1
|
Černáková L, Haluz P, Mastihuba V, Košťálová Z, Karnišová Potocká E, Mastihubová M. Enzymatic β-Mannosylation of Phenylethanoid Alcohols. Molecules 2025; 30:414. [PMID: 39860283 PMCID: PMC11767590 DOI: 10.3390/molecules30020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Phenylethanoid glycosides (PhGs) are widely occurring secondary metabolites of medicinal plants with interesting biological activities such as antioxidant, anti-inflammatory, neuroprotective, antiviral, hepatoprotective, immunomodulatory, etc. They are characterized by a structural core formed by a phenethyl alcohol, usually tyrosol or hydroxytyrosol, attached to β-D-glucopyranose via a glycosidic bond. This core is usually further decorated by attached phenolic acids or another saccharide. Several studies suggest an important role of the saccharidic fragment in the biological activities of PhGs, provoking demand for new glycovariants of natural PhGs. This study presents the preparation of β-mannosylated analogs of tyrosol β-D-glucopyranoside (salidroside) and hydroxytyrosol β-D-glucopyranoside (hydroxysalidroside). While the chemical synthesis of β-D-mannopyranosides is rather challenging, they can be prepared by enzymatic catalysis. We found that Novozym 188, an industrial β-glucosidase, also contains β-mannosidase and used this enzyme in the preparation of tyrosol β-D-mannopyranoside and hydroxytyrosol β-D-mannopyranoside in 12 and 16% chemical yields, respectively, by transglycosylation from β-D-mannopyranosyl-(1→4)-D-mannose. The mannosylation was chemoselective and occurred exclusively on the primary hydroxyls of tyrosol and hydroxytyrosol, and the glycosylation of phenolic moieties of the aglycons was observed.
Collapse
Affiliation(s)
| | | | | | | | | | - Mária Mastihubová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-845 38 Bratislava, Slovakia; (L.Č.); (P.H.); (V.M.); (Z.K.)
| |
Collapse
|
2
|
Karkeszová K, Antošová M, Potocká EK, Mastihuba V, Polakovič M. Medium engineering of phenylethanoid transfructosylation catalysed by yeast β-fructofuranosidase. Bioprocess Biosyst Eng 2023; 46:237-249. [PMID: 36463528 DOI: 10.1007/s00449-022-02828-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022]
Abstract
Tyrosol and hydroxytyrosol, by-products of olive oil production, are valuable substrates for enzymatic transglycosylation that can provide products with pharmaceutical potential. Phenylethanoid fructosides are produced from sucrose and phenylethanoids by the catalytic action of β-fructofuranosidases. This work dealt with the potential of the most abundant β-fructofuranosidase, baker's yeast invertase, for this bioconversion. The effects of sucrose and phenylethanoid concentrations were investigated with a focus on the selectivity of phenylethanoid transfructosylation and fructoside yields. For this purpose, initial rate and progress curve experiments were carried out for the initial (hydroxy)tyrosol and sucrose concentrations of 0.072-0.3 M and 1-2 M, respectively. Reaction courses exhibited either a maximum or plateau of fructoside yield in the range of about 10-18%. The addition of deep eutectic solvents was applied in the concentration range from 5 to 70% (v/v) to investigate the possibility of shifting the reaction equilibrium towards fructoside synthesis.
Collapse
Affiliation(s)
- Klaudia Karkeszová
- Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology, Institute of Chemical and Environmental Engineering, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Monika Antošová
- Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology, Institute of Chemical and Environmental Engineering, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Elena Karnišová Potocká
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 38, Bratislava, Slovakia
| | - Vladimír Mastihuba
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 38, Bratislava, Slovakia
| | - Milan Polakovič
- Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology, Institute of Chemical and Environmental Engineering, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia.
| |
Collapse
|
3
|
Chacon FT, Raup-Konsavage WM, Vrana KE, Kellogg JJ. Secondary Terpenes in Cannabis sativa L.: Synthesis and Synergy. Biomedicines 2022; 10:biomedicines10123142. [PMID: 36551898 PMCID: PMC9775512 DOI: 10.3390/biomedicines10123142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Cannabis is a complex biosynthetic plant, with a long history of medicinal use. While cannabinoids have received the majority of the attention for their psychoactive and pharmacological activities, cannabis produces a diverse array of phytochemicals, such as terpenes. These compounds are known to play a role in the aroma and flavor of cannabis but are potent biologically active molecules that exert effects on infectious as well as chronic diseases. Furthermore, terpenes have the potential to play important roles, such as synergistic and/or entourage compounds that modulate the activity of the cannabinoids. This review highlights the diversity and bioactivities of terpenes in cannabis, especially minor or secondary terpenes that are less concentrated in cannabis on a by-mass basis. We also explore the question of the entourage effect in cannabis, which studies to date have supported or refuted the concept of synergy in cannabis, and where synergy experimentation is headed, to better understand the interplay between phytochemicals within Cannabis sativa L.
Collapse
Affiliation(s)
- Francisco T. Chacon
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | | | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Joshua J. Kellogg
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
- Correspondence: ; Tel.: +1-814-865-2887
| |
Collapse
|
4
|
Zajičková T, Horváthová E, Kyzek S, Šályová E, Túryová E, Ševčovičová A, Gálová E. Comparison of Cytotoxic, Genotoxic, and DNA-Protective Effects of Skyrin on Cancerous vs. Non-Cancerous Human Cells. Int J Mol Sci 2022; 23:5339. [PMID: 35628149 PMCID: PMC9142076 DOI: 10.3390/ijms23105339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Abstract
Secondary metabolites as a potential source of anticancer therapeutics have been the subject of many studies. Since hypericin, a metabolite isolated from Hypericum perforatum L., shows several biomedical properties applicable in oncology, the aim of our study was to investigate its potential precursor skyrin in terms of genotoxic and DNA-protective effects. These skyrin effects were analyzed by cell-free methods, and cytotoxicity was estimated by an MTT assay and by a trypan blue exclusion test, while the genotoxic/antigenotoxic potential was examined by comet assay using non-cancerous human lymphocytes and the HepG2 cancer cell line. Skyrin did not show DNA-damaging effects but rather exhibited DNA-protectivity using a DNA-topology assay. However, we observed only weak antioxidant and chelating skyrin properties in other cell-free methods. Regarding the cytotoxic activity of skyrin, HepG2 cells were more prone to skyrin-induced death in comparison to human lymphocytes. Skyrin in non-cytotoxic concentrations did not exhibit elevated genotoxicity in both cell types. On the other hand, skyrin displayed moderate DNA-protective effects that were more noticeable in the case of non-cancerous human lymphocytes. The potential genotoxic effects of skyrin were not observed, and its DNA-protective capacity was more prominent in non-cancerous cells. Therefore, skyrin might be a promising agent used in anticancer therapy.
Collapse
Affiliation(s)
- Terézia Zajičková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (T.Z.); (E.Š.); (E.T.); (A.Š.); (E.G.)
| | - Eva Horváthová
- Cancer Research Institute, Biomedical Research Centre of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia;
| | - Stanislav Kyzek
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (T.Z.); (E.Š.); (E.T.); (A.Š.); (E.G.)
| | - Eva Šályová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (T.Z.); (E.Š.); (E.T.); (A.Š.); (E.G.)
| | - Eva Túryová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (T.Z.); (E.Š.); (E.T.); (A.Š.); (E.G.)
| | - Andrea Ševčovičová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (T.Z.); (E.Š.); (E.T.); (A.Š.); (E.G.)
| | - Eliška Gálová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (T.Z.); (E.Š.); (E.T.); (A.Š.); (E.G.)
| |
Collapse
|
5
|
Synthesis of Tyrosol and Hydroxytyrosol Glycofuranosides and Their Biochemical and Biological Activities in Cell-Free and Cellular Assays. Molecules 2021; 26:molecules26247607. [PMID: 34946703 PMCID: PMC8709365 DOI: 10.3390/molecules26247607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Tyrosol (T) and hydroxytyrosol (HOT) and their glycosides are promising candidates for applications in functional food products or in complementary therapy. A series of phenylethanoid glycofuranosides (PEGFs) were synthesized to compare some of their biochemical and biological activities with T and HOT. The optimization of glycosylation promoted by environmentally benign basic zinc carbonate was performed to prepare HOT α-L-arabino-, β-D-apio-, and β-D-ribofuranosides. T and HOT β-D-fructofuranosides, prepared by enzymatic transfructosylation of T and HOT, were also included in the comparative study. The antioxidant capacity and DNA-protective potential of T, HOT, and PEGFs on plasmid DNA were determined using cell-free assays. The DNA-damaging potential of the studied compounds for human hepatoma HepG2 cells and their DNA-protective potential on HepG2 cells against hydrogen peroxide were evaluated using the comet assay. Experiments revealed a spectrum of different activities of the studied compounds. HOT and HOT β-D-fructofuranoside appear to be the best-performing scavengers and protectants of plasmid DNA and HepG2 cells. T and T β-D-fructofuranoside display almost zero or low scavenging/antioxidant activity and protective effects on plasmid DNA or HepG2 cells. The results imply that especially HOT β-D-fructofuranoside and β-D-apiofuranoside could be considered as prospective molecules for the subsequent design of supplements with potential in food and health protection.
Collapse
|
6
|
Velderrain-Rodríguez GR, Quero J, Osada J, Martín-Belloso O, Rodríguez-Yoldi MJ. Phenolic-Rich Extracts from Avocado Fruit Residues as Functional Food Ingredients with Antioxidant and Antiproliferative Properties. Biomolecules 2021; 11:biom11070977. [PMID: 34356601 PMCID: PMC8301936 DOI: 10.3390/biom11070977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
In this study, the total phenolic compounds content and profile, the nutritional value, the antioxidant and antiproliferative activities of avocado peel, seed coat, and seed extracts were characterized. Additionally, an in-silico analysis was performed to identify the phenolic compounds with the highest intestinal absorption and Caco-2 permeability. The avocado peel extract possessed the highest content of phenolic compounds (309.95 ± 25.33 mMol GA/100 g of extract) and the lowest effective concentration (EC50) against DPPH and ABTS radicals (72.64 ± 10.70 and 181.68 ± 18.47, respectively). On the other hand, the peel and seed coat extracts had the lowest energy densities (226.06 ± 0.06 kcal/100 g and 219.62 ± 0.49 kcal/100 g, respectively). Regarding the antiproliferative activity, the avocado peel extract (180 ± 40 µg/mL) showed the lowest inhibitory concentration (IC50), followed by the seed (200 ± 21 µg/mL) and seed coat (340 ± 32 µg/mL) extracts. The IC50 of the extracts induced apoptosis in Caco-2 cells at the early and late stages. According to the in-silico analysis, these results could be related to the higher Caco-2 permeability to hydroxysalidroside, salidroside, sakuranetin, and luteolin. Therefore, this study provides new insights regarding the potential use of these extracts as functional ingredients with antioxidant and antiproliferative properties and as medicinal agents in diseases related to oxidative stress such as cancer.
Collapse
Affiliation(s)
- Gustavo R. Velderrain-Rodríguez
- Agrotecnio Center, Department of Food Technology, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; (G.R.V.-R.); (O.M.-B.)
| | - Javier Quero
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (J.Q.); (J.O.)
| | - Jesús Osada
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (J.Q.); (J.O.)
- Department of Biochemistry and Molecular Cell Biology, Veterinary Faculty, University of Zaragoza, 50009 Zaragoza, Spain
- CIBERobn, ISCIII, IIS Aragón, IA2, 28029 Madrid, Spain
| | - Olga Martín-Belloso
- Agrotecnio Center, Department of Food Technology, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; (G.R.V.-R.); (O.M.-B.)
| | - María Jesús Rodríguez-Yoldi
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (J.Q.); (J.O.)
- CIBERobn, ISCIII, IIS Aragón, IA2, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-976-761649
| |
Collapse
|
7
|
Six Natural Phenylethanoid Glycosides: Total Synthesis, Antioxidant and Tyrosinase Inhibitory Activities. ChemistrySelect 2020. [DOI: 10.1002/slct.202002608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|