1
|
Knight A, Sugin S, Jurisicova A. Searching for the 'X' factor: investigating the genetics of primary ovarian insufficiency. J Ovarian Res 2024; 17:238. [PMID: 39609914 PMCID: PMC11603650 DOI: 10.1186/s13048-024-01555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024] Open
Abstract
Primary ovarian insufficiency (POI) is the cessation of ovarian function before the age of 40. The causes of POI are heterogeneous, but substantial evidence exists to support a genetic basis of POI, particularly in the critical involvement of genes on the X chromosome. Recent studies have revealed novel candidate genes through the identification of copy number variations associated with POI. This review summarizes the genes located on the X chromosome with variants shown to be associated with POI in humans and/or in mice. Additionally, we present evidence to support the potential involvement of these candidate genes in the etiology of POI. We conducted a literature search in PubMed to identify case studies and screenings for the genetic causes of POI. We then performed systematic searches for the proposed candidate genes to investigate their potential reproductive roles. Of the X-linked candidate genes investigated, 10 were found to have variants associated with cases of POI in humans. An additional 10 genes were found to play a supportive role in POI. Other genes were not implicated in any cases of POI but were associated with various roles in reproduction. In the majority of cases where variants were identified through whole-exome sequencing, rather than targeted screening of candidate genes, more than one genetic variant was identified. Overall, this review supports past findings that the X chromosome plays a critical role in ovarian function, as demonstrated by a link between POI and various disruptions to genes on the X chromosome. Current genetic screening for POI, which includes only FMR1, is inadequate to capture the majority of cases with a genetic origin. An expanded genetic testing may improve health outcomes for individuals with POI as it could lead to better early interventions and education about these health risks.
Collapse
Affiliation(s)
- Anya Knight
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Sara Sugin
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 25 Orde Street, Room 6-1016-1, Toronto, ON, M5T 3H7, Canada
| | - Andrea Jurisicova
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
- Department of Obstetrics and Gynecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 25 Orde Street, Room 6-1016-1, Toronto, ON, M5T 3H7, Canada.
| |
Collapse
|
2
|
França MM, Mendonca BB. Genetics of Primary Ovarian Insufficiency in the Next-Generation Sequencing Era. J Endocr Soc 2020; 4:bvz037. [PMID: 32099950 PMCID: PMC7033037 DOI: 10.1210/jendso/bvz037] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/17/2019] [Indexed: 01/12/2023] Open
Abstract
Primary ovarian insufficiency (POI) is characterized by amenorrhea, increased follicle-stimulating hormone (FSH) levels, and hypoestrogenism, leading to infertility before the age of 40 years. Elucidating the cause of POI is a key point for diagnosing and treating affected women. Here, we review the genetic etiology of POI, highlighting new genes identified in the last few years using next-generation sequencing (NGS) approaches. We searched the MEDLINE/PubMed, Cochrane, and Web of Science databases for articles published in or translated to English. Several genes were found to be associated with POI genetic etiology in humans and animal models (SPIDR, BMPR2, MSH4, MSH5, GJA4, FANCM, POLR2C, MRPS22, KHDRBS1, BNC1, WDR62, ATG7/ATG9, BRCA2, NOTCH2, POLR3H, and TP63). The heterogeneity of POI etiology has been revealed to be remarkable in the NGS era, and discoveries have indicated that meiosis and DNA repair play key roles in POI development.
Collapse
Affiliation(s)
- Monica Malheiros França
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Berenice Bilharinho Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Parissone F, Pucci M, Meneghelli E, Zuffardi O, Di Paola R, Zaffagnini S, Franchi M, Santangelo E, Cantalupo G, Cavarzere P, Antoniazzi F, Piacentini G, Gaudino R. A novel de novo partial xq duplication in a girl with short stature, nonverbal learning disability and diminished ovarian reserve - effect of growth hormone treatment and fertility preservation strategies: a case report and up-to-date review. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2020; 2020:1. [PMID: 31938033 PMCID: PMC6953468 DOI: 10.1186/s13633-019-0071-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/28/2019] [Indexed: 01/15/2023]
Abstract
Background Xq duplication is a rare condition with a very variable phenotype, which could mimic other genetic syndromes involving the long arm of chromosome X. Sometimes short stature and diminished ovarian reserve (DOR) may be present. Treatments with rGH (Recombinant growth Hormon) or with fertility preservation strategies have not been previously described. Case presentation We present the case of a female with a novel de novo Xq partial duplication (karyotype: 46,Xder(X)(qter→q21.31::pter→qter) confirmed by array-CGH analysis. She presented with short stature, Nonverbal Learning Disability, developmental delay during childhood, severe scoliosis, spontaneous onset of menarche and irregular menstrual cycles. AMH (Anti-Müllerian Hormone) allowed detection of a preserved but severely diminished ovarian reserve with a POI (Premature Ovarian insufficiency) onset risk. She was effectively subjected to fertility preservation strategies and rGH therapy. We also reviewed other published cases with Xq duplication, reporting the main clinics characteristics and any adopted treatment. Conclusions rGH treatment and cryopreservation in a multidisciplinary approach are good therapeutic strategies for Xq duplication syndrome with short stature and premature ovarian failure.
Collapse
Affiliation(s)
- Francesca Parissone
- 1Department of Obstetrics and Gynaecology, AOUI Verona, Verona, Italy.,4Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, Division of Obstetrics and Gynaecology, University of Verona, Verona, Italy
| | - Mairi Pucci
- 2Department of Neurological, Biomedical and Movement Sciences, Clinical Biochemistry section, University of Verona, P.le L. A Scuro, 10, 37134 Verona, Italy
| | - Emanuela Meneghelli
- 2Department of Neurological, Biomedical and Movement Sciences, Clinical Biochemistry section, University of Verona, P.le L. A Scuro, 10, 37134 Verona, Italy
| | - Orsetta Zuffardi
- 3Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Rossana Di Paola
- 1Department of Obstetrics and Gynaecology, AOUI Verona, Verona, Italy
| | | | - Massimo Franchi
- 4Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, Division of Obstetrics and Gynaecology, University of Verona, Verona, Italy
| | - Elisabetta Santangelo
- 5Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, Division of Child Neuropsychiatry, University of Verona, Verona, Italy
| | - Gaetano Cantalupo
- 5Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, Division of Child Neuropsychiatry, University of Verona, Verona, Italy
| | - Paolo Cavarzere
- 6Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, Division of Paediatrics, University of Verona, Verona, Italy
| | - Franco Antoniazzi
- 6Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, Division of Paediatrics, University of Verona, Verona, Italy
| | - Giorgio Piacentini
- 6Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, Division of Paediatrics, University of Verona, Verona, Italy
| | - Rossella Gaudino
- 6Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, Division of Paediatrics, University of Verona, Verona, Italy
| |
Collapse
|
4
|
Folsom TD, Higgins L, Markowski TW, Griffin TJ, Fatemi SH. Quantitative proteomics of forebrain subcellular fractions in fragile X mental retardation 1 knockout mice following acute treatment with 2-Methyl-6-(phenylethynyl)pyridine: Relevance to developmental study of schizophrenia. Synapse 2018; 73:e22069. [PMID: 30176067 DOI: 10.1002/syn.22069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/13/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022]
Abstract
The fragile X mental retardation 1 knockout (Fmr1 KO) mouse replicates behavioral deficits associated with autism, fragile X syndrome, and schizophrenia. Less is known whether protein expression changes are consistent with findings in subjects with schizophrenia. In the current study, we used liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics to determine the protein expression of four subcellular fractions in the forebrains of Fmr1 KO mice vs. C57BL/6 J mice and the effect of a negative allosteric modulator of mGluR5-2-Methyl-6-(phenylethynyl)pyridine (MPEP)-on protein expression. Strain- and treatment-specific differential expression of proteins was observed, many of which have previously been observed in the brains of subjects with schizophrenia. Western blotting verified the direction and magnitude of change for several proteins in different subcellular fractions as follows: neurofilament light protein (NEFL) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP) in the total homogenate; heterogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC) and heterogeneous nuclear ribonucleoprotein D0 (HNRNPD) in the nuclear fraction; excitatory amino acid transporter 2 (EAAT2) and ras-related protein rab 3a (RAB3A) in the synaptic fraction; and ras-related protein rab 35 (RAB35) and neuromodulin (GAP43) in the rough endoplasmic reticulum fraction. Individuals with FXS do not display symptoms of schizophrenia. However, the biomarkers that have been identified suggest that the Fmr1 KO model could potentially be useful in the study of schizophrenia.
Collapse
Affiliation(s)
- Timothy D Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Todd W Markowski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Timothy J Griffin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - S Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota.,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
5
|
Unbalanced karyotype with X;11 translocation associated with SHOX duplication and 11q partial deletion in a girl with amenorrhea and mild mental retardation detected by array CGH: Case Report. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Cahill MA, Jazayeri JA, Catalano SM, Toyokuni S, Kovacevic Z, Richardson DR. The emerging role of progesterone receptor membrane component 1 (PGRMC1) in cancer biology. Biochim Biophys Acta Rev Cancer 2016; 1866:339-349. [PMID: 27452206 DOI: 10.1016/j.bbcan.2016.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 01/09/2023]
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is a multi-functional protein with a heme-binding moiety related to that of cytochrome b5, which is a putative progesterone receptor. The recently solved PGRMC1 structure revealed that heme-binding involves coordination by a tyrosinate ion at Y113, and induces dimerization which is stabilized by hydrophobic stacking of heme on adjacent monomers. Dimerization is required for association with cytochrome P450 (cyP450) enzymes, which mediates chemoresistance to doxorubicin and may be responsible for PGRMC1's anti-apoptotic activity. Here we review the multiple attested involvement of PGRMC1 in diverse functions, including regulation of cytochrome P450, steroidogenesis, vesicle trafficking, progesterone signaling and mitotic spindle and cell cycle regulation. Its wide range of biological functions is attested to particularly by its emerging association with cancer and progesterone-responsive female reproductive tissues. PGRMC1 exhibits all the hallmarks of a higher order nexus signal integration hub protein. It appears capable of acting as a detector that integrates information from kinase/phosphatase pathways with heme and CO levels and probably redox status.
Collapse
Affiliation(s)
- Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Jalal A Jazayeri
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Susan M Catalano
- Cognition Therapeutics Inc., Pittsburgh, PA 15203, United States
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
7
|
Cao Y, Aypar U. A novel Xq22.1 deletion in a male with multiple congenital abnormalities and respiratory failure. Eur J Med Genet 2016; 59:274-7. [DOI: 10.1016/j.ejmg.2016.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/25/2016] [Accepted: 03/10/2016] [Indexed: 02/06/2023]
|
8
|
Jin Z, Yu L, Geng J, Wang J, Jin X, Huang H. A novel 47.2Mb duplication on chromosomal bands Xq21.1–25 associated with mental retardation. Gene 2015; 567:98-102. [DOI: 10.1016/j.gene.2015.04.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 11/24/2022]
|
9
|
Chen CP, Lin SP, Chern SR, Kuo YL, Wu PS, Chen YT, Lee MS, Wang W. Array CGH characterization of an unbalanced X-autosome translocation associated with Xq27.2–qter deletion, 11q24.3–qter duplication and Xq22.3–q27.1 duplication in a girl with primary amenorrhea and mental retardation. Gene 2014; 535:88-92. [DOI: 10.1016/j.gene.2013.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 10/31/2013] [Accepted: 11/13/2013] [Indexed: 10/26/2022]
|
10
|
Abstract
Ovarian reserve and its utilization, over a reproductive life span, are determined by genetic, epigenetic, and environmental factors. The establishment of the primordial follicle pool and the rate of primordial follicle activation have been under intense study to determine genetic factors that affect reproductive lifespan. Much has been learned from transgenic animal models about the developmental origins of the primordial follicle pool and mechanisms that lead to primordial follicle activation, folliculogenesis, and the maturation of a single oocyte with each menstrual cycle. Recent genome-wide association studies on the age of human menopause have identified approximately 20 loci, and shown the importance of factors involved in double-strand break repair and immunology. Studies to date from animal models and humans show that many genes determine ovarian aging, and that there is no single dominant allele yet responsible for depletion of the ovarian reserve. Personalized genomic approaches will need to take into account the high degree of genetic heterogeneity, family pedigree, and functional data of the genes critical at various stages of ovarian development to predict women's reproductive life span.
Collapse
Affiliation(s)
- Michelle A Wood
- Department of Obstetrics, Gynecology, and Reproductive Sciences
| | | |
Collapse
|
11
|
ZHOU JIHAO, LI YONGHUI, YAO YUSHI, WANG LIXIN, GAO LI, GAO XIAONING, LUO XUFENG, LI JINGXIN, JIANG MENGMENG, ZHOU MINHANG, WANG LILI, YU LI. The cancer-testis antigen NXF2 is activated by the hypomethylating agent decitabine in acute leukemia cells in vitro and in vivo. Mol Med Rep 2013; 8:1549-55. [DOI: 10.3892/mmr.2013.1659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/08/2013] [Indexed: 11/06/2022] Open
|
12
|
Piton A, Redin C, Mandel JL. XLID-causing mutations and associated genes challenged in light of data from large-scale human exome sequencing. Am J Hum Genet 2013; 93:368-83. [PMID: 23871722 DOI: 10.1016/j.ajhg.2013.06.013] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/29/2013] [Accepted: 06/08/2013] [Indexed: 12/30/2022] Open
Abstract
Because of the unbalanced sex ratio (1.3-1.4 to 1) observed in intellectual disability (ID) and the identification of large ID-affected families showing X-linked segregation, much attention has been focused on the genetics of X-linked ID (XLID). Mutations causing monogenic XLID have now been reported in over 100 genes, most of which are commonly included in XLID diagnostic gene panels. Nonetheless, the boundary between true mutations and rare non-disease-causing variants often remains elusive. The sequencing of a large number of control X chromosomes, required for avoiding false-positive results, was not systematically possible in the past. Such information is now available thanks to large-scale sequencing projects such as the National Heart, Lung, and Blood (NHLBI) Exome Sequencing Project, which provides variation information on 10,563 X chromosomes from the general population. We used this NHLBI cohort to systematically reassess the implication of 106 genes proposed to be involved in monogenic forms of XLID. We particularly question the implication in XLID of ten of them (AGTR2, MAGT1, ZNF674, SRPX2, ATP6AP2, ARHGEF6, NXF5, ZCCHC12, ZNF41, and ZNF81), in which truncating variants or previously published mutations are observed at a relatively high frequency within this cohort. We also highlight 15 other genes (CCDC22, CLIC2, CNKSR2, FRMPD4, HCFC1, IGBP1, KIAA2022, KLF8, MAOA, NAA10, NLGN3, RPL10, SHROOM4, ZDHHC15, and ZNF261) for which replication studies are warranted. We propose that similar reassessment of reported mutations (and genes) with the use of data from large-scale human exome sequencing would be relevant for a wide range of other genetic diseases.
Collapse
Affiliation(s)
- Amélie Piton
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7104, Institut National de la Santé et de la Recherche Médicale Unité 964, University of Strasbourg, 67404 Illkirch Cedex, France; Chaire de Génétique Humaine, Collège de France, 75231 Paris Cedex 05, France.
| | | | | |
Collapse
|
13
|
Esposito T, Lea RA, Maher BH, Moses D, Cox HC, Magliocca S, Angius A, Nyholt DR, Titus T, Kay T, Gray NA, Rastaldi MP, Parnham A, Gianfrancesco F, Griffiths LR. Unique X-linked familial FSGS with co-segregating heart block disorder is associated with a mutation in the NXF5 gene. Hum Mol Genet 2013; 22:3654-66. [PMID: 23686279 DOI: 10.1093/hmg/ddt215] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is the consequence of a disease process that attacks the kidney's filtering system, causing serious scarring. More than half of FSGS patients develop chronic kidney failure within 10 years, ultimately requiring dialysis or renal transplantation. There are currently several genes known to cause the hereditary forms of FSGS (ACTN4, TRPC6, CD2AP, INF2, MYO1E and NPHS2). This study involves a large, unique, multigenerational Australian pedigree in which FSGS co-segregates with progressive heart block with apparent X-linked recessive inheritance. Through a classical combined approach of linkage and haplotype analysis, we identified a 21.19 cM interval implicated on the X chromosome. We then used a whole exome sequencing approach to identify two mutated genes, NXF5 and ALG13, which are located within this linkage interval. The two mutations NXF5-R113W and ALG13-T141L segregated perfectly with the disease phenotype in the pedigree and were not found in a large healthy control cohort. Analysis using bioinformatics tools predicted the R113W mutation in the NXF5 gene to be deleterious and cellular studies support a role in the stability and localization of the protein suggesting a causative role of this mutation in these co-morbid disorders. Further studies are now required to determine the functional consequence of these novel mutations to development of FSGS and heart block in this pedigree and to determine whether these mutations have implications for more common forms of these diseases in the general population.
Collapse
Affiliation(s)
- Teresa Esposito
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, National Research Council of Italy, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|