9
|
Ressaissi A, Pacheco R, Serralheiro MLM. Molecular-level changes induced by hydroxycinnamic acid derivatives in HepG2 cell line: Comparison with pravastatin. Life Sci 2021; 283:119846. [PMID: 34324915 DOI: 10.1016/j.lfs.2021.119846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/17/2022]
Abstract
Hydroxycinnamic acid derivatives are an important class of polyphenols found in fruits, vegetables, and medicinal plants and widely consumed in human diet. In the present work, alterations of HepG2 cells biochemical profile under the effect of four hydroxycinnamic acid derivatives (caffeic acid, m-coumaric acid, chlorogenic acid and rosmarinic acid) relatively to the effect of pravastatin, a drug often prescribed to inhibit HMG-CoA reductase enzyme, the regulator enzyme in the cholesterol biosynthesis pathway, were reported. The application of FTIR spectroscopy in combination with multivariate analysis by PCA showed a similarity between pravastatin and the four hydroxycinnamic acid derivatives in metabolite profile modification expressed by various changes in proteins region, the phosphate region which mainly corresponds to nucleic acids as well as in lipids regions. FTIR structural analysis in the amide I region, using resolution enhancement methods, such as second derivative and amide I deconvolution method, revealed significant decrease in α-helix/random coil and intermolecular β-sheet decreased while intramolecular β-sheet in treated cells showed an increase. It was also noticed that the intracellular cholesterol as well as esterified ingredients such as cholesterol esters in the cell membrane decreased. Moreover, principal component analysis (PCA) of the spectral data showed that the compounds and pravastatin were well separated from untreated cells showing a different mode of action on HepG2 treated cells for each compound.
Collapse
Affiliation(s)
- Asma Ressaissi
- Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal.
| | - Rita Pacheco
- Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal; Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Av. Conselheiro Emídio Navarro, 1959-007 Lisboa, Portugal.
| | - Maria Luísa M Serralheiro
- Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal; Universidade de Lisboa, Faculdade de Ciências, Departamento de Química e Bioquímica, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
10
|
Neupane NP, Karn AK, Mukeri IH, Pathak P, Kumar P, Singh S, Qureshi IA, Jha T, Verma A. Molecular dynamics analysis of phytochemicals from Ageratina adenophora against COVID-19 main protease (M pro) and human angiotensin-converting enzyme 2 (ACE2). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021; 32:101924. [PMID: 33527003 PMCID: PMC7839396 DOI: 10.1016/j.bcab.2021.101924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/19/2020] [Accepted: 01/19/2021] [Indexed: 01/26/2023]
Abstract
The outbreak of COVID-19 created unprecedented strain in the healthcare system. Various research revealed that COVID-19 main protease (Mpro) and human angiotensin-converting enzyme 2 (ACE2) are responsible for viral replication and entry into the human body, respectively. Blocking the activity of these enzymes gives a potential therapeutic target for the COVID-19. The objective of the study was to explore phytochemicals from Ageratina adenophora against SARS-CoV-2 through in-silico studies. In this study, 34 phytochemicals of A. adenophora were docked with Mpro and ACE2 through AutoDock Tools-1.5.6 and their binding affinity was studied. Phytochemicals with higher affinity have been chosen for further molecular dynamics simulations to determine the stability with target protein. Molecular dynamics simulations were studied on GROMACS 5.1.4 version. Furthermore, 5-β-glucosyl-7-demethoxy-encecalin (5GDE) and 2-oxocadinan-3,6(11)-dien-12,7-olide (BODO) were found to be potential blockers with excellent binding affinity with Mpro and ACE2 than their native inhibitors remdesivir and hydroxychloroquine respectively. The drug likeness study and pharmacokinetics of the phytoconstituents present in A. adenophora provide an excellent support for the lead drug discovery against COVID-19.
Collapse
Affiliation(s)
- Netra Prasad Neupane
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Abhishek Kumar Karn
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Imdad Husen Mukeri
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Prateek Pathak
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
| | - Praveen Kumar
- Uttar Pradesh University of Medical Sciences, Faculty of Pharmacy, Saifai, UP, 206130, India
| | - Samayaditya Singh
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India
| |
Collapse
|
11
|
Silva AFC, Haris PI, Serralheiro ML, Pacheco R. Mechanism of action and the biological activities of Nigella sativa oil components. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
André R, Guedes L, Melo R, Ascensão L, Pacheco R, Vaz PD, Serralheiro ML. Effect of Food Preparations on In Vitro Bioactivities and Chemical Components of Fucus vesiculosus. Foods 2020; 9:foods9070955. [PMID: 32708417 PMCID: PMC7404634 DOI: 10.3390/foods9070955] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/06/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Fucus vesiculosus is a brown macroalgae used in food and generally considered safe to be consumed, according to EU Directive (EC 258/97). The aim of this study is to analyze the effect of food preparation on F.vesiculosus of different origins on what concerns its chemical constituents and final bioactivities. The aqueous extract of the seaweeds were obtained at different temperatures, similar to food preparation and then purified by SPE. The compound identification was carried out by Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS/MS) and algae extracts microstructure were observed by Scanning Electron Microscopy (SEM). The activities were determined by using antioxidant activity, inhibition of acetylcholinesterase (AChE) and 3-hidroxi-3-methyl-glutaril-CoA (HMG-CoA) reductase (HMGR) together with Caco-2 cells line simulating the intestinal barrier. The activity of AChE and the HMGR were inhibited by the extracts giving IC50 values of 15.0 ± 0.1 µg/mL and 4.2 ± 0.1 µg/mL, respectively and 45% of the cholesterol permeation inhibition. The main compounds identified were phlorotannins and peptides derivatives. The mode of preparation significantly influenced the final bioactivities. Moreover, the in vitro results suggest that the preparation of F. vesiculosus as a soup could have hypercholesterolemia lowering effect.
Collapse
Affiliation(s)
- Rebeca André
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (R.A.); (L.G.); (R.P.)
| | - Laura Guedes
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (R.A.); (L.G.); (R.P.)
| | - Ricardo Melo
- Marine and Environmental Sciences Centre (MARE), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - Lia Ascensão
- Centre for Environmental and Marine Studies (CESAM) Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - Rita Pacheco
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (R.A.); (L.G.); (R.P.)
- Department of Chemical Engineering, ISEL—Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal
| | - Pedro D. Vaz
- Champalimaud Foundation, Champalimaud Centre for the Unknown, 1400-038 Lisboa, Portugal;
| | - Maria Luísa Serralheiro
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (R.A.); (L.G.); (R.P.)
- Department of Chemistry and Biochemistry, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C8 bldg, 1749-016 Lisboa, Portugal
- Correspondence: ; Tel.: +351-21-750-0935
| |
Collapse
|
13
|
Bioactivities of Centaurium erythraea (Gentianaceae) Decoctions: Antioxidant Activity, Enzyme Inhibition and Docking Studies. Molecules 2019; 24:molecules24203795. [PMID: 31652501 PMCID: PMC6832739 DOI: 10.3390/molecules24203795] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/09/2019] [Accepted: 10/21/2019] [Indexed: 11/29/2022] Open
Abstract
Centaurium erythraea is recommended for the treatment of gastrointestinal disorders and to reduce hypercholesterolemia in ethno-medicinal practice. To perform a top-down study that could give some insight into the molecular basis of these bioactivities, decoctions from C. erythraea leaves were prepared and the compounds were identified by liquid chromatography-high resolution tandem mass spectrometry (LC–MS/MS). Secoiridoids glycosides, like gentiopicroside and sweroside, and several xanthones, such as di-hydroxy-dimethoxyxanthone, were identified. Following some of the bioactivities previously ascribed to C. erythraea, we have studied its antioxidant capacity and the ability to inhibit acetylcholinesterase (AChE) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR). Significant antioxidant activities were observed, following three assays: free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) reduction; lipoperoxidation; and NO radical scavenging capacity. The AChE and HMGR inhibitory activities for the decoction were also measured (56% at 500 μg/mL and 48% at 10 μg/mL, respectively). Molecular docking studies indicated that xanthones are better AChE inhibitors than gentiopicroside, while this compound exhibits a better shape complementarity with the HMGR active site than xanthones. To the extent of our knowledge, this is the first report on AChE and HMGR activities by C. erythraea decoctions, in a top-down analysis, complemented with in silico molecular docking, which aims to understand, at the molecular level, some of the biological effects ascribed to infusions from this plant.
Collapse
|