1
|
Lin Y, Lin C, Cao Y, Chen Y. Caenorhabditis elegans as an in vivo model for the identification of natural antioxidants with anti-aging actions. Biomed Pharmacother 2023; 167:115594. [PMID: 37776641 DOI: 10.1016/j.biopha.2023.115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Natural antioxidants have recently emerged as a highly exciting and significant topic in anti-aging research. Diverse organism models present a viable protocol for future research. Notably, many breakthroughs on natural antioxidants have been achieved in the nematode Caenorhabditis elegans, an animal model frequently utilized for the study of aging research and anti-aging drugs in vivo. Due to the conservation of signaling pathways on oxidative stress resistance, lifespan regulation, and aging disease between C. elegans and multiple high-level organisms (humans), as well as the low and controllable cost of time and labor, it gradually develops into a trustworthy in vivo model for high-throughput screening and validation of natural antioxidants with anti-aging actions. First, information and models on free radicals and aging are presented in this review. We also describe indexes, detection methods, and molecular mechanisms for studying the in vivo antioxidant and anti-aging effects of natural antioxidants using C. elegans. It includes lifespan, physiological aging processes, oxidative stress levels, antioxidant enzyme activation, and anti-aging pathways. Furthermore, oxidative stress and healthspan improvement induced by natural antioxidants in humans and C. elegans are compared, to understand the potential and limitations of the screening model in preclinical studies. Finally, we emphasize that C. elegans is a useful model for exploring more natural antioxidant resources and uncovering the mechanisms underlying aging-related risk factors and diseases.
Collapse
Affiliation(s)
- Yugui Lin
- Microbiology Laboratory, Zhongshan Bo'ai Hospital, Southern Medical University, Zhongshan 528400, China; Department of Microbiology, Guangxi Medical University, Nanning 530021, China
| | - Chunxiu Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China; State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China.
| |
Collapse
|
2
|
Chen C, Chen J, Lin X, Yang J, Qu H, Li L, Zhang D, Wang W, Chang X, Guo Z, Cai P, Yu G, Shao W, Hu H, Wu S, Li H, Bornhorst J, Aschner M, Zheng F. Evaluation of neurotoxicity and the role of oxidative stress of cobalt nanoparticles, titanium dioxide nanoparticles, and multiwall carbon nanotubes in Caenorhabditis elegans. Toxicol Sci 2023; 196:85-98. [PMID: 37584706 PMCID: PMC10614054 DOI: 10.1093/toxsci/kfad084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
The widespread use of nanomaterials in daily life has led to increased concern about their potential neurotoxicity. Therefore, it is particularly important to establish a simple and reproducible assessment system. Representative nanomaterials, including cobalt nanoparticles (CoNPs), titanium dioxide nanoparticles (TiO2-NPs), and multiwall carbon nanotubes (MWCNTs), were compared in terms of their neurotoxicity and underlying mechanisms. In 0, 25, 50, and 75 μg/ml of these nanomaterials, the survival, locomotion behaviors, acetylcholinesterase (AchE) activity, reactive oxygen species production, and glutathione-S transferase 4 (Gst-4) activation in wildtype and transgenic Caenorhabditis elegans (C. elegans) were evaluated. All nanomaterials induced an imbalance in oxidative stress, decreased the ratio of survival, impaired locomotion behaviors, as well as reduced the activity of AchE in C. elegans. Interestingly, CoNPs and MWCNTs activated Gst-4, but not TiO2-NPs. The reactive oxygen species scavenger, N-acetyl-l-cysteine, alleviated oxidative stress and Gst-4 upregulation upon exposure to CoNPs and MWCNTs, and rescued the locomotion behaviors. MWCNTs caused the most severe damage, followed by CoNPs and TiO2-NPs. Furthermore, oxidative stress and subsequent activation of Gst-4 were involved in nanomaterials-induced neurotoxicity. Our study provides a comprehensive comparison of the neurotoxicity and mechanisms of typical nanomaterials, which could serve as a model for hazard assessment of environmental pollutants using C. elegans as an experimental model system.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jingrong Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiafu Yang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Huimin Qu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Lisong Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Duanyan Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Wei Wang
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Xiangyu Chang
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Zhenkun Guo
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Ping Cai
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Siying Wu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
- TraceAge—DFG Research Unit FOR 2558, Berlin-Potsdam, Jena, 42119 Wuppertal, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| |
Collapse
|
3
|
Fang X, Hu Y, Yang G, Shi W, Lu S, Cao Y. Improving physicochemical properties and pharmacological activities of ternary co-amorphous systems. Eur J Pharm Biopharm 2022; 181:22-35. [PMID: 36283631 DOI: 10.1016/j.ejpb.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 12/13/2022]
Abstract
The formation of co-amorphous by combining low molecular weight compounds with drugs is a relatively new technology in the pharmaceutical field, which can significantly improve the solubility, dissolution, and stability of poorly water-soluble drugs. However, in our previous studies, the binary co-amorphous system of andrographolide-oxymatrine (AP-OMT) was found to have obvious recrystallization and poor dissolution behavior. Therefore, in this study, we designed three stable ternary co-amorphous systems to improve the physicochemical properties of the binary co-amorphous system of AP-OMT. The ternary co-amorphous systems were prepared with AP, OMT, and trans-cinnamic acid (CA), p-hydroxycinnamic acid (pHCA), or ferulic acid (FA). Intermolecular hydrogen bonds were confirmed by spectroscopy and molecular dynamics simulation. Solubility studies showed that the solubility of the ternary co-amorphous systems of AP-OMT-CA/pHCA/FA was significantly increased compared with that of crystalline AP. Dissolution experiments suggested that the ternary co-amorphous systems of AP-OMT-CA/pHCA/FA exhibited better dissolution behavior without significant recrystallization compared to the binary co-amorphous AP-OMT. The stability study confirmed that the ternary co-amorphous system of AP-OMT-CA/pHCA/FA maintained good physical stability in the long term for 18 months. In addition, pharmacological experiments revealed that the ternary co-amorphous systems of AP-OMT-CA/pHCA/FA have an excellent safety profile and its anti-Alzheimer's disease effects are significantly improved compared to that of the binary co-amorphous systems of AP-OMT. Moreover, this study also found that reducing the pKa value of low molecular weight co-formers would affect the intermolecular interactions and improve the solubility of drugs in the ternary co-amorphous systems. In conclusion, we have successfully prepared ternary co-amorphous systems of AP-OMT-CA/pHCA/FA by amorphization technique, which improves the physicochemical properties of the binary co-amorphous systems of AP-OMT and anti-Alzheimer's disease activity in the Caenorhabditis elegans model. The mechanism for the influence of the pKa value of the co-formers on the physicochemical properties of the ternary co-amorphous system was preliminarily explored, providing theoretical guidance for the development of the ternary co-amorphous system.
Collapse
Affiliation(s)
- Xiaoping Fang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yi Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Guangyi Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Shenzhen Bao'an Traditional Chinese Medical Hospital, Shenzhen 518000, China
| | - Wenfeng Shi
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Yan Cao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
4
|
Feng Z, McLamb F, Vu JP, Gong S, Gersberg RM, Bozinovic G. Physiological and transcriptomic effects of hexafluoropropylene oxide dimer acid in Caenorhabditis elegans during development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114047. [PMID: 36075119 DOI: 10.1016/j.ecoenv.2022.114047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are chemicals resistant to degradation. While such a feature is desirable in consumer and industrial products, some PFAS, including perfluorooctanoic acid (PFOA), are toxic and bioaccumulate. Hexafluoropropylene oxide dimer acid (HFPO-DA), an emerging PFAS developed to replace PFOA, has not been extensively studied. To evaluate the potential toxicity of HFPO-DA with a cost- and time-efficient approach, we exposed C. elegans larvae for 48 h to 4 × 10-9-4 g/L HFPO-DA in liquid media and measured developmental, behavioral, locomotor, and transcriptional effects at various exposure levels. Worms exposed to 1.5-4 g/L HFPO-DA were developmentally delayed, and progeny production was significantly delayed (p < 0.05) in worms exposed to 2-4 g/L HFPO-DA. Statistically significant differential gene expression was identified in all fourteen HFPO-DA exposure groups ranging from 1.25 × 10-5 to 4 g/L, except for 6.25 × 10-5 g/L. Among 10298 analyzed genes, 2624 differentially expressed genes (DEGs) were identified in the developmentally delayed 4 g/L group only, and 78 genes were differentially expressed in at least one of the thirteen groups testing 1.25 × 10-5-2 g/L HFPO-DA exposures. Genes encoding for detoxification enzymes including cytochrome P450 and UDP glucuronosyltransferases were upregulated in 0.25-4 g/L acute exposure groups. DEGs were also identified in lower exposure level groups, though they did not share biological functions except for six ribosomal protein-coding genes. While our transcriptional data is inconclusive to infer mechanisms of toxicity, the significant gene expression differences at 1.25 × 10-5 g/L, the lowest concentration tested for transcriptional changes, calls for further targeted analyses of low-dose HFPO-DA exposure effects.
Collapse
Affiliation(s)
- Zuying Feng
- Boz Life Science Research and Teaching Institute, 3030 Bunker Hill Street, San Diego, CA, USA; School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA.
| | - Flannery McLamb
- Boz Life Science Research and Teaching Institute, 3030 Bunker Hill Street, San Diego, CA, USA; Division of Extended Studies, University of California San Diego, 9600N. Torrey Pines Road, La Jolla, CA, USA.
| | - Jeanne P Vu
- Boz Life Science Research and Teaching Institute, 3030 Bunker Hill Street, San Diego, CA, USA; School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA; Division of Extended Studies, University of California San Diego, 9600N. Torrey Pines Road, La Jolla, CA, USA.
| | - Sylvia Gong
- Boz Life Science Research and Teaching Institute, 3030 Bunker Hill Street, San Diego, CA, USA; School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA; Division of Extended Studies, University of California San Diego, 9600N. Torrey Pines Road, La Jolla, CA, USA.
| | - Richard M Gersberg
- School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA.
| | - Goran Bozinovic
- Boz Life Science Research and Teaching Institute, 3030 Bunker Hill Street, San Diego, CA, USA; School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA; Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA.
| |
Collapse
|
5
|
Khabib MNH, Sivasanku Y, Lee HB, Kumar S, Kue CS. Alternative animal models in predictive toxicology. Toxicology 2022; 465:153053. [PMID: 34838596 DOI: 10.1016/j.tox.2021.153053] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 11/28/2022]
Abstract
Toxicity testing relies heavily on animals, especially rodents as part of the non-clinical laboratory testing of substances. However, the use of mammalians and the number of animals employed in research has become a concern for institutional ethics committees. Toxicity testing involving rodents and other mammals is laborious and costly. Alternatively, non-rodent models are used as replacement, as they have less ethical considerations and are cost-effective. Of the many alternative models that can be used as replacement models, which ones can be used in predictive toxicology? What is the correlation between these models and rodents? Are there standardized protocols governing the toxicity testing of these commonly used predictive models? This review outlines the common alternative animal models for predictive toxicology to address the importance of these models, the challenges, and their standard testing protocols.
Collapse
Affiliation(s)
- Muhammad Nur Hamizan Khabib
- Faculty of Health and Life Science, Management and Science University, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia
| | - Yogeethaa Sivasanku
- Faculty of Health and Life Science, Management and Science University, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia
| | - Hong Boon Lee
- School of Biosciences, Taylor's University Lakesike Campus, 47500, Subang Jaya, Malaysia
| | - Suresh Kumar
- Faculty of Health and Life Science, Management and Science University, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia
| | - Chin Siang Kue
- Faculty of Health and Life Science, Management and Science University, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia.
| |
Collapse
|
6
|
Shang Y, Wang S, Jin Y, Xue W, Zhong Y, Wang H, An J, Li H. Polystyrene nanoparticles induced neurodevelopmental toxicity in Caenorhabditis elegans through regulation of dpy-5 and rol-6. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112523. [PMID: 34273852 DOI: 10.1016/j.ecoenv.2021.112523] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 05/21/2023]
Abstract
Micro- and nano- polystyrene particles have been widely detected in environment, posing potential threats to human health. This study was designed to evaluate the neurodevelopmental toxicity of polystyrene nanoparticles (NPs) in Caenorhabditis elegans (C. elegans), to screen crucial genes and investigate the underlying mechanism. In wild-type C. elegans, polystyrene NPs (diameter 50 nm) could concentration-dependently induce significant inhibition in body length, survival rate, head thrashes, and body bending, accompanying with increase of reactive oxygen species (ROS) production, lipofuscin accumulation, and apoptosis and decrease of dopamine (DA) contents. Moreover, pink-1 mutant was demonstrated to alleviate the locomotion disorders and oxidative damage induced by polystyrene NPs, indicating involvement of pink-1 in the polystyrene NPs-induced neurotoxicity. RNA sequencing results revealed 89 up-regulated and 56 down-regulated differently expressed genes (DEGs) response to polystyrene NPs (100 μg/L) exposure. Gene Ontology (GO) enrichment analysis revealed that predominant enriched DEGs were correlated with biological function of cuticle development and molting cycle. Furthermore, mutant strains test showed that the neurodevelopmental toxicity and oxidative stress responses induced by 50 nm polystyrene NPs were regulated by dpy-5 and rol-6. In general, polystyrene NPs induced obvious neurodevelopmental toxicity in C. elegans through oxidative damage and dopamine reduction. Crucial genes dpy-5 and rol-6 might participate in polystyrene NPs-induced neurodevelopmental toxicity through regulation on synthesis and deposition of cuticle collagen.
Collapse
Affiliation(s)
- Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Siyan Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yingying Jin
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wanlei Xue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yufang Zhong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Complex Air Pollution, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| | - Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
7
|
Bonner E, Chang Y, Christie E, Colvin V, Cunningham B, Elson D, Ghetu C, Huizenga J, Hutton SJ, Kolluri SK, Maggio S, Moran I, Parker B, Rericha Y, Rivera BN, Samon S, Schwichtenberg T, Shankar P, Simonich MT, Wilson LB, Tanguay RL. The chemistry and toxicology of vaping. Pharmacol Ther 2021; 225:107837. [PMID: 33753133 PMCID: PMC8263470 DOI: 10.1016/j.pharmthera.2021.107837] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
Vaping is the process of inhaling and exhaling an aerosol produced by an e-cigarette, vape pen, or personal aerosolizer. When the device contains nicotine, the Food and Drug Administration (FDA) lists the product as an electronic nicotine delivery system or ENDS device. Similar electronic devices can be used to vape cannabis extracts. Over the past decade, the vaping market has increased exponentially, raising health concerns over the number of people exposed and a nationwide outbreak of cases of severe, sometimes fatal, lung dysfunction that arose suddenly in otherwise healthy individuals. In this review, we discuss the various vaping technologies, which are remarkably diverse, and summarize the use prevalence in the U.S. over time by youths and adults. We examine the complex chemistry of vape carrier solvents, flavoring chemicals, and transformation products. We review the health effects from epidemiological and laboratory studies and, finally, discuss the proposed mechanisms underlying some of these health effects. We conclude that since much of the research in this area is recent and vaping technologies are dynamic, our understanding of the health effects is insufficient. With the rapid growth of ENDS use, consumers and regulatory bodies need a better understanding of constituent-dependent toxicity to guide product use and regulatory decisions.
Collapse
Affiliation(s)
- Emily Bonner
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Yvonne Chang
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Emerson Christie
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Victoria Colvin
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Brittany Cunningham
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Daniel Elson
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Christine Ghetu
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Juliana Huizenga
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Sara J Hutton
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Siva K Kolluri
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Stephanie Maggio
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Ian Moran
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Bethany Parker
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Yvonne Rericha
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Brianna N Rivera
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Samantha Samon
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Trever Schwichtenberg
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Prarthana Shankar
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Michael T Simonich
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Lindsay B Wilson
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|