1
|
Li Y, Bian X, Dong H, Chang H, Wu W. Enhanced Light Response Performance of Ceria-Based Composites with Rich Oxygen Vacancy. Molecules 2024; 30:127. [PMID: 39795186 PMCID: PMC11721177 DOI: 10.3390/molecules30010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Increasing the concentration of oxygen vacancies in ceria-based materials to solve the bottleneck of their applications in various fields has always been a research hotspot. In this paper, ceria-based cerium-oxygen-sulfur (Ce-O-S) composites that were composed of CeO2, Ce4O4S3, and Ce2(SO4)3 were synthesized by a precipitation method. The compositional, structural, morphological, and light response characteristics of prepared Ce-O-S composites were investigated by various characterization techniques. The molar ratio of oxygen vacancies to lattice oxygen can reach a maximum of 1.83 with Ce-O-S composites. The band gap values of the Ce-O-S composites were less than 3.00 eV, and the minimum value was 2.89 eV (at pH 12), which successfully extended the light response range from the ultraviolet light region to the short-wave blue light region. The remarkable light response performance of Ce-O-S composites can be mainly attributed to the high proportion of oxygen vacancy. Moreover, the higher proportion of oxygen vacancies can be attributed to the doping of Ce (+3) and S (-2) in the lattice of CeO2, and the synergistic effect of CeO2, Ce4O4S3, and Ce2(SO4)3. Moreover, the ceria-based Ce-O-S composites with rich oxygen vacancy in this research can be applied in light blocking, photocatalysis, and other related fields.
Collapse
Affiliation(s)
- Yanping Li
- Key Laboratory of Ecological Metallurgy of Multi-Metal Intergrown Ores of Ministry of Education, Shenyang 110819, China; (Y.L.); (H.D.); (W.W.)
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Xue Bian
- Key Laboratory of Ecological Metallurgy of Multi-Metal Intergrown Ores of Ministry of Education, Shenyang 110819, China; (Y.L.); (H.D.); (W.W.)
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Hui Dong
- Key Laboratory of Ecological Metallurgy of Multi-Metal Intergrown Ores of Ministry of Education, Shenyang 110819, China; (Y.L.); (H.D.); (W.W.)
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Hongtao Chang
- School of Rare Earth Industry, Inner Mongolia University of Science and Technology, Baotou 014010, China;
| | - Wenyuan Wu
- Key Laboratory of Ecological Metallurgy of Multi-Metal Intergrown Ores of Ministry of Education, Shenyang 110819, China; (Y.L.); (H.D.); (W.W.)
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| |
Collapse
|
2
|
Zhang J, Huang Y, Pei Y, Wang Y, Li M, Chen H, Liang X, Martyniuk CJ. Biotransformation, metabolic response, and toxicity of UV-234 and UV-326 in larval zebrafish (Danio rerio). ENVIRONMENT INTERNATIONAL 2023; 174:107896. [PMID: 36966637 DOI: 10.1016/j.envint.2023.107896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are emerging pollutants that are widely detected in aquatic ecosystems. While structure-dependent effects of BUVSs are reported, the relationship between biotransformation and toxicity outcomes remains unclear. In this study, zebrafish embryos were exposed to two common BUVSs (UV-234 and UV-326) at 1, 10, and 100 µg/L for up to 7 days. Comparison of their uptake and biotransformation revealed that the bioaccumulation capacity of UV-234 was higher than that of UV-326, while UV-326 was more extensively biotransformed with additional conjugation reactions. However, UV-326 showed low metabolism due to inhibited phase II enzymes, which may result in the comparable internal concentrations of both BUVSs in larval zebrafish. Both BUVSs induced oxidative stress while decreased MDA, suggesting the disturbance of lipid metabolism. The subsequent metabolomic profiling revealed that UV-234 and UV-326 exerted different effects on arachidonic acid, lipid, and energy metabolism. However, both BUVSs negatively impacted the cyclic guanosine monophosphate / protein kinase G pathway. This converged metabolic change resulted in comparable toxicity of UV-234 and UV-326, which was confirmed by the induction of downstream apoptosis, neuroinflammation, and abnormal locomotion behavior. These data have important implications for understanding the metabolism, disposition, and toxicology of BUVSs in aquatic organisms.
Collapse
Affiliation(s)
- Jiye Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ying Huang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Youjun Pei
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yuyang Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Mingwan Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Fischer C, Göen T. Development and Validation of a DLLME-GC-MS-MS Method for the Determination of Benzotriazole UV Stabilizer UV-327 and Its Metabolites in Human Blood. J Anal Toxicol 2023; 47:136-146. [PMID: 35861396 DOI: 10.1093/jat/bkac050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/23/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
2-(5-Chloro-benzotriazol-2-yl)-4,6-di-(tert-butyl)phenol (UV-327) is used as an ultraviolet (UV) absorber in plastic materials and coatings. To investigate its metabolism and to assess human exposure, analytical methods are necessary for the determination of UV-327 and its metabolites in human biological specimens. The method thus presented targets the determination of UV-327 and several of its predicted metabolites in blood using protein precipitation, dispersive liquid-liquid microextraction (DLLME) and derivatization. The trimethylsilylated analytes and internal standards are separated by gas chromatography and analyzed with tandem mass spectrometry. The DLLME procedure was optimized with respect to the type and volume of disperser and extraction solvents, the pH value of the sample solution and the addition of salt. During method development, an effective ex vivo lactone/hydroxyl carboxylic acid interconversion was observed for two metabolites, each containing a carboxyl group adjacent to the phenolic hydroxyl group. The analytes resulting from interconversion enabled a more sensitive and reliable determination of the metabolites compared to their native structures. Method validation revealed limits of detection between 0.02 and 0.36 µg/L. The mean relative recovery rates ranged from 91% to 118%. Precision and repeatability were demonstrated by relative standard deviations in the range of 0.6-14.2% and 1.1-13.7%, respectively. The presently described procedure enables the sensitive and robust analysis of UV-327 and its metabolites in human blood and allows the elucidation of the human UV-327 metabolism as well as the assessment of exposure in potentially exposed individuals.
Collapse
Affiliation(s)
- Corinna Fischer
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054 Erlangen, Germany
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054 Erlangen, Germany
| |
Collapse
|
4
|
Fischer C, Leibold E, Hiller J, Göen T. Human metabolism and excretion kinetics of benzotriazole UV stabilizer UV-327 after single oral administration. Arch Toxicol 2023; 97:165-176. [PMID: 36335248 PMCID: PMC9816242 DOI: 10.1007/s00204-022-03401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
UV-327 (2-(5-chloro-benzotriazol-2-yl)-4,6-di-(tert-butyl)phenol) is used as an ultraviolet (UV) absorber in plastic products and coatings. Due to its ubiquitous distribution in the environment, human exposure is conceivable. In the study presented herein, initial information on the human in vivo metabolism of UV-327 was obtained by single oral administration to three volunteers. Urine and blood samples were collected up to 72 h after exposure. One study participant additionally donated plasma samples. Maximum blood and plasma levels of UV-327 and its two monohydroxylated metabolites UV-327-6-mOH and UV-327-4-mOH were reached 6 h post-exposure. Almost the entire amount found in blood and plasma samples was identified as UV-327, whereas the two metabolites each accounted for only 0.04% of the total amount, indicating that UV-327 is well-absorbed from the intestine, but only partially metabolized. Plasma to blood ratios of UV-327, UV-327-6-mOH, and UV-327-4-mOH ranged from 1.5 to 1.6. Maximum urinary excretion rates of UV-327, UV-327-6-mOH, UV-327-4-mOH, and UV-327-4 + 6-diOH were reached 9-14 h post-exposure. However, only about 0.03% of the orally administered dose of UV-327 was recovered as UV-327 and its metabolites in urine, indicating that biliary excretion may be the major route of elimination of UV-327 and its hydroxylated metabolites. The present study complements the insight in the complex absorption, distribution, metabolism, and elimination (ADME) processes of benzotriazole UV stabilizers (BUVSs).
Collapse
Affiliation(s)
- Corinna Fischer
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Edgar Leibold
- BASF SE, Product Safety, Carl-Bosch‑Straße 38, 67056, Ludwigshafen Am Rhein, Germany
| | - Julia Hiller
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany.
| |
Collapse
|
5
|
Li P, Su W, Liang W, Zhu B, Li T, Ruan T, Jiang G. Occurrence and Temporal Trends of Benzotriazole UV Stabilizers in Mollusks (2010-2018) from the Chinese Bohai Sea Revealed by Target, Suspect, and Nontarget Screening Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16759-16767. [PMID: 36334087 DOI: 10.1021/acs.est.2c04143] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Benzotriazole UV stabilizers (BZT-UVs), including 2-(3,5-di-tert-amyl-2-hydroxyphenyl)benzotriazole (UV-328) that is currently under consideration for listing under the Stockholm Convention, are applied in many commodities and industrial products. However, limited information is available on the interannual variation of their environmental occurrence. In this study, an all-in-one strategy combining target, suspect, and nontarget screening analysis was established to comprehensively explore the temporal trends of BZT-UVs in mollusks collected from the Chinese Bohai Sea between 2010 and 2018. Significant residue levels of the target analytes were determined with a maximum total concentration of 6.4 × 103 ng/g dry weight. 2-(2-Hydroxy-3-tert-butyl-5-methyl-phenyl)-5-chloro-benzotriazole (UV-326), 5-chloro-2-(3,5-di-tert-butyl-2-hydroxyphenyl)benzotriazole (UV-327), and 2-(2-hydroxy-5-methylphenyl) benzotriazole (UV-P) were the predominant analogues, and UV-328 was the most frequently detected BZT-UV with a detection frequency (DF) of 87%. Whereas five biotransformation products and six impurity-like BZT-UVs were tentatively identified, their low DFs and semi-quantified concentrations suggest that the targeted analytes were the predominant BZT-UVs in the investigated area. A gradual decrease in the total concentrations of BZT-UVs was observed, accompanied by downward trends of the abundant compounds (e.g., UV-326 and UV-P). Consequently, the relative abundance of UV-327 increased because of its consistent environmental presence. These results suggest that continuous monitoring and risk assessment of BZT-UVs other than UV-328 are of importance in China.
Collapse
Affiliation(s)
- Pengyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyuan Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Degradation of Benzotriazole UV Stabilizers in PAA/d-Electron Metal Ions Systems-Removal Kinetics, Products and Mechanism Evaluation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103349. [PMID: 35630827 PMCID: PMC9145517 DOI: 10.3390/molecules27103349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/30/2022]
Abstract
Benzotriazole UV stabilizers (BUVs) have gained popularity, due to their absorption properties in the near UV range (200–400 nm). They are used in the technology for manufacturing plastics, protective coatings, and cosmetics, to protect against the destructive influence of UV radiation. These compounds are highly resistant to biological and chemical degradation. As a result of insufficient treatment by sewage treatment plants, they accumulate in the environment and in the tissues of living organisms. BUVs have adverse effects on living organisms. This work presents the use of peracetic acid in combination with d-electron metal ions (Fe2+, Co2+), for the chemical oxidation of five UV filters from the benzotriazole group: 2-(2-hydroxy-5-methylphenyl)benzotriazole (UV-P), 2-tert-butyl-6-(5-chloro-2H-benzotriazol-2-yl)-4-methylphenol (UV-326), 2,4-di-tert-butyl-6-(5-chloro-2H-benzotriazol-2-yl)phenol (UV-327), 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV-328), and 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol (UV-329). The oxidation procedure has been optimized based on the design of experiments (DoE) methodology. The oxidation of benzotriazoles follows first order kinetics. The oxidation products of each benzotriazole were investigated, and the oxidation mechanisms of the tested compounds were proposed.
Collapse
|
7
|
Fischer C, Göen T. Determination of UV-327 and its metabolites in human urine using dispersive liquid-liquid microextraction and gas chromatography-tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3978-3986. [PMID: 34528941 DOI: 10.1039/d1ay00932j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The benzotriazole UV stabilizer (BUVS) 2-(5-chloro-benzotriazol-2-yl)-4,6-di-(tert-butyl)phenol (UV-327) is added to plastic materials for UV protection. The compound is known to be ubiquitously distributed in the environment. We developed the first analytical method for the determination of UV-327 and seven metabolites, which were identified in vitro, in urine to be able to investigate the in vivo metabolism of UV-327 and to assess potential human exposure to the compound. Enzymatic hydrolysis of phase II conjugates is followed by sample purification with dispersive liquid-liquid microextraction (DLLME). The analytes are extracted from the urine samples after acidification with hydrochloric acid solution and addition of sodium chloride solution. Isopropyl alcohol and chloroform are used as disperser solvent and extraction solvent, respectively. After derivatization, the trimethylsilylated analytes are chromatographically separated and detected by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). To achieve maximum extraction of the analytes from the sample solution, the DLLME procedure was optimized with respect to the type and volume of disperser and extraction solvent, the pH value of the sample solution, the addition of salt, and the duration of vortex-mixing. Subsequent method validation demonstrated high sensitivity and reliability, with limits of detection (LODs) between 0.05 and 0.1 μg l-1 and mean relative recovery rates ranging from 88 to 112%. Precision and repeatability were proven by relative standard deviations ranging from 1 to 13% and from 5 to 14%, respectively.
Collapse
Affiliation(s)
- Corinna Fischer
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054 Erlangen, Germany.
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054 Erlangen, Germany.
| |
Collapse
|
8
|
Zhang S, Wang Z, Chen J, Xie Q, Zhu M, Han W. Tissue-Specific Accumulation, Biotransformation, and Physiologically Based Toxicokinetic Modeling of Benzotriazole Ultraviolet Stabilizers in Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11874-11884. [PMID: 34488350 DOI: 10.1021/acs.est.1c02861] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are high-production-volume chemicals with ubiquitous occurrence in the aquatic environment. However, little is known about their bioconcentration and biotransformation, and physiologically based toxicokinetic (PBTK) models for BUVSs are lacking. This study selected six BUVSs for which experiments were performed with zebrafish (Danio rerio) exposed to two different levels (0.5 and 10 μg·L-1). Higher kinetic bioconcentration factors (BCFs) were observed at the lower exposure level with environmental relevance, with BCF of 3.33 × 103 L·kg-1 for 2-(2-hydroxy-3,5-di-tert-butylphenyl)-5-chlorobenzotriazole (UV-327). This phenomenon was interpreted by a nonlinear adsorption mechanism, where binding with specific protein sites contributes to bioconcentration. Muscle exhibited the lowest accumulation, in which depuration half-life of UV-327 was 19.5 d. In kidney, muscle, ovary, gill, and skin, logBCF increased with increase in log KOW of the BUVSs until log KOW was ca. 6.5, above which logBCF decreased. However, the trend was not observed in the liver and intestine. Six biotransformation products were identified and mainly accumulated in the liver and intestine. Considering the nonlinear adsorption mechanism in the PBTK model, the prediction accuracy of the model was improved, highlighting the binding of xenobiotics with specific protein sites in assessing the bioconcentration of chemicals for their risk assessment.
Collapse
Affiliation(s)
- Shuying Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Minghua Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wenjing Han
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
9
|
Human metabolism and kinetics of the UV absorber 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV 328) after oral administration. Arch Toxicol 2021; 95:2677-2690. [PMID: 34180011 PMCID: PMC8298232 DOI: 10.1007/s00204-021-03093-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
2-(2H-Benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV 328; CAS: 25973-55-1) is an ultraviolet light (UV) absorber which belongs to the class of hydroxy phenol benzotriazoles. Therefore, UV 328 is added to plastics and other polymers due to its photostability to prevent discoloration and prolong product stability which may result in an exposure of consumers. However, information about the toxic effects on humans and the human metabolism are still lacking. In the present study, human metabolism pathways of UV 328 and its elimination kinetics were explored. For that purpose, three healthy volunteers were orally exposed to a single dose of 0.3 mg UV 328/kg bodyweight. UV 328 and its metabolites were investigated in blood and urine samples collected until 48 and 72 h after exposure, respectively. Thereby, previously published analytical procedures were applied for the sample analysis using dispersive liquid–liquid microextraction and subsequent measurement via gas chromatography coupled to tandem mass spectrometry with advanced electron ionization. UV 328 was found to be oxidized at its alkyl side chains leading to the formation of hydroxy and/or oxo function with maximum blood concentrations at 8–10 h after exposure for UV 328-6/3-OH, UV 328-4/3-OH and UV 328-4/3-CO. In contrast, a plateau for UV 328-4/3-CO-6/3-OH levels was reached around 10 h post-dosage. The highest blood levels were found for native UV 328 at 8 h after ingestion. Furthermore, biphasic elimination kinetics in blood were revealed for almost all detected metabolites. UV 328 and its metabolites did not occur in blood as conjugates. The renal elimination kinetics were very similar with the kinetics in blood. However, the prominence of the metabolites in urine was somewhat different compared to blood. In contrast, mostly conjugated metabolites occurred for renal elimination. In urine, UV 328-4/3-CO-6/3-OH was found to be the most dominant urinary biomarker followed by UV 328-6/3-OH and UV 328-4/3-OH. In total, approximately 0.1% of the orally administered dose was recovered in urine within 72 h. Although high levels of UV 328 in blood proved good resorption and high systemic availability of the substance in the human body, the urine results revealed a rather low quantitative metabolism and urinary excretion rate. Consequently, biliary excretion as part of the enterohepatic cycle and elimination via feces are assumed to be the preferred pathways instead of renal elimination.
Collapse
|