1
|
Müller MM, Lehmann M, Neef V, Zacharowski K, Tonn T. [Platelet Concentrates - Indication, Informed Consent, Transfusion and Adverse Events]. Anasthesiol Intensivmed Notfallmed Schmerzther 2025; 60:35-51. [PMID: 39778586 DOI: 10.1055/a-2234-1341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Transfusion of platelet concentrates (PC) can be a life-saving measure in case of severe thrombocytopenia or thrombocytopathy, particularly in bleeding patients. Although acaryote, platelets are involved in several important functions including immunomodulation, but their most important function is in primary and secondary haemostasis. In this German review, apheresis and whole blood derived PC are compared and indications as well as transfusion triggers and dosage of PC are discussed. Apart from emergencies, transfusion of PC can only occur after informed consent. Therefore, the treating physician should be aware of the potential adverse events and their prophylaxis in order to best advise the patient. Eight of the most prevalent and/or clinically severe adverse events following PC transfusion and their handling and prevention are discussed. In addition, practical aspects of PC transfusion are depicted as well as the treating physician's choice of the appropriate PC including a flowchart for refractory patients.
Collapse
|
2
|
Muret C, Crettaz D, Martin A, Aliotta A, Bertaggia Calderara D, Alberio L, Prudent M. Biotinylation of human platelets is compatible with pathogen inactivation treatment and cold storage for clinical studies. Transfusion 2024. [PMID: 39688199 DOI: 10.1111/trf.18102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Production of platelet concentrates (PCs) involves several steps that significantly affect platelet behavior. To gain a deeper understanding of how storage conditions impact donor platelet recirculation and functionality post-transfusion, ex vivo platelet labeling is a feasible approach. However, before pursuing clinical investigations of platelet recirculation and function in humans, we aimed to determine the effects of pathogen inactivation technology (PIT) and storage conditions (4°C vs. room temperature [RT]) on phenotype and function of biotinylated platelets compared to conventional PIT PCs for transfusion. METHODS Nine PCs were prepared in 61% additive solution from 45 buffy coats (five buffy coats each). A pool-and-split of three units was used to prepare three equivalent PCs: two labeled with biotin and stored at RT or 4°C, and one without labeling and stored at RT. All PCs were then treated by PIT (amotosalen/UVA) and stored for 14 days. Labeling efficiency, platelet concentration, metabolic parameters, aggregation response (ADP, collagen, co-aggregation with epinephrine), and platelet phenotype (CD42b, CD62-P, phosphatidylserine) at the basal stage and upon stimulation (ADP or TRAP-6) were performed. RESULTS Labeling efficiency of PIT and 4°C PCs was stable over 14 days of storage. Differences in platelet function and phenotype were mainly due to the storage temperature and not the biotinylation process. Phenotypes at baseline or after stimulation were equivalent in biotin-positive and biotin-negative platelets. CONCLUSION Biotin-labeled platelets can effectively enable investigation of the effects of PIT and storage temperature for clinical studies. This method shows great potential for improving platelet transfusion knowledge.
Collapse
Affiliation(s)
- Charlotte Muret
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - David Crettaz
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - Agathe Martin
- Laboratoire de Préparation Cellulaire et d'Analyses, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - Alessandro Aliotta
- Division of Hematology and Central Hematology Laboratory, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Debora Bertaggia Calderara
- Division of Hematology and Central Hematology Laboratory, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lorenzo Alberio
- Division of Hematology and Central Hematology Laboratory, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michel Prudent
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Van Aelst B, Bens K, Sabot B, Vertongen S, Feys HB, Compernolle V, Six KR. Platelet Additive Solutions SSP+ and T-PAS+ Are Interchangeable for Platelet Concentrate Storage despite Differences in Composition and Plasticizer. Transfus Med Hemother 2024; 51:424-429. [PMID: 39664461 PMCID: PMC11630905 DOI: 10.1159/000538003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/22/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction Platelet additive solutions support ex vivo storage of platelet concentrates used for transfusion. The composition of platelet additive solutions within one generation (i.e., PAS-E) is similar but not identical. Additionally, the platelet additive solution storage bag may contain different plasticizers. This study compares the effect of two PAS-E solutions (SSP+ vs. T-PAS+, stored in a DEHP-containing and DEHP-free bag, respectively) to investigate if both additive solutions are interchangeable for platelet concentrate storage. Methods Platelet concentrates stored in plasma supplemented with SSP+ or T-PAS+ were compared by using a pool-and-split design. Platelet metabolism was investigated using a blood gas analyzer. The degree of platelet storage lesion was determined by flow cytometry to measure granule release and phosphatidylserine scrambling. Results The quality of platelet concentrates stored in either SSP+ or T-PAS+ is acceptable as pH decreased only slightly as a function of time. PH remained above 7.2 on exiration day +1 (day 6), which is far above the minimal criterion of 6.4. Platelet storage lesion was comparable between the two study groups with only limited α-granule release and phosphatidylserine surface expression in both groups after storage for 5 days, p = 0.547 and p = 0.825, respectively. Conclusion This study supports a safe switch between SSP+ and T-PAS+ storage solutions for platelet concentrates despite slight differences in storage solution composition and DEHP content.
Collapse
Affiliation(s)
- Britt Van Aelst
- Blood Services, Belgian Red Cross Flanders, Mechelen, Belgium
| | - Karen Bens
- Blood Services, Belgian Red Cross Flanders, Mechelen, Belgium
| | - Bea Sabot
- Blood Services, Belgian Red Cross Flanders, Mechelen, Belgium
| | - Sarah Vertongen
- Transfusion Research Center, Belgian Red Cross Flanders, Ghent, Belgium
| | - Hendrik B. Feys
- Transfusion Research Center, Belgian Red Cross Flanders, Ghent, Belgium
- Department of Diagnostic Sciences, Faculty of Medicine and Healthy Sciences, Ghent University, Ghent, Belgium
| | - Veerle Compernolle
- Blood Services, Belgian Red Cross Flanders, Mechelen, Belgium
- Transfusion Research Center, Belgian Red Cross Flanders, Ghent, Belgium
- Department of Diagnostic Sciences, Faculty of Medicine and Healthy Sciences, Ghent University, Ghent, Belgium
| | - Katrijn R. Six
- Transfusion Research Center, Belgian Red Cross Flanders, Ghent, Belgium
| |
Collapse
|
4
|
Bontekoe IJ, van der Meer PF, de Laleijne-Liefting LAE, Klei TRL. The effect of near-infrared low-level light on the in vitro quality of platelets during storage. Vox Sang 2024. [PMID: 38754975 DOI: 10.1111/vox.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND AND OBJECTIVES Near-infrared (NIR) light has been successfully applied to improve the quality of mouse platelets during storage. Because it is suspected that the mitochondria contain the primary photon acceptor, we hypothesized that human platelets for transfusion may be affected similarly and could benefit from NIR light treatment. MATERIALS AND METHODS The optimal light dose was determined using portions of platelet concentrates (PCs) in PAS-E. A pool-and-split design was used to prepare PCs in PAS-E or plasma (n = 6). On day 1, one unit of both pairs was illuminated with 830 nm light (light-emitting diodes, 15 J/cm2). PCs were stored at 22°C and sampled regularly for analysis. Data were compared with their corresponding controls with a paired two-sided t-test. RESULTS Illuminated platelets in PAS-E were less activated with significantly lower CD62P expression (day 8: 10.8 ± 1.8 vs. 12.2 ± 2.6, p < 0.05) and lower Annexin A5 binding (day 8: 11.8 ± 1.9 vs. 13.1 ± 2.4, ns). They produced significantly less lactate resulting in a higher pH (days 6-10). ATP content and mitochondrial membrane potential were not affected. Although these trends were also observed for PCs in plasma, the differences did not reach statistical significance as compared with the control group. CONCLUSION Our study demonstrates that the glycolysis rate of human platelets can be modulated through the use of NIR, possibly through mitochondrial aerobic metabolism, but this requires confirmation. If NIR illumination can be further optimized, it may potentially become a useful tool in situations in which glycolysis and platelet activation are exacerbated.
Collapse
Affiliation(s)
- Ido J Bontekoe
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, The Netherlands
| | - Pieter F van der Meer
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, The Netherlands
- Department of Hematology, Haga Teaching Hospital, The Hague, The Netherlands
| | | | - Thomas R L Klei
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Rezvany MR, Moradi Hasan-Abad A, Sobhani-Nasab A, Esmaili MA. Evaluation of bacterial safety approaches of platelet blood concentrates: bacterial screening and pathogen reduction. Front Med (Lausanne) 2024; 11:1325602. [PMID: 38651065 PMCID: PMC11034438 DOI: 10.3389/fmed.2024.1325602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/04/2024] [Indexed: 04/25/2024] Open
Abstract
This mini-review analyzed two approaches to screening bacterial contamination and utilizing pathogen reduction technology (PRT) for Platelet concentrates (PCs). While the culture-based method is still considered the gold standard for detecting bacterial contamination in PCs, efforts in the past two decades to minimize transfusion-transmitted bacterial infections (TTBIs) have been insufficient to eliminate this infectious threat. PRTs have emerged as a crucial tool to enhance safety and mitigate these risks. The evidence suggests that the screening strategy for bacterial contamination is more successful in ensuring PC quality, decreasing the necessity for frequent transfusions, and improving resistance to platelet transfusion. Alternatively, the PRT approach is superior regarding PC safety. However, both methods are equally effective in managing bleeding. In conclusion, PRT can become a more prevalent means of safety for PCs compared to culture-based approaches and will soon comprehensively surpass culture-based bacterial contamination detection methods.
Collapse
Affiliation(s)
- Mohammad Reza Rezvany
- Department of Hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- BioClinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Pediatrics Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Sobhani-Nasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Esmaili
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| |
Collapse
|
6
|
Muret C, Crettaz D, Alberio L, Prudent M. Increase of Phosphoprotein Expressions in Amotosalen/UVA-Treated Platelet Concentrates. Transfus Med Hemother 2024; 51:101-110. [PMID: 38584699 PMCID: PMC10996061 DOI: 10.1159/000535060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/05/2023] [Indexed: 04/09/2024] Open
Abstract
Background Pathogen inactivation treatment (PIT) has been shown to alter platelet function, phenotype, morphology and to induce a faster aging of platelet concentrates (PCs). Key pieces of information are still missing to understand the impacts of PITs at the cellular level. Objectives This study investigated the impact of amotosalen/UVA on PCs, from a post-translational modifications (PTM) point of view. Phosphoproteomic analyses were conducted on resting platelets, right after the amotosalen/UVA treatment and compared with untreated PCs. Method A two-arm study setting was carried out to compare PIT (amotosalen/UVA) to untreated PCs, on day 1 post-donation. Based on a pool-and-split approach, 12 PCs were split into two groups (treated and untreated). Quantitative phosphoproteomics was performed using TMT technology to study the changes of phosphoproteins right after the PIT. Results A total of 3,906 proteins and 7,334 phosphosites were identified, and 2,473 proteins and 2,214 phosphosites were observed in at least 5 to 6 replicates. Compared to untreated platelets, PIT platelets exhibited an upregulation of the phosphorylation effects, with 109 phosphosites identified with a higher than 2-fold change. Two pathways were clearly identified. The mitogen activated protein kinases (MAPKs) cascade, which triggers the granule secretion and the activation of the pS15 HSPB1. One of the shape change pathways was also observed with the inhibition of the Threonine 18 and Serine 19 phosphorylations on myosin light chain (MLC) protein after the amotosalen/UVA treatment. Conclusions This work provides a deep insight into the impact of amotosalen/UVA treatment from a phosphoprotein viewpoint on resting platelets. Clear changes in phosphorylation of proteins belonging to different platelet pathways were quantified. This discovery corroborates previous findings and fills missing parts of the effect of photochemical treatments on platelets.
Collapse
Affiliation(s)
- Charlotte Muret
- Laboratoire de Recherche sur Les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - David Crettaz
- Laboratoire de Recherche sur Les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - Lorenzo Alberio
- Division of Hematology and Central Hematology Laboratory, CHUV, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Michel Prudent
- Laboratoire de Recherche sur Les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
De Korte D, Delabie W, Feys HB, Klei T, Larsen R, Sigurjónsson Ó, Sousa AP. Towards standardized human platelet lysate production in Europe: An initiative of the European Blood Alliance. Vox Sang 2024; 119:79-87. [PMID: 38049931 DOI: 10.1111/vox.13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 12/06/2023]
Abstract
Human platelet lysate (hPL) is a supplement for cell culture media that can be derived from platelet concentrates. As not-for-profit blood establishments, we endorse the evolution of maximally exploiting the potential of donated blood and its derived components, including platelets. The decision to use platelet concentrates to supply hPL as a cell culture supplement should align with the principles and values that blood establishments hold towards the use of donated blood components in transfusion. As a consequence, questions on ethics, practical standardization of hPL production and logistics as well as on assuring hPL quality and safety need careful consideration. We therefore propose an opinion on some of these matters based on available literature and on discussions within the proceedings of the Working Group on Innovation and New Products of the European Blood Alliance. In addition, we propose collaboration among European blood establishments to streamline efforts of hPL supply to maximize the potential of hPL and its application in the wider field of medicine.
Collapse
Affiliation(s)
- Dirk De Korte
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, The Netherlands
| | - Willem Delabie
- Transfusion Research Center, Belgian Red Cross Flanders, Ghent, Belgium
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross Flanders, Ghent, Belgium
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Thomas Klei
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, The Netherlands
| | - Rune Larsen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Ólafur Sigurjónsson
- The Blood Bank, Landspitali University Hospital, Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | - Ana Paula Sousa
- Blood and Transplantation Centre of Lisboa, Portuguese Institute for Blood and Transplantation (IPST), Lisbon, Portugal
| |
Collapse
|
8
|
Sun J, Dahiya N, Schmitt T, Stewart C, Anderson J, MacGregor S, Maclean M, Beger RD, Atreya CD. Metabolomics evaluation of the photochemical impact of violet-blue light (405 nm) on ex vivo platelet concentrates. Metabolomics 2023; 19:88. [PMID: 37855954 DOI: 10.1007/s11306-023-02050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Microbicidal violet-blue light in the visible spectrum (405 nm) has been under evaluation for pathogen inactivation in ex vivo human plasma and platelets (PLTs) stored in plasma. Results to date have demonstrated that several blood-borne infectious disease-causing pathogens can be successfully reduced to significantly low levels in the light-treated plasma and PLTs. METHOD In order to evaluate whether the microbicidal 405 nm light is safe for the treatment of PLT concentrates for pathogen inactivation, LC/MS-based metabolomics analyses were performed to evaluate the overall impact of 405 nm violet-blue light treatment on ex vivo PLT concentrates suspended in plasma and on plasma itself, and to identify metabolome changes in intra-platelet and extra-cellular medium (i.e., plasma). RESULTS The metabolomics data identified that platelet activating factors (PAFs), agonists and prostaglandins, which can influence PLT basic functions such as integrity, activation, and aggregation potential were unaltered, suggesting that 405 nm light illumination is safe regarding PLT basic functions. Distinct increases in hydroxyl fatty acids and aldehydes, as well as decreases in antioxidant metabolites indicated that reactive oxygen species (ROS) were generated at high levels after only one hour of exposure to 405 nm light. Distinctly changed endogenous photosensitizer metabolites after 1 h of light exposure provided good evidence that 405 nm light was an effective microbicide acting through ROS mechanism and no external additive photosensitizers were required.
Collapse
Affiliation(s)
- Jinchun Sun
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| | - Neetu Dahiya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Thomas Schmitt
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Caitlin Stewart
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - John Anderson
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Scott MacGregor
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Chintamani D Atreya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
9
|
Garraud O, Hamzeh-Cognasse H, Chalayer E, Duchez AC, Tardy B, Oriol P, Haddad A, Guyotat D, Cognasse F. Platelet transfusion in adults: An update. Transfus Clin Biol 2023; 30:147-165. [PMID: 36031180 DOI: 10.1016/j.tracli.2022.08.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many patients worldwide receive platelet components (PCs) through the transfusion of diverse types of blood components. PC transfusions are essential for the treatment of central thrombocytopenia of diverse causes, and such treatment is beneficial in patients at risk of severe bleeding. PC transfusions account for almost 10% of all the blood components supplied by blood services, but they are associated with about 3.25 times as many severe reactions (attributable to transfusion) than red blood cell transfusions after stringent in-process leukoreduction to less than 106 residual cells per blood component. PCs are not homogeneous, due to the considerable differences between donors. Furthermore, the modes of PC collection and preparation, the safety precautions taken to limit either the most common (allergic-type reactions and febrile non-hemolytic reactions) or the most severe (bacterial contamination, pulmonary lesions) adverse reactions, and storage and conservation methods can all result in so-called PC "storage lesions". Some storage lesions affect PC quality, with implications for patient outcome. Good transfusion practices should result in higher levels of platelet recovery and efficacy, and lower complication rates. These practices include a matching of tissue ABH antigens whenever possible, and of platelet HLA (and, to a lesser extent, HPA) antigens in immunization situations. This review provides an overview of all the available information relating to platelet transfusion, from donor and donation to bedside transfusion, and considers the impact of the measures applied to increase transfusion efficacy while improving safety and preventing transfusion inefficacy and refractoriness. It also considers alternatives to platelet component (PC) transfusion.
Collapse
Affiliation(s)
- O Garraud
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France.
| | | | - E Chalayer
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Saint-Etienne University Hospital, Department of Hematology and Cellular Therapy, Saint-Étienne, France
| | - A C Duchez
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - B Tardy
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; CHU de Saint-Etienne, INSERM and CIC EC 1408, Clinical Epidemiology, Saint-Étienne, France
| | - P Oriol
- CHU de Saint-Etienne, INSERM and CIC EC 1408, Clinical Epidemiology, Saint-Étienne, France
| | - A Haddad
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Sacré-Cœur Hospital, Beirut, Lebanon; Lebanese American University, Beirut, Lebanon
| | - D Guyotat
- Saint-Etienne University Hospital, Department of Hematology and Cellular Therapy, Saint-Étienne, France
| | - F Cognasse
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| |
Collapse
|
10
|
Tsalas S, Petrou E, Tsantes AG, Sokou R, Loukopoulou E, Houhoula D, Mantzios PG, Kriebardis AG, Tsantes AE. Pathogen Reduction Technologies and Their Impact on Metabolic and Functional Properties of Treated Platelet Concentrates: A Systematic Review. Semin Thromb Hemost 2022. [PMID: 36252605 DOI: 10.1055/s-0042-1757897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Pathogen reduction technologies (PRTs) such as Mirasol and Intercept were developed to eliminate transfusion-transmitted infections. The impact of PRTs on platelet function during the storage period, their effect on platelet storage lesions, and the optimal storage duration following PRTs have not been clearly defined. The aim of this study was to systematically review the existing literature and investigate the impact of PRTs on functional alterations of PRT-treated platelets during the storage period. The authors identified 68 studies suitable to be included in this review. Despite the high heterogeneity in the literature, the results of the published studies indicate that PRTs may increase platelet metabolic activity, accelerate cell apoptosis, and enhance platelet activation, which can subsequently lead to a late exhaustion of activation potential and reduced aggregation response. However, these effects have a minor impact on platelet function during the early storage period and become more prominent beyond the fifth day of the storage period. Large in vivo trials are required to evaluate the effectiveness of PRT-treated platelets during the storage period and investigate whether their storage can be safely extended to more than 5 days, and up to the traditional 7-day storage period.
Collapse
Affiliation(s)
- Stavros Tsalas
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Petrou
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas G Tsantes
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Rozeta Sokou
- Neonatal Intensive Care Unit, "Agios Panteleimon" General Hospital of Nikea, Nikea, Piraeus, Greece
| | - Electra Loukopoulou
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Houhoula
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros G Mantzios
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology, Department of Biomedical Science, School of Health and Caring Science, University of West Attica, Athens, Greece
| | - Argirios E Tsantes
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Muret C, Crettaz D, Martin A, Aliotta A, Bertaggia Calderara D, Alberio L, Prudent M. Two novel platelet biotinylation methods and their impact on stored platelet concentrates in a blood bank environment. Transfusion 2022; 62:2324-2333. [PMID: 36190148 DOI: 10.1111/trf.17129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/08/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Storage of platelet concentrates (PCs) has an impact on platelet quality and possibly affects their functions after transfusion. The influence of processing and storage conditions of PCs on their in vivo function upon transfusion is unknown. One option for investigating this question is to implement an ex vivo labeling of human platelets, to analyze them after transfusion into heathy volunteers and/or patients. In this study, we developed two labeling methods employing biotin. METHODS Two methods of biotinylation were compared to a control (standard PC). The "Bio-Wash" process used washing steps to label all platelets within the PC; for the other method, "Bio-Direct," one fifth of the PC were directly labeled without washing steps. The control and the two biotinylated PCs were analyzed over 7 days of storage. Labeling efficiency, platelet counts, phenotypes, and functions, along with time and costs, were evaluated to select the best process. RESULTS Both methods achieved a stable labeling through the storage, with similar platelet counts and metabolism in comparison to control PCs. Bio-Wash showed higher activation phenotype and lower aggregation response in comparison to the Bio-Direct method. The Bio-Direct was performed within 1.5 h versus 3 h for the Bio-Wash. However, the Bio-Direct required 12 mg of biotin instead of 8 mg for the other process. CONCLUSION We set up two methods of biotinylation that can be easily implemented in a blood bank environment. The Bio-Direct process was preferred to the Bio-Wash because of its similarity, from a functional and phenotypic point of view, with standard PCs.
Collapse
Affiliation(s)
- Charlotte Muret
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland.,Faculté de Biologie et de Médecine, Université de Lausanne (UNIL), Lausanne, Switzerland
| | - David Crettaz
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - Agathe Martin
- Laboratoire de Préparation Cellulaire et d'Analyses, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - Alessandro Aliotta
- Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Debora Bertaggia Calderara
- Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Lorenzo Alberio
- Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Michel Prudent
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University Hospital and University of Lausanne, Lausanne, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Arnason NA, Johannsson F, Landrö R, Hardarsson B, Gudmundsson S, Lian AM, Reseland J, Rolfsson O, Sigurjonsson OE. Protein Concentrations in Stored Pooled Platelet Concentrates Treated with Pathogen Inactivation by Amotosalen Plus Ultraviolet a Illumination. Pathogens 2022; 11:pathogens11030350. [PMID: 35335674 PMCID: PMC8954553 DOI: 10.3390/pathogens11030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Platelet granules contain a diverse group of proteins. Upon activation and during storage, platelets release a number of proteins into the circulation or supernatant of stored platelet concentrate (PC). The aim of this work was to investigate the effect of pathogen inactivation (PI) on a selection of proteins released in stored platelets. Materials and Methods: PCs in platelet additive solution (PAS) were produced from whole blood donations using the buffy coat (BC) method. PCs in the treatment arm were pathogen inactivated with amotosalen and UVA, while PCs in the second arm were used as an untreated platelet control. Concentrations of 36 proteins were monitored in the PCs during storage. Results: The majority of proteins increased in concentration over the storage period. In addition, 10 of the 29 proteins that showed change had significantly different concentrations between the PI treatment and the control at one or more timepoints. A subset of six proteins displayed a PI-related drop in concentration. Conclusions: PI has limited effect on protein concentration stored PC supernatant. The protein’s changes related to PI treatment with elevated concentration implicate accelerated Platelet storage lesion (PSL); in contrast, there are potential novel benefits to PI related decrease in protein concentration that need further investigation.
Collapse
Affiliation(s)
- Niels Arni Arnason
- The Blood Bank, Landspitali-The National University Hospital of Iceland, 105 Reykjavik, Iceland; (N.A.A.); (R.L.); (B.H.); (S.G.)
- School of Engineering, Reykjavik University, 105 Reykjavik, Iceland
| | - Freyr Johannsson
- Department of Medicine, University of Iceland, 105 Reykjavik, Iceland; (F.J.); (O.R.)
| | - Ragna Landrö
- The Blood Bank, Landspitali-The National University Hospital of Iceland, 105 Reykjavik, Iceland; (N.A.A.); (R.L.); (B.H.); (S.G.)
| | - Björn Hardarsson
- The Blood Bank, Landspitali-The National University Hospital of Iceland, 105 Reykjavik, Iceland; (N.A.A.); (R.L.); (B.H.); (S.G.)
| | - Sveinn Gudmundsson
- The Blood Bank, Landspitali-The National University Hospital of Iceland, 105 Reykjavik, Iceland; (N.A.A.); (R.L.); (B.H.); (S.G.)
| | - Aina-Mari Lian
- Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; (A.-M.L.); (J.R.)
| | - Janne Reseland
- Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; (A.-M.L.); (J.R.)
| | - Ottar Rolfsson
- Department of Medicine, University of Iceland, 105 Reykjavik, Iceland; (F.J.); (O.R.)
| | - Olafur E. Sigurjonsson
- The Blood Bank, Landspitali-The National University Hospital of Iceland, 105 Reykjavik, Iceland; (N.A.A.); (R.L.); (B.H.); (S.G.)
- School of Engineering, Reykjavik University, 105 Reykjavik, Iceland
- Correspondence: ; Tel.: +354-543-5523 or +354-694-9427; Fax: +354-543-5532
| |
Collapse
|
13
|
Malvaux N, Defraigne F, Bartziali S, Bellora C, Mommaerts K, Betsou F, Schuhmacher A. In Vitro Comparative Study of Platelets Treated with Two Pathogen-Inactivation Methods to Extend Shelf Life to 7 Days. Pathogens 2022; 11:pathogens11030343. [PMID: 35335667 PMCID: PMC8949436 DOI: 10.3390/pathogens11030343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Background and Objectives: Since 2015, platelet products have been pathogen-inactivated (PI) at the Luxemburgish Red Cross (LRC) using Riboflavin and UV light (RF-PI). As the LRC should respond to hospital needs at any time, platelet production exceeds the demand, generating a discard rate of 18%. To reduce this, we consider the extension of storage time from 5 to 7 days. This study’s objective was to evaluate the in vitro 7-day platelet-storage quality, comparing two PI technologies, RF-PI and amotosalen/UVA light (AM-PI), for platelet pools from whole-blood donations (PPCs) and apheresis platelets collected from single apheresis donation (APCs). Materials and Methods: For each product type, 6 double-platelet concentrates were prepared and divided into 2 units; one was treated with RF-PI and the other by AM-PI. In vitro platelet-quality parameters were tested pre- and post-PI, at days 5 and 7. Results: Treatment and storage lesions were observed in PPCs and APCs with both PI methods. We found a higher rate of lactate increase and glucose depletion, suggesting a stronger stimulation of the glycolytic pathway, a higher Annexin V binding, and a loss of swirling in the RF-PI-treated units from day 5. The platelet loss was significantly higher in the AM-PI compared with the RF-PI units. Conclusions: Results suggest that RF-PI treatment has a higher deleterious impact on in vitro platelet quality compared to AM-PI, but we observed higher loss of platelets with AM-PI due to the post-illumination amotosalen adsorption step. If 7-day storage is needed, it can only be achieved with AM-PI, based on our quality criteria.
Collapse
Affiliation(s)
- Nicolas Malvaux
- Red Cross of Luxemburg, Boulevard Joseph II, 40, L-1840 Luxembourg, Luxembourg; (F.D.); (S.B.); (A.S.)
- Correspondence: ; Tel.: +352-2755-4000
| | - Fanette Defraigne
- Red Cross of Luxemburg, Boulevard Joseph II, 40, L-1840 Luxembourg, Luxembourg; (F.D.); (S.B.); (A.S.)
| | - Styliani Bartziali
- Red Cross of Luxemburg, Boulevard Joseph II, 40, L-1840 Luxembourg, Luxembourg; (F.D.); (S.B.); (A.S.)
| | - Camille Bellora
- Integrated Biobank of Luxembourg, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg; (C.B.); (K.M.); (F.B.)
| | - Kathleen Mommaerts
- Integrated Biobank of Luxembourg, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg; (C.B.); (K.M.); (F.B.)
- Luxembourg Center for Systems Biomedicine, 6 Av. du Swing, L-4367 Esch-sur-Alzette, Luxembourg
| | - Fay Betsou
- Integrated Biobank of Luxembourg, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg; (C.B.); (K.M.); (F.B.)
- Laboratoire National de Sante, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
| | - Anne Schuhmacher
- Red Cross of Luxemburg, Boulevard Joseph II, 40, L-1840 Luxembourg, Luxembourg; (F.D.); (S.B.); (A.S.)
| |
Collapse
|
14
|
Escolar G, Diaz-Ricart M, McCullough J. Impact of different pathogen reduction technologies on the biochemistry, function, and clinical effectiveness of platelet concentrates: An updated view during a pandemic. Transfusion 2021; 62:227-246. [PMID: 34870335 PMCID: PMC9300014 DOI: 10.1111/trf.16747] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/03/2021] [Accepted: 10/06/2021] [Indexed: 12/25/2022]
Abstract
Standard platelet concentrates (PCs) stored at 22°C have a limited shelf life of 5 days. Because of the storage temperature, bacterial contamination of PCs can result in life‐threatening infections in transfused patients. The potential of blood components to cause infections through contaminating pathogens or transmitting blood‐borne diseases has always been a concern. The current safety practice to prevent pathogen transmission through blood transfusion starts with a stringent screening of donors and regulated testing of blood samples to ensure that known infections cannot reach transfusion products. Pathogen reduction technologies (PRTs), initially implemented to ensure the safety of plasma products, have been adapted to treat platelet products. In addition to reducing bacterial contamination, PRT applied to PCs can extend their shelf life up to 7 days, alleviating the impact of their shortage, while providing an additional safety layer against emerging blood‐borne infectious diseases. While a deleterious action of PRTs in quantitative and qualitative aspects of plasma is accepted, the impact of PRTs on the quality, function, and clinical efficacy of PCs has been under constant examination. The potential of PRTs to prevent the possibility of new emerging diseases to reach cellular blood components has been considered more hypothetical than real. In 2019, a coronavirus‐related disease (COVID‐19) became a pandemic. This episode should help when reconsidering the possibility of future blood transmissible threats. The following text intends to evaluate the impact of different PRTs on the quality, function, and clinical effectiveness of platelets within the perspective of a developing pandemic.
Collapse
Affiliation(s)
- Gines Escolar
- Department of Hematopathology, Centre Diagnostic Biomedic, Hospital Clinic, Barcelona, Spain
| | - Maribel Diaz-Ricart
- Department of Hematopathology, Centre Diagnostic Biomedic, Hospital Clinic, Barcelona, Spain
| | | |
Collapse
|
15
|
Malvaux N, Schuhmacher A, Defraigne F, Jacob R, Bah A, Cardoso M. Remodelling whole blood processing through automation and pathogen reduction technology at the Luxembourg Red Cross. Transfus Apher Sci 2021; 60:103195. [PMID: 34147359 DOI: 10.1016/j.transci.2021.103195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 11/26/2022]
Abstract
In 2014-2015, the Luxembourg Red Cross (LRC) implemented a fully automated system (FAS) able to process 4 whole blood units simultaneously, and a pathogen reduction technology (PRT) based on riboflavin and ultraviolet light to improve safety of platelet concentrates (PCs). In this observational study, the impact of both technologies to enable this centralised blood transfusion centre to provide safe and timely blood components supply for the whole country was analysed. Standard quality control parameters for blood components, productivity and safety were compared from data collected with the conventional semi- automated buffy coat method and with FAS/PRT. The FAS decreased processing time when compared with the buffy coat method and facilitated the daily routine at the LRC. Red blood cell concentrates, plasma units and PCs prepared with both methods were conform to the European Directorate for the Quality of Medicines & HealthCare specifications. PCs prepared by FAS showed high yields, with decreased variability when the device-related software (T-Pool Select) was used. PRT had minimal impact on platelet yields and product quality and induced no increase in transfusion reaction notifications. The FAS and PRT transformed the daily routine of blood component manufacture by allowing increased productivity and efficiency, notwithstanding resource containment and without impacting quality, yet promoting safety.
Collapse
Affiliation(s)
- Nicolas Malvaux
- Luxembourg Red Cross, Boulevard Joseph II 42, L-1840, Luxembourg.
| | - Anne Schuhmacher
- Luxembourg Red Cross, Boulevard Joseph II 42, L-1840, Luxembourg.
| | | | - Remy Jacob
- Luxembourg Red Cross, Boulevard Joseph II 42, L-1840, Luxembourg.
| | - Aicha Bah
- Terumo BCT Europe, Ikaroslaan 41, 1930 Zaventem, Belgium.
| | - Marcia Cardoso
- Terumo BCT Europe, Ikaroslaan 41, 1930 Zaventem, Belgium.
| |
Collapse
|
16
|
Hayashi T, Oguma K, Fujimura Y, Furuta RA, Tanaka M, Masaki M, Shinbata Y, Kimura T, Tani Y, Hirayama F, Takihara Y, Takahashi K. UV light-emitting diode (UV-LED) at 265 nm as a potential light source for disinfecting human platelet concentrates. PLoS One 2021; 16:e0251650. [PMID: 34014978 PMCID: PMC8136854 DOI: 10.1371/journal.pone.0251650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
The risk of sepsis through bacterial transmission is one of the most serious problems in platelet transfusion. In processing platelet concentrates (PCs), several methods have been put into practice to minimize the risk of bacterial transmission, such as stringent monitoring by cultivation assays and inactivation treatment by photoirradiation with or without chemical agents. As another potential option, we applied a light-emitting diode (LED) with a peak emission wavelength of 265 nm, which has been shown to be effective for water, to disinfect PCs. In a bench-scale UV-LED exposure setup, a 10-min irradiation, corresponding to an average fluence of 9.2 mJ/cm2, resulted in >2.0 log, 1.0 log, and 0.6 log inactivation (mean, n = 6) of Escherichia coli, Staphylococcus aureus, and Bacillus cereus, respectively, in non-diluted plasma PCs. After a 30-min exposure, platelet counts decreased slightly (18 ± 7%: mean ± SD, n = 7); however, platelet surface expressions of CD42b, CD61, CD62P, and PAC-1 binding did not change significantly (P>0.005), and agonist-induced aggregation and adhesion/aggregation under flow conditions were well maintained. Our findings indicated that the 265 nm UV-LED has high potential as a novel disinfection method to ensure the microbial safety of platelet transfusion.
Collapse
Affiliation(s)
- Tomoya Hayashi
- Japanese Red Cross Kinki Block Blood Centre, Ibaraki, Osaka, Japan
- * E-mail:
| | | | | | - Rika A. Furuta
- Central Blood Institute, Japanese Red Cross, Tokyo, Japan
| | - Mitsunobu Tanaka
- Japanese Red Cross Kinki Block Blood Centre, Ibaraki, Osaka, Japan
| | - Mikako Masaki
- Japanese Red Cross Kinki Block Blood Centre, Ibaraki, Osaka, Japan
| | | | - Takafumi Kimura
- Japanese Red Cross Kinki Block Blood Centre, Ibaraki, Osaka, Japan
| | - Yoshihiko Tani
- Central Blood Institute, Japanese Red Cross, Tokyo, Japan
| | - Fumiya Hirayama
- Japanese Red Cross Kinki Block Blood Centre, Ibaraki, Osaka, Japan
| | | | - Koki Takahashi
- Blood Service Headquarters, Japanese Red Cross, Tokyo, Japan
| |
Collapse
|
17
|
Cognasse F, Hally K, Fauteux-Daniel S, Eyraud MA, Arthaud CA, Fagan J, Mismetti P, Hamzeh-Cognasse H, Laradi S, Garraud O, Larsen P. Effects and Side Effects of Platelet Transfusion. Hamostaseologie 2021; 41:128-135. [PMID: 33711849 DOI: 10.1055/a-1347-6551] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aside from their canonical role in hemostasis, it is increasingly recognized that platelets have inflammatory functions and can regulate both adaptive and innate immune responses. The main topic this review aims to cover is the proinflammatory effects and side effects of platelet transfusion. Platelets prepared for transfusion are subject to stress injury upon collection, preparation, and storage. With these types of stress, they undergo morphologic, metabolic, and functional modulations which are likely to induce platelet activation and the release of biological response modifiers (BRMs). As a consequence, platelet concentrates (PCs) accumulate BRMs during processing and storage, and these BRMs are ultimately transfused alongside platelets. It has been shown that BRMs present in PCs can induce immune responses and posttransfusion reactions in the transfusion recipient. Several recent reports within the transfusion literature have investigated the concept of platelets as immune cells. Nevertheless, current and future investigations will face the challenge of encompassing the immunological role of platelets in the scope of transfusion.
Collapse
Affiliation(s)
- Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Kathryn Hally
- Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Wellington Cardiovascular Research Group, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Sebastien Fauteux-Daniel
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Marie-Ange Eyraud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Charles-Antoine Arthaud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Jocelyne Fagan
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Patrick Mismetti
- SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Hind Hamzeh-Cognasse
- SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Sandrine Laradi
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Olivier Garraud
- SAINBIOSE, INSERM U1059, University of Lyon, Université Jean-Monnet-Saint-Etienne, France, France
| | - Peter Larsen
- Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Wellington Cardiovascular Research Group, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
18
|
Sonego G, Le TTM, Crettaz D, Abonnenc M, Tissot JD, Prudent M. Sulfenylome analysis of pathogen-inactivated platelets reveals the presence of cysteine oxidation in integrin signaling pathway and cytoskeleton regulation. J Thromb Haemost 2021; 19:233-247. [PMID: 33047470 DOI: 10.1111/jth.15121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022]
Abstract
Essentials Cysteine oxidation to sulfenic acid plays a key role in redox regulation and signal transduction. Platelet sulfenylome was studied by quantitative proteomics in pathogen inactivated platelets. One hundred and seventy-four sulfenylated proteins were identified in resting platelets. Pathogen inactivation oxidized integrin βIII, which could activate the mitogen-activated protein kinases pathway. ABSTRACT: Background Cysteine-containing protein modifications are involved in numerous biological processes such redox regulation or signal transduction. During the preparation and storage of platelet concentrates, cell functions and protein regulations are impacted. In spite of several proteomic investigations, the platelet sulfenylome, ie, the proteins containing cysteine residues (R-SH) oxidized to sulfenic acid (R-SOH), has not been characterized. Methods A dimedone-based sulfenic acid tagging and enrichment coupled to a mass spectrometry identification workflow was developed to identify and quantify the sulfenic acid-containing proteins in platelet concentrates treated or not with an amotosalen/ultraviolet A (UVA) pathogen inactivation technique. Results One hundred and seventy-four sulfenylated proteins were identified belonging mainly to the integrin signal pathway and cytoskeletal regulation by Rho GTPase. The impact on pathogen inactivated platelet concentrates was weak compared to untreated ones where three sulfenylated proteins (myosin heavy chain 9, integrin βIII, and transgelin 2) were significantly affected by amotosalen/UVA treatment. Of particular interest, the reported oxidation of cysteine residues in integrin βIII is known to activate the receptor αIIbβIII. Following the pathogen inactivation, it might trigger the phosphorylation of p38MAPK and explain the lesions reported in the literature. Moreover, procaspase activating compound-1 (PAC-1) binding assays on platelet activation showed an increased response to adenosine diphosphate exacerbated by the tagging of proteins with dimedone. This result corroborates the hypothesis of an oxidation-triggered activation of αIIbβIII by the pathogen inactivation treatment. Conclusions The present work completes missing information on the platelet proteome and provides new insights on the effect of pathogen inactivation linked to integrin signaling and cytoskeleton regulation.
Collapse
Affiliation(s)
- Giona Sonego
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - Truong-Thien Melvin Le
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - David Crettaz
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - Mélanie Abonnenc
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - Jean-Daniel Tissot
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Epalinges, Switzerland
- Centre de Transfusion Sanguine, Faculté de Biologie et de Médecine, University of Lausanne, Lausanne, Switzerland
| | - Michel Prudent
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Epalinges, Switzerland
- Centre de Transfusion Sanguine, Faculté de Biologie et de Médecine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Feyissa Q, Xu F, Ibrahim Z, Li Y, Xu KL, Guo Z, Ahmad J, Vostal JG. Synergistic bactericidal effects of pairs of photosensitizer molecules activated by ultraviolet A light against bacteria in plasma. Transfusion 2020; 61:594-602. [PMID: 33219568 DOI: 10.1111/trf.16180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The current approach to reducing bacterial contamination in blood transfusion products is through detection or pathogen reduction methods, some of which utilize ultraviolet (UV) light photosensitizers. A small number of photosensitizers are being used as single agents in combination with UV light, but their efficacy can be limited against some pathogens. Benzophenone (BP) and vitamins B1, B6, and K3 have been identified as effective UVA photosensitizers for inactivation of bacteria. We evaluated whether combining pairs of photosensitizers in this group would have synergistic bactericidal effects on Gram-negative and Gram-positive bacteria. STUDY DESIGN AND METHODS Bacteria species of Escherichia coli, Bacillus cereus, Staphylococcus aureus, and Klebsiella pneumoniae were mixed with 0 to 100 mM concentrations of photosensitizers and exposed to UVA irradiation at 18 J/cm2 to assess their bactericidal effects. RESULTS Single photosensitizers irradiated with UVA produced a range of bactericidal activity. When combined in pairs, all demonstrated some synergistic bactericidal effects with up to 4-log reduction above the sum of activities of individual molecules in the pair against bacteria in plasma. Photosensitizer pairs with BP had the highest synergism across all bacteria. With vitamin K3 in the pair, synergism was evident for Gram-positive but not for Gram-negative bacteria. Vitamin B1 and vitamin B6 had the least synergism. These results indicate that a combination approach with multiple photosensitizers may extend effectiveness of pathogen reduction in plasma. CONCLUSIONS Combining photosensitizers in pathogen reduction methods could improve bactericidal efficacy and lead to use of lower concentrations of photosensitizers to reduce toxicities and unwanted side effects.
Collapse
Affiliation(s)
- Qinati Feyissa
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, CBER, FDA, Silver Spring, Maryland
| | - Fei Xu
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, CBER, FDA, Silver Spring, Maryland
| | - Zina Ibrahim
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, CBER, FDA, Silver Spring, Maryland
| | - Ying Li
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, CBER, FDA, Silver Spring, Maryland
| | - Kevin L Xu
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, CBER, FDA, Silver Spring, Maryland
| | - Zihan Guo
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, CBER, FDA, Silver Spring, Maryland
| | - Justen Ahmad
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, CBER, FDA, Silver Spring, Maryland
| | - Jaroslav G Vostal
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, CBER, FDA, Silver Spring, Maryland
| |
Collapse
|
20
|
Abstract
AbstractThe characterization of platelet concentrates (PCs) in transfusion medicine has been performed with different analytical methods and platelet lesions (from biochemistry to cell biology) have been documented. In routine quality assessment and validation of manufacturing processes of PCs for transfusion purposes, only basic parameters are monitored and the platelet functions are not included. However, PCs undergo several manipulations during the processing and the basic parameters do not provide sensitive analyses to properly picture out the impact of the blood component preparation and storage on platelets. To improve the transfusion supply chain and the platelet functionalities, additional parameters should be used. The present short review will focus on the different techniques to monitor ex vivo platelet lesions from phenotype characterization to advanced omic analyses. Then, the opportunities to use these methods in quality control, process validation, development, and research will be discussed. Functional markers should be considered because they would be an advantage for the future developments in transfusion medicine.
Collapse
|
21
|
New strategies for the control of infectious and parasitic diseases in blood donors: the impact of pathogen inactivation methods. EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Around 70 infectious agents are possible threats for blood safety.
The risk for blood recipients is increasing because of new emergent agents like West Nile, Zika and Chikungunya viruses, or parasites such as Plasmodium and Trypanosoma cruzi in non-endemic regions, for instance.
Screening programmes of the donors are more and more implemented in several Countries, but these cannot prevent completely infections, especially when they are caused by new agents.
Pathogen inactivation (PI) methods might overcome the limits of the screening and different technologies have been set up in the last years.
This review aims to describe the most widely used methods focusing on their efficacy as well as on the preservation integrity of blood components.
Collapse
|
22
|
Platelet Biochemistry and Morphology after Cryopreservation. Int J Mol Sci 2020; 21:ijms21030935. [PMID: 32023815 PMCID: PMC7036941 DOI: 10.3390/ijms21030935] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/25/2022] Open
Abstract
Platelet cryopreservation has been investigated for several decades as an alternative to room temperature storage of platelet concentrates. The use of dimethylsulfoxide as a cryoprotectant has improved platelet storage and cryopreserved concentrates can be kept at −80 °C for two years. Cryopreserved platelets can serve as emergency backup to support stock crises or to disburden difficult logistic areas like rural or military regions. Cryopreservation significantly influences platelet morphology, decreases platelet activation and severely abrogates platelet aggregation. Recent data indicate that cryopreserved platelets have a procoagulant phenotype because thrombin and fibrin formation kicks in earlier compared to room temperature stored platelets. This happens both in static and hydrodynamic conditions. In a clinical setting, low 1-h post transfusion recoveries of cryopreserved platelets represent fast clearance from circulation which may be explained by changes to the platelet GPIbα receptor. Cryopreservation splits the concentrate in two platelet subpopulations depending on GPIbα expression levels. Further research is needed to unravel its physiological importance. Proving clinical efficacy of cryopreserved platelets is difficult because of the heterogeneity of indications and the ambiguity of outcome measures. The procoagulant character of cryopreserved platelets has increased interest for use in trauma stressing the need for double-blinded randomized clinical trials in actively bleeding patients.
Collapse
|
23
|
Domanović D, Ushiro-Lumb I, Compernolle V, Brusin S, Funk M, Gallian P, Georgsen J, Janssen M, Jimenez-Marco T, Knutson F, Liumbruno GM, Mali P, Marano G, Maryuningsih Y, Niederhauser C, Politis C, Pupella S, Rautmann G, Saadat K, Sandid I, Sousa AP, Vaglio S, Velati C, Verdun N, Vesga M, Rebulla P. Pathogen reduction of blood components during outbreaks of infectious diseases in the European Union: an expert opinion from the European Centre for Disease Prevention and Control consultation meeting. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:433-448. [PMID: 31846608 PMCID: PMC6917531 DOI: 10.2450/2019.0288-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Pathogen reduction (PR) of selected blood components is a technology that has been adopted in practice in various ways. Although they offer great advantages in improving the safety of the blood supply, these technologies have limitations which hinder their broader use, e.g. increased costs. In this context, the European Centre for Disease Prevention and Control (ECDC), in co-operation with the Italian National Blood Centre, organised an expert consultation meeting to discuss the potential role of pathogen reduction technologies (PRT) as a blood safety intervention during outbreaks of infectious diseases for which (in most cases) laboratory screening of blood donations is not available. The meeting brought together 26 experts and representatives of national competent authorities for blood from thirteen European Union and European Economic Area (EU/EEA) Member States (MS), Switzerland, the World Health Organization, the European Directorate for the Quality of Medicines and Health Care of the Council of Europe, the US Food and Drug Administration, and the ECDC. During the meeting, the current use of PRTs in the EU/EEA MS and Switzerland was verified, with particular reference to emerging infectious diseases (see Appendix). In this article, we also present expert discussions and a common view on the potential use of PRT as a part of both preparedness and response to threats posed to blood safety by outbreaks of infectious disease.
Collapse
Affiliation(s)
- Dragoslav Domanović
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Ines Ushiro-Lumb
- National Transfusion Microbiology Reference Laboratory, NHS Blood and Transplant and Public Health England, London, England
| | | | - Sergio Brusin
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Markus Funk
- Pharmacovigilance II, Paul-Ehrlich-Institut Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Pierre Gallian
- Etablissement Français du Sang Provence Alpes Côte d’Azur et Corse, Marseille, France
| | - Jørgen Georgsen
- South Danish Transfusion Service, Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Mart Janssen
- Department of Donor Medicine Research, Transfusion Technology Assessment, Sanquin Research, Amsterdam, The Netherlands
| | | | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | | | - Polonca Mali
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia
| | - Giuseppe Marano
- Italian National Blood Centre, National Institute of Health, Rome
| | | | - Christoph Niederhauser
- Interregional Blood Transfusion Swiss Red Cross, Laboratory Diagnostics, Bern, Switzerland
| | - Constantina Politis
- Hellenic Coordinating Hemovigilance Center, Hellenic National Public Health Organization, Athens, Greece
| | | | - Guy Rautmann
- European Directorate for the Quality of Medicines and HealthCare, Strasbourg, France
| | - Karmin Saadat
- Austrian Agency for Health and Food Safety, Wien, Austria
| | - Imad Sandid
- French National Agency for Medicines and Health Products Safety (ANSM), Saint Denis, France
| | - Ana P. Sousa
- Portuguese Blood and Transplantation Center, Lisbon, Portugal
| | - Stefania Vaglio
- Italian National Blood Centre, National Institute of Health, Rome
| | - Claudio Velati
- Italian National Blood Centre, National Institute of Health, Rome
| | - Nicole Verdun
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, FDA, Silver Spring, United States of America
| | - Miguel Vesga
- Basque Center for Transfusion and Human Tissues/Spanish Scientific Committee for Transfusion Safety, Galdakao, Spain
| | - Paolo Rebulla
- IRCCS Foundation Ca’ Granda Maggiore Policlinico Hospital, Milan, Italy
| |
Collapse
|
24
|
Arnason NA, Johannson F, Landrö R, Hardarsson B, Irsch J, Gudmundsson S, Rolfsson O, Sigurjonsson OE. Pathogen inactivation with amotosalen plus UVA illumination minimally impacts microRNA expression in platelets during storage under standard blood banking conditions. Transfusion 2019; 59:3727-3735. [PMID: 31674051 DOI: 10.1111/trf.15575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/15/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND To reduce the risk of transfusion transmission infection, nucleic acid targeted methods have been developed to inactivate pathogens in PCs. miRNAs have been shown to play an important role in platelet function, and changes in the abundance of specific miRNAs during storage have been observed, as have perturbation effects related to pathogen inactivation (PI) methods. The aim of this work was to investigate the effects of PI on selected miRNAs during storage. STUDY DESIGN AND METHODS Using a pool and split strategy, 3 identical buffy coat PC units were generated from a pool of 24 whole blood donors. Each unit received a different treatment: 1) Untreated platelet control in platelet additive solution (C-PAS); 2) Amotosalen-UVA-treated platelets in PAS (PI-PAS); and 3) untreated platelets in donor plasma (U-PL). PCs were stored for 7 days under standard blood banking conditions. Standard platelet quality control (QC) parameters and 25 selected miRNAs were analyzed. RESULTS During the 7-day storage period, differences were found in several QC parameters relating to PI treatment and storage in plasma, but overall the three treatments were comparable. Out of 25 miRNA tested changes in regulation of 5 miRNA in PI-PAS and 3 miRNA U-PL where detected compared to C-PAS. A statistically significant difference was observed in down regulations miR-96-5p on Days 2 and 4, 61.9% and 61.8%, respectively, in the PI-PAS treatment. CONCLUSION Amotosalen-UVA treatment does not significantly alter the miRNA profile of platelet concentrates generated and stored using standard blood banking conditions.
Collapse
Affiliation(s)
- Niels Arni Arnason
- The Blood Bank, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Freyr Johannson
- Department of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ragna Landrö
- The Blood Bank, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Björn Hardarsson
- The Blood Bank, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Sveinn Gudmundsson
- The Blood Bank, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Ottar Rolfsson
- Department of Medicine, University of Iceland, Reykjavik, Iceland
| | - Olafur E Sigurjonsson
- The Blood Bank, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| |
Collapse
|
25
|
Nebie O, Devos D, Vingtdeux V, Barro L, Devedjian JC, Jonneaux A, Chou ML, Bordet R, Buée L, Knutson F, Blum D, Burnouf T. The neuroprotective activity of heat-treated human platelet lysate biomaterials manufactured from outdated pathogen-reduced (amotosalen/UVA) platelet concentrates. J Biomed Sci 2019; 26:89. [PMID: 31666073 PMCID: PMC6822406 DOI: 10.1186/s12929-019-0579-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Background Effective neurorestorative therapies of neurodegenerative diseases must be developed. There is increasing interest in using human platelet lysates, rich in neurotrophic factors, as novel disease-modifying strategy of neurodegeneration. To ensure virus safety, pathogen reduction treatments should be incorporated in the preparation process of the platelet concentrates used as source material. We therefore investigated whether platelet concentrates (PC) pathogen-inactivated using a licensed photo-inactivation treatment combining photosensitive psoralen (amotosalen) and UVA irradiation (Intercept) can serve as source material to prepare platelet lysates with preserved neuroprotective activity in Parkinson’s disease models. Methods Intercept treated-PCs were centrifuged, when reaching expiry day (7 days after collection), to remove plasma and platelet additive solution. The platelet pellet was re-suspended and concentrated in phosphate buffer saline, subjected to 3 freeze-thaw cycles (− 80 °C/37 °C) then centrifuged to remove cell debris. The supernatant was recovered and further purified, or not, by heat-treatment as in our previous investigations. The content in proteins and neurotrophic factors was determined and the toxicity and neuroprotective activity of the platelet lysates towards LUHMES cells or primary cortical/hippocampal neurons were assessed using ELISA, flow cytometry, cell viability and cytotoxicity assays and proteins analysis by Western blot. Results Platelet lysates contained the expected level of total proteins (ca. 7–14 mg/mL) and neurotrophic factors. Virally inactivated and heat-treated platelet lysates did not exert detectable toxic effects on neither Lund human mesencephalic dopaminergic LUHMES cell line nor primary neurons. When used at doses of 5 and 0.5%, they enhanced the expression of tyrosine hydroxylase and neuron-specific enolase in LUHMES cells and did not significantly impact synaptic protein expression in primary neurons, respectively. Furthermore, virally-inactivated platelet lysates tested were found to exert very strong neuroprotection effects on both LUHMES and primary neurons exposed to erastin, an inducer of ferroptosis cell death. Conclusion Outdated Intercept pathogen-reduced platelet concentrates can be used to prepare safe and highly neuroprotective human heat-treated platelet pellet lysates. These data open reassuring perspectives in the possibility to develop an effective biotherapy using virally-inactivated platelet lysates rich in functional neurotrophins for neuroregenerative medicine, and for further bio-industrial development. However, the data should be confirmed in animal models. Graphical abstract ![]()
Collapse
Affiliation(s)
- Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
| | - David Devos
- Univ Lille, Inserm, CHU Lille, UMR-S1171. Lille Neuroscience & Cognition, Degenerative and vascular cognitive disorders, F-59000, Lille, France
| | - Valérie Vingtdeux
- Univ. Lille, Inserm, CHU-Lille, UMR-S1172, Lille Neuroscience & Cognition, Alzheimer & Tauopathies, F-59000, Lille, France
| | - Lassina Barro
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Jean-Christophe Devedjian
- Univ Lille, Inserm, CHU Lille, UMR-S1171. Lille Neuroscience & Cognition, Degenerative and vascular cognitive disorders, F-59000, Lille, France
| | - Aurélie Jonneaux
- Univ Lille, Inserm, CHU Lille, UMR-S1171. Lille Neuroscience & Cognition, Degenerative and vascular cognitive disorders, F-59000, Lille, France
| | - Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.,Present address: INSERM UMRS 938, CdR Saint-Antoine, Laboratory Immune System, Neuroinflammation and Neurodegenerative Diseases, Saint-Antoine Hospital, Paris, France
| | - Régis Bordet
- Univ Lille, Inserm, CHU Lille, UMR-S1171. Lille Neuroscience & Cognition, Degenerative and vascular cognitive disorders, F-59000, Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU-Lille, UMR-S1172, Lille Neuroscience & Cognition, Alzheimer & Tauopathies, F-59000, Lille, France
| | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | - David Blum
- Univ. Lille, Inserm, CHU-Lille, UMR-S1172, Lille Neuroscience & Cognition, Alzheimer & Tauopathies, F-59000, Lille, France.
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan. .,International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan. .,International Ph.D. Program in Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
26
|
Delabie W, Maes W, Devloo R, Van den Hauwe MR, Vanhoorelbeke K, Compernolle V, Feys HB. The senotherapeutic nicotinamide riboside raises platelet nicotinamide adenine dinucleotide levels but cannot prevent storage lesion. Transfusion 2019; 60:165-174. [PMID: 31652008 PMCID: PMC6973138 DOI: 10.1111/trf.15556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 08/28/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Supplementation of the nicotinamide adenine dinucleotide (NAD) precursor nicotinamide riboside (NR) has recently been shown to increase life‐span of cells, tissues, and entire organisms. [Correction added on 13 December 2019, after first online publication: In the preceding sentence, “adenine nicotinamide” was revised to “nicotinamide adenine.”] The impact of NR on platelet longevity has not been tested. STUDY DESIGN AND METHODS A pool‐and‐split design of buffy coat derived platelet concentrates (PCs) was used. One arm was treated with cumulative doses of NR‐triflate, the control arm with sodium triflate. Storage lesion was monitored for 23 days. Platelet metabolic and functional parameters were tested. Clearance of human platelets was measured in a mouse model of transfusion. RESULTS Total intracellular NAD levels in platelets decreased two‐fold from 4.8 ± 0.5 fmol (mean ± SD, n = 6) to 2.1 ± 1.8 fmol per 103 control cells, but increased almost 10‐fold to 41.5 ± 4.1 fmol per 103 NR treated platelets. This high intracellular NAD level had no significant impact on platelet count, mean platelet volume, swirling, nor on lactate and glucose levels. Platelet aggregation and integrin αIIbβ3 activation declined steadily and comparably in both conditions. GPIbα levels were slightly lower in NR‐treated platelets compared to control, but this was not caused by reduced receptor shedding because glycocalicin increased similarly. Apoptotic markers cytochrome c, Bcl‐xL, cleaved caspase‐3, and Bak were not different throughout storage for both conditions. Platelet survival in a mouse model of transfusion was not different between NR‐treated and control platelets. CONCLUSION Platelets carry the cellular machinery to metabolize NR into NAD at rates comparable to other eukaryotic cells. Unlike those cells, platelet life‐span cannot be prolonged using this strategy.
Collapse
Affiliation(s)
- Willem Delabie
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - Wim Maes
- Laboratory For Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Rosalie Devloo
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | | | - Karen Vanhoorelbeke
- Laboratory For Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Veerle Compernolle
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium
| |
Collapse
|
27
|
Rebulla P. The long and winding road to pathogen reduction of platelets, red blood cells and whole blood. Br J Haematol 2019; 186:655-667. [PMID: 31304588 DOI: 10.1111/bjh.16093] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/22/2019] [Indexed: 02/07/2023]
Abstract
Pathogen reduction technologies (PRTs) have been developed to further reduce the current very low risks of acquiring transfusion-transmitted infections and promptly respond to emerging infectious threats. An entire portfolio of PRTs suitable for all blood components is not available, but the field is steadily progressing. While PRTs for plasma have been used for many years, PRTs for platelets, red blood cells (RBC) and whole blood (WB) were developed more slowly, due to difficulties in preserving cell functions during storage. Two commercial platelet PRTs use ultra violet (UV) A and UVB light in the presence of amotosalen or riboflavin to inactivate pathogens' nucleic acids, while a third experimental PRT uses UVC light only. Two PRTs for WB and RBC have been tested in experimental clinical trials with storage limited to 21 or 35 days, due to unacceptably high RBC storage lesion beyond these time limits. This review summarizes pre-clinical investigations and selected outcomes from clinical trials using the above PRTs. Further studies are warranted to decrease cell storage lesions after PRT treatment and to test PRTs in different medical and surgical conditions. Affordability remains a major administrative obstacle to PRT use, particularly so in geographical regions with higher risks of transfusion-transmissible infections.
Collapse
Affiliation(s)
- Paolo Rebulla
- Department of Transfusion Medicine and Haematology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
28
|
Six KR, Devloo R, Compernolle V, Feys HB. Impact of cold storage on platelets treated with Intercept pathogen inactivation. Transfusion 2019; 59:2662-2671. [PMID: 31187889 PMCID: PMC6851707 DOI: 10.1111/trf.15398] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Pathogen inactivation and cold or cryopreservation of platelets (PLTs) both significantly affect PLT function. It is not known how PLTs function when both are combined. STUDY DESIGN AND METHODS Standard PLT concentrates (PCs) were compared to pathogen‐inactivated PCs treated with amotosalen photochemical treatment (AS‐PCT) when stored at room (RT, 22°C), cold (4°C, n = 6), or cryopreservation (−80°C, n = 8) temperatures. The impact of alternative storage methods on both arms was studied in flow cytometry, light transmittance aggregometry, and hemostasis in collagen‐coated microfluidic flow chambers. RESULTS Platelet aggregation of cold‐stored AS‐PCT PLTs was 44% ± 11% compared to 57% ± 14% for cold‐stored standard PLTs and 58% ± 21% for RT‐stored AS‐PCT PLTs. Integrin activation of cold‐stored AS‐PCT PLTs was 53% ± 9% compared to 77% ± 6% for cold‐stored standard PLTs and 69% ± 13% for RT‐stored AS‐PCT PLTs. Coagulation of cold‐stored AS‐PCT PLTs started faster under flow (836 ± 140 sec) compared to cold‐stored standard PLTs (960 ± 192 sec) and RT‐stored AS‐PCT PLTs (1134 ± 220 sec). Fibrin formation rate under flow was also highest for cold‐stored AS‐PCT PLTs. This was in line with thrombin generation in static conditions because cold‐stored AS‐PCT PLTs generated 297 ± 47 nmol/L thrombin compared to 159 ± 33 nmol/L for cold‐stored standard PLTs and 83 ± 25 nmol/L for RT‐stored AS‐PCT PLTs. So despite decreased PLT activation and aggregation, cold storage of AS‐PCT PLTs promoted coagulation. PLT aggregation of cryopreserved AS‐PCT PLTs (23% ± 10%) was not significantly different from cryopreserved standard PLTs (25% ± 8%). CONCLUSION This study shows that cold storage of AS‐PCT PLTs further affects PLT activation and aggregation but promotes (pro)coagulation. Increased procoagulation was not observed after cryopreservation.
Collapse
Affiliation(s)
- Katrijn R Six
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rosalie Devloo
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - Veerle Compernolle
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Blood Service of the Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
29
|
Johnson L, Cameron M, Waters L, Padula MP, Marks DC. The impact of refrigerated storage of UVC pathogen inactivated platelet concentrates on in vitro
platelet quality parameters. Vox Sang 2018; 114:47-56. [DOI: 10.1111/vox.12730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/23/2018] [Accepted: 11/03/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Lacey Johnson
- Research and Development; Australian Red Cross Blood Service; Sydney NSW Australia
| | - Mathew Cameron
- Research and Development; Australian Red Cross Blood Service; Sydney NSW Australia
- School of Life Sciences and Proteomics Core Facility; Faculty of Science; University of Technology Sydney; Sydney NSW Australia
| | - Lauren Waters
- Research and Development; Australian Red Cross Blood Service; Sydney NSW Australia
- School of Life Sciences and Proteomics Core Facility; Faculty of Science; University of Technology Sydney; Sydney NSW Australia
| | - Matthew P. Padula
- School of Life Sciences and Proteomics Core Facility; Faculty of Science; University of Technology Sydney; Sydney NSW Australia
| | - Denese C. Marks
- Research and Development; Australian Red Cross Blood Service; Sydney NSW Australia
- Sydney Medical School; University of Sydney; Sydney NSW Australia
| |
Collapse
|