1
|
Deng Y, Zhao Z, Sheldon M, Zhao Y, Teng H, Martinez C, Zhang J, Lin C, Sun Y, Yao F, Curran MA, Zhu H, Ma L. LIFR regulates cholesterol-driven bidirectional hepatocyte-neutrophil cross-talk to promote liver regeneration. Nat Metab 2024; 6:1756-1774. [PMID: 39147934 PMCID: PMC11498095 DOI: 10.1038/s42255-024-01110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
Liver regeneration is under metabolic and immune regulation. Despite increasing recognition of the involvement of neutrophils in regeneration, it is unclear how the liver signals to the bone marrow to release neutrophils after injury and how reparative neutrophils signal to hepatocytes to reenter the cell cycle. Here we report that loss of the liver tumour suppressor Lifr in mouse hepatocytes impairs, whereas overexpression of leukaemia inhibitory factor receptor (LIFR) promotes liver repair and regeneration after partial hepatectomy or toxic injury. In response to physical or chemical damage to the liver, LIFR from hepatocytes promotes the secretion of cholesterol and CXCL1 in a STAT3-dependent manner, leading to the efflux of bone marrow neutrophils to the circulation and damaged liver. Cholesterol, via its receptor ERRα, stimulates neutrophils to secrete hepatocyte growth factor to accelerate hepatocyte proliferation. Altogether, our findings reveal a LIFR-STAT3-CXCL1-CXCR2 axis and a LIFR-STAT3-cholesterol-ERRα-hepatocyte growth factor axis that form bidirectional hepatocyte-neutrophil cross-talk to repair and regenerate the liver.
Collapse
Affiliation(s)
- Yalan Deng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zilong Zhao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Consuelo Martinez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fan Yao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
2
|
Liu S, Huang F, Ru G, Wang Y, Zhang B, Chen X, Chu L. Mouse Models of Hepatocellular Carcinoma: Classification, Advancement, and Application. Front Oncol 2022; 12:902820. [PMID: 35847898 PMCID: PMC9279915 DOI: 10.3389/fonc.2022.902820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the subtype of liver cancer with the highest incidence, which is a heterogeneous malignancy with increasing incidence rate and high mortality. For ethical reasons, it is essential to validate medical clinical trials for HCC in animal models before further consideration on humans. Therefore, appropriate models for the study of the pathogenesis of the disease and related treatment methods are necessary. For tumor research, mouse models are the most commonly used and effective in vivo model, which is closer to the real-life environment, and the repeated experiments performed on it are closer to the real situation. Several mouse models of HCC have been developed with different mouse strains, cell lines, tumor sites, and tumor formation methods. In this review, we mainly introduce some mouse HCC models, including induced model, gene-edited model, HCC transplantation model, and other mouse HCC models, and discuss how to choose the appropriate model according to the purpose of the experiments.
Collapse
Affiliation(s)
- Sha Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Guoqing Ru
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Liang Chu,
| |
Collapse
|
3
|
Navarro CDC, Francisco A, Figueira TR, Ronchi JA, Oliveira HCF, Vercesi AE, Castilho RF. Dichloroacetate reactivates pyruvate-supported peroxide removal by liver mitochondria and prevents NAFLD aggravation in NAD(P) + transhydrogenase-null mice consuming a high-fat diet. Eur J Pharmacol 2022; 917:174750. [PMID: 35032488 DOI: 10.1016/j.ejphar.2022.174750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022]
Abstract
The mechanisms by which a high-fat diet (HFD) promotes non-alcoholic fatty liver disease (NAFLD) appear to involve liver mitochondrial dysfunction and redox imbalance. The functional loss of the enzyme NAD(P)+ transhydrogenase, a main source of mitochondrial NADPH, results in impaired mitochondrial peroxide removal, pyruvate dehydrogenase inhibition by phosphorylation, and progression of NAFLD in HFD-fed mice. The present study aimed to investigate whether pharmacological reactivation of pyruvate dehydrogenase by dichloroacetate attenuates the mitochondrial redox dysfunction and the development of NAFLD in NAD(P)+ transhydrogenase-null (Nnt-/-) mice fed an HFD (60% of total calories from fat). For this purpose, Nnt-/- mice and their congenic controls (Nnt+/+) were fed chow or an HFD for 20 weeks and received sodium dichloroacetate or NaCl in the final 12 weeks via drinking water. The results showed that HFD reduced the ability of isolated liver mitochondria from Nnt-/- mice to remove peroxide, which was prevented by the dichloroacetate treatment. HFD-fed mice of both Nnt genotypes exhibited increased body and liver mass, as well as a higher content of hepatic triglycerides, but dichloroacetate treatment attenuated these abnormalities only in Nnt-/- mice. Notably, dichloroacetate treatment decreased liver pyruvate dehydrogenase phosphorylation levels and prevented the aggravation of NAFLD in HFD-fed Nnt-/- mice. Conversely, dichloroacetate treatment elicited moderate hepatocyte ballooning in chow-fed mice, suggesting potentially toxic effects. We conclude that the protection against HFD-induced NAFLD by dichloroacetate is associated with its role in reactivating pyruvate dehydrogenase and reestablishing the pyruvate-supported liver mitochondrial capacity to handle peroxide in Nnt-/- mice.
Collapse
Affiliation(s)
- Claudia D C Navarro
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-888, Brazil.
| | - Annelise Francisco
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-888, Brazil
| | - Tiago R Figueira
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-888, Brazil; School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, 14040-907, Brazil
| | - Juliana A Ronchi
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-888, Brazil
| | - Helena C F Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Anibal E Vercesi
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-888, Brazil
| | - Roger F Castilho
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-888, Brazil.
| |
Collapse
|
4
|
Zhang H, Chen Q, Dahan A, Xue J, Wei L, Tan W, Zhang G. Transcriptomic analyses reveal the molecular mechanisms of schisandrin B alleviates CCl 4-induced liver fibrosis in rats by RNA-sequencing. Chem Biol Interact 2019; 309:108675. [PMID: 31150632 DOI: 10.1016/j.cbi.2019.05.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 04/15/2019] [Accepted: 05/27/2019] [Indexed: 12/27/2022]
Abstract
Liver fibrosis is a progression of chronic liver disease with lacks effective therapies at present. Schisandrin B (Sch B), a bioactive compound extracted from the traditional Chinese medicine Schisandra chinensis, was reported to benefit liver diseases. This study aimed to investigate the therapeutic effects and molecular mechanisms of Sch B against CCl4-induced liver fibrosis in rats. RNA sequencing and transcriptome analysis were performed collaboratively, including analysis of differential gene expression, gene ontology (GO) analysis, pathway analysis and pathway-act-network analysis. The results demonstrated that Sch B effectively alleviated CCl4-induced liver damage and fibrosis in rats, as evidenced by improved liver function and decreased extracellular matrix deposition. Furthermore, 4440 (1878 up-regulated, 2562 down-regulated) genes in the model group versus (vs) normal group, 4243 (2584 up-regulated, 1659 down-regulated) genes in Sch B-treated group vs model group were identified as differentially expressed genes (DEGs). Subsequently, GO analysis revealed that DEGs were mainly enriched in metabolism, oxidation-reduction, endoplasmic reticulum stress and apoptosis-related biological processes. Pathway analysis suggested that Sch B up-regulated cytochrome P450 drug metabolism, PPAR signaling pathways, and down-regulated glutathione metabolism pathways. In addition, the regulatory patterns of Sch B on key genes and pathways were also confirmed. In conclusion, our study demonstrated Sch B alleviated CCl4-induced liver fibrosis by multiple modulatory mechanisms, which provide new clues for further pharmacological study of Sch B.
Collapse
Affiliation(s)
- Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai, 201204, China.
| | - Qingshan Chen
- Department of Pharmacy, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Arik Dahan
- Department of Clinical Biochemistry and Pharmacology, School of Pharmacy, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Jiyang Xue
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai, 201204, China
| | - Liwen Wei
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai, 201204, China
| | - Weifeng Tan
- Department of Laparoscopy, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China.
| | - Guoqing Zhang
- Department of Pharmacy, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China.
| |
Collapse
|
5
|
Rathee D, Kamboj A, Sidhu S. Augmentation of hepatoprotective potential of Aegle marmelos in combination with piperine in carbon tetrachloride model in wistar rats. Chem Cent J 2018; 12:94. [PMID: 30123925 PMCID: PMC6098993 DOI: 10.1186/s13065-018-0463-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023] Open
Abstract
The current study investigated hepatoprotective and antioxidant effects of Aegle marmelos leaves extract. The major constituent present in the extract i.e. rutin was quantified by using HPLC. Further, the study explored hepatoprotective effect of A. marmelos (70% ethanol extract) in combination with piperine. The normal control and carbon tetrachloride (CCl4) administered rats were divided into 7 groups. Hepatic damage biomarkers were determined in serum samples and oxidative stress biomarkers (malondialdehyde, reduced glutathione, glutathione reductase, glutathione peroxidase, glutathione-S-transferase, superoxide dismutase and catalase), pro-inflammatory and anti-inflammatory cytokines were determined in liver homogenates. CCl4 caused marked liver damage as evident by significant increased activities of serum alkaline phosphatase, bilirubin, lactate dehydrogenase, alanine aminotransferase, aspartate aminotransferase, Interleukin 10 and Tumor necrosis factor-α levels compared to normal control. The oxidative stress parameters also significantly modulated in CCl4 group as compared to normal control. Treatment with A. marmelos reduced the severity of toxicity in a dose dependent fashion and the results of A. marmelos extract 50 mg/kg group were comparable to silymarin group. The low dose of A. marmelos extract (25 mg/kg) per se did not significantly reversed the hepatotoxicity but low dose of A. marmelos in combination with piperine showed significant reversal of hepatotoxicity. In conclusion, A. marmelos exerts potential hepatoprotective activity through its antioxidant and anti-inflammatory properties which was enhanced by co-treatment with piperine.![]()
Collapse
Affiliation(s)
- Deepti Rathee
- Department of RIC, IKG Punjab Technical University, Kapurthala, Punjab, India
| | - Anjoo Kamboj
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Punjab, India
| | - Shabir Sidhu
- Department of Food Science and Technology, I. K. Gujral Punjab Technical University, Main Campus, Kapurthala, Punjab, 144603, India.
| |
Collapse
|
6
|
Takahashi S, Tanaka N, Golla S, Fukami T, Krausz KW, Polunas MA, Weig BC, Masuo Y, Xie C, Jiang C, Gonzalez FJ. Editor's Highlight: Farnesoid X Receptor Protects Against Low-Dose Carbon Tetrachloride-Induced Liver Injury Through the Taurocholate-JNK Pathway. Toxicol Sci 2018; 158:334-346. [PMID: 28505368 DOI: 10.1093/toxsci/kfx094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatotoxicity is of major concern for humans exposed to industrial chemicals and drugs. Disruption of farnesoid X receptor (FXR), a master regulator of bile acid (BA) metabolism, enhanced the sensitivity to liver injury in mice after toxicant exposure, but the precise mechanism remains unclear. In this study, the interconnection between BA metabolism, FXR, and chemically induced hepatotoxicity was investigated using metabolomics, Fxr-null mice (Fxr-/-) and hepatocytes, and recombinant adenoviruses. A single low-dose intraperitoneal injection of carbon tetrachloride (CCl4), an inducer of acute hepatitis in mice, resulted in more severe hepatocyte damage and higher induction of pro-inflammatory mediators, such as chemokine (C-C motif) ligand 2 (Ccl2), in Fxr-/-. Serum metabolomics analysis revealed marked increases in circulating taurocholate (TCA) and tauro-β-muricholate (T-β-MCA) in these mice, and forced expression of bile salt export protein (BSEP) by recombinant adenovirus in Fxr-/- ameliorated CCl4-induced liver damage. Treatment of Fxr-null hepatocytes with TCA, but not T-β-MCA, significantly increased c-Jun-N-terminal kinase (JNK) activation and Ccl2 mRNA levels, and up-regulation of Ccl2 mRNA was attenuated by co-treatment with a JNK inhibitor SP600125, indicating that TCA directly amplifies hepatocyte inflammatory signaling mainly mediated by JNK under FXR-deficiency. Additionally, pretreatment with SP600125 or restoration of FXR expression in liver by use of recombinant adenovirus, attenuated CCl4-induced liver injury. Collectively, these results suggest that the TCA-JNK axis is likely associated with increased susceptibility to CCl4-induced acute liver injury in Fxr-/-, and provide clues to the mechanism by which FXR and its downstream gene targets, such as BSEP, protects against chemically induced hepatotoxicity.
Collapse
Affiliation(s)
- Shogo Takahashi
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Naoki Tanaka
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892.,Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Srujana Golla
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Tatsuki Fukami
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Kristopher W Krausz
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Blair C Weig
- Department of Pharmacology and Toxicology, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854
| | - Yusuke Masuo
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Cen Xie
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Changtao Jiang
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
7
|
Santos NP, Colaço AA, Oliveira PA. Animal models as a tool in hepatocellular carcinoma research: A Review. Tumour Biol 2017; 39:1010428317695923. [PMID: 28347231 DOI: 10.1177/1010428317695923] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cancer is the first cause of death in developed countries and the second in developing countries. Concerning the most frequent worldwide-diagnosed cancer, primary liver cancer represents approximately 4% of all new cancer cases diagnosed globally. However, among primary liver cancer, hepatocellular carcinoma is by far the most common histological subtype. Notwithstanding the health promotion and disease prevention campaigns, more than half a million new hepatocellular carcinoma cases are reported yearly, being estimated to growth continuously until 2020. Taking this scenario under consideration and the fact that some aspects concerning hepatocellular carcinoma evolution and metastasize process are still unknown, animal models assume a crucial role to understand this disease. The animal models have also provided the opportunity to screen new therapeutic strategies. The present review was supported on research and review papers aiming the complexity and often neglected chemically induced animal models in hepatocarcinogenesis research. Despite the ongoing debate, chemically induced animal models, namely, mice and rat, can provide unique valuable information on the biotransformation mechanisms against xenobiotics and apprehend the deleterious effects on DNA and cell proteins leading to carcinogenic development. In addition, taking under consideration that no model achieves all hepatocellular carcinoma research purposes, criteria to define the " ideal" animal model, depending on the researchers' approach, are also discussed in this review.
Collapse
Affiliation(s)
- Nuno Paula Santos
- 1 Department of Veterinary Sciences, Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,2 Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Aura Antunes Colaço
- 1 Department of Veterinary Sciences, Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Paula Alexandra Oliveira
- 1 Department of Veterinary Sciences, Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,2 Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
8
|
Pritchard MT, McCracken JM. Identifying Novel Targets for Treatment of Liver Fibrosis: What Can We Learn from Injured Tissues which Heal Without a Scar? Curr Drug Targets 2016; 16:1332-46. [PMID: 26302807 DOI: 10.2174/1389450116666150825111439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/08/2015] [Indexed: 02/07/2023]
Abstract
The liver is unique in that it is able to regenerate. This regeneration occurs without formation of a scar in the case of non-iterative hepatic injury. However, when the liver is exposed to chronic liver injury, the purely regenerative process fails and excessive extracellular matrix proteins are deposited in place of normal liver parenchyma. While much has been discovered in the past three decades, insights into fibrotic mechanisms have not yet lead to effective therapies; liver transplant remains the only cure for advanced liver disease. In an effort to broaden the collection of possible therapeutic targets, this review will compare and contrast the liver wound healing response to that found in two types of wound healing: scarless wound healing of fetal skin and oral mucosa and scar-forming wound healing found in adult skin. This review will examine wound healing in the liver and the skin in relation to the role of humoral and cellular factors, as well as the extracellular matrix, in this process. While several therapeutic targets are similar between fibrotic liver and adult skin wound healing, others are unique and represent novel areas for hepatic anti-fibrotic research. In particular, investigations into the role of hyaluronan in liver fibrosis and fibrosis resolution are warranted.
Collapse
Affiliation(s)
- Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66161, USA.
| | | |
Collapse
|
9
|
Kanai S, Ishihara K, Kawashita E, Tomoo T, Nagahira K, Hayashi Y, Akiba S. ASB14780, an Orally Active Inhibitor of Group IVA Phospholipase A2, Is a Pharmacotherapeutic Candidate for Nonalcoholic Fatty Liver Disease. J Pharmacol Exp Ther 2015; 356:604-14. [PMID: 26699145 DOI: 10.1124/jpet.115.229906] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/15/2015] [Indexed: 12/30/2022] Open
Abstract
We have previously shown that high-fat cholesterol diet (HFCD)-induced fatty liver and carbon tetrachloride (CCl4)-induced hepatic fibrosis are reduced in mice deficient in group IVA phospholipase A2 (IVA-PLA2), which plays a role in inflammation. We herein demonstrate the beneficial effects of ASB14780 (3-[1-(4-phenoxyphenyl)-3-(2-phenylethyl)-1H-indol-5-yl]propanoic acid 2-amino-2-(hydroxymethyl)propane-1,3-diol salt), an orally active IVA-PLA2 inhibitor, on the development of fatty liver and hepatic fibrosis in mice. The daily coadministration of ASB14780 markedly ameliorated liver injury and hepatic fibrosis following 6 weeks of treatment with CCl4. ASB14780 markedly attenuated the CCl4-induced expression of smooth muscle α-actin (α-SMA) protein and the mRNA expression of collagen 1a2, α-SMA, and transforming growth factor-β1 in the liver, and inhibited the expression of monocyte/macrophage markers, CD11b and monocyte chemotactic protein-1, while preventing the recruitment of monocytes/macrophages to the liver. Importantly, ASB14780 also reduced the development of fibrosis even in matured hepatic fibrosis. Additionally, ASB14780 also reduced HFCD-induced lipid deposition not only in the liver, but also in already established fatty liver. Furthermore, treatment with ASB14780 suppressed the HFCD-induced expression of lipogenic mRNAs. The present findings suggest that an IVA-PLA2 inhibitor, such as ASB14780, could be useful for the treatment of nonalcoholic fatty liver diseases, including fatty liver and hepatic fibrosis.
Collapse
Affiliation(s)
- Shiho Kanai
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan (S.K., K.I., E.K., S.A.); and Asubio Pharma Co., Ltd., Chuo-ku, Kobe, Japan (T.T., K.N., Y.H.)
| | - Keiichi Ishihara
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan (S.K., K.I., E.K., S.A.); and Asubio Pharma Co., Ltd., Chuo-ku, Kobe, Japan (T.T., K.N., Y.H.)
| | - Eri Kawashita
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan (S.K., K.I., E.K., S.A.); and Asubio Pharma Co., Ltd., Chuo-ku, Kobe, Japan (T.T., K.N., Y.H.)
| | - Toshiyuki Tomoo
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan (S.K., K.I., E.K., S.A.); and Asubio Pharma Co., Ltd., Chuo-ku, Kobe, Japan (T.T., K.N., Y.H.)
| | - Kazuhiro Nagahira
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan (S.K., K.I., E.K., S.A.); and Asubio Pharma Co., Ltd., Chuo-ku, Kobe, Japan (T.T., K.N., Y.H.)
| | - Yasuhiro Hayashi
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan (S.K., K.I., E.K., S.A.); and Asubio Pharma Co., Ltd., Chuo-ku, Kobe, Japan (T.T., K.N., Y.H.)
| | - Satoshi Akiba
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan (S.K., K.I., E.K., S.A.); and Asubio Pharma Co., Ltd., Chuo-ku, Kobe, Japan (T.T., K.N., Y.H.)
| |
Collapse
|
10
|
The role of CYP2A5 in liver injury and fibrosis: chemical-specific difference. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:33-43. [PMID: 26363552 DOI: 10.1007/s00210-015-1172-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/30/2015] [Indexed: 12/20/2022]
Abstract
Liver injuries induced by carbon tetrachloride (CCL4) or thioacetamide (TAA) are dependent on cytochrome P450 2E1 (CYP2E1). CYP2A5 can be induced by TAA but not by CCL4. In this study, liver injury including fibrosis induced by CCL4 or TAA were investigated in wild-type (WT) mice and CYP2A5 knockout (cyp2a5 (-/-) ) mice as well as in CYP2E1 knockout (cyp2e1 (-/-) ) mice as a comparison. Acute and subchronic liver injuries including fibrosis were induced by CCL4 and TAA in WT mice but not in cyp2e1 (-/-) mice, confirming the indispensable role of CYP2E1 in CCL4 and TAA hepatotoxicity. WT mice and cyp2a5 (-/-) mice developed comparable acute liver injury induced by a single injection of CCL4 as well as subchronic liver injury including fibrosis induced by 1 month of repeated administration of CCL4, suggesting that CYP2A5 does not affect CCL4-induced liver injury and fibrosis. However, while 200 mg/kg TAA-induced acute liver injury was comparable in WT mice and cyp2a5 (-/-) mice, 75 and 100 mg/kg TAA-induced liver injury were more severe in cyp2a5 (-/-) mice than those found in WT mice. After multiple injections with 200 mg/kg TAA for 1 month, while subchronic liver injury as indicated by serum aminotransferases was comparable in WT mice and cyp2a5 (-/-) mice, liver fibrosis was more severe in cyp2a5 (-/-) mice than that found in WT mice. These results suggest that while both CCL4- and TAA-induced liver injuries and fibrosis are CYP2E1 dependent, under some conditions, CYP2A5 may protect against TAA-induced liver injury and fibrosis, but it does not affect CCL4 hepatotoxicity.
Collapse
|
11
|
Yang P, Han Z, Chen P, Zhu L, Wang S, Hua Z, Zhang J. A contradictory role of A1 adenosine receptor in carbon tetrachloride- and bile duct ligation-induced liver fibrosis in mice. J Pharmacol Exp Ther 2009; 332:747-54. [PMID: 20007753 DOI: 10.1124/jpet.109.162727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mice lacking A(1) adenosine receptors (A(1)AR) were thought to be protected from developing fatty liver; however, the contribution of A(1)AR to hepatic fibrosis has not been explored. Here we found that the expression of A(1)AR was decreased in fibrotic liver induced by chronic carbon tetrachloride (CCl(4)) but increased in that induced by bile duct ligation (BDL). Therefore, we examined whether A(1)AR contributes to hepatic fibrosis in CCl(4) and BDL animal models using A(1)AR knockout mice. Compared with wild-type (WT) mice, hepatic fibrosis resulting from chronic CCl(4) exposure was attenuated in A(1)AR(-/-) mice with markedly decreased collagen deposition and reduced hepatic stellate cell activation, whereas bile duct-ligated A(1)AR(-/-) mice displayed a significant increase in hepatic fibrosis. Hepatocyte damage was reduced in A(1)AR(-/-) mice after a single injection of CCl(4), with down-regulation of CYP2E1 and UCP2 gene expression in livers, which resulted in impaired liver sensitivity to CCl(4). However, BDL caused severe bile infarcts in livers of A(1)AR(-/-) mice, with significantly elevated levels of bile acid compared with those in WT mice. CCl(4) and BDL resulted in different expression patterns of genes involved in fibrogenesis in A(1)AR(-/-) mice. These results indicate that A(1)AR participates in the pathogenesis of hepatic fibrosis with a complex mechanism, and the effect of targeting adenosine and its receptors in the prevention of hepatic fibrosis should be cautiously evaluated.
Collapse
Affiliation(s)
- Ping Yang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei St., Nanjing 210094, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Hosono-Fukao T, Hosono T, Seki T, Ariga T. Diallyl trisulfide protects rats from carbon tetrachloride-induced liver injury. J Nutr 2009; 139:2252-6. [PMID: 19812219 DOI: 10.3945/jn.109.109611] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Alk(en)yl sulfides have been found to be responsible for the anticancer, antithrombotic, and antioxidant effects of garlic. We sought to identify the most potent structure of sulfides that exhibits a hepatoprotective effect against carbon tetrachloride (CCl(4))-induced acute liver injury in rats. Rats were pretreated with diallyl trisulfide (DATS) i.g. at a dose of 500 micromol/kg body weight for 5 d. On d 6, CCl(4) was administered i.g. at a dose of 2.5 mL/kg body weight. Twenty-four hours after CCl(4) administration, rats were killed and plasma and liver samples collected. DATS pretreatment significantly suppressed the CCl(4)-induced elevation of plasma aspartate aminotransferase and alanine aminotransferase activities (P < 0.05). Histological observations supported the hepatoprotective effects. Western blot and spectrophotometric analyses indicated that DATS suppressed cytochrome P450 2E1 activity and its protein level and elevated those of glutathione S-transferase. Dipropyl trisulfide (DPTS), which is a saturated alkyl chain analogue of DATS, did not affect CCl(4)-induced liver toxicity or drug-metabolizing enzymes. These results suggest that hepatoprotective activity of trisulfides is due to their regulation of drug-metabolizing enzymes. Furthermore, the effects of 6 kinds of alk(en)yl trisulfides, including DATS and DPTS, on phase II enzyme activity were examined in rats. Alk(en)yl trisulfides were administered i.g. (500 micromol/kg body weight) to rats for 5 d. Only the allyl group-containing DATS and allyl methyl trisulfide enhanced these activities.
Collapse
Affiliation(s)
- Tomomi Hosono-Fukao
- Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, Kanagawa, Japan
| | | | | | | |
Collapse
|
13
|
Heindryckx F, Colle I, Van Vlierberghe H. Experimental mouse models for hepatocellular carcinoma research. Int J Exp Pathol 2009; 90:367-86. [PMID: 19659896 DOI: 10.1111/j.1365-2613.2009.00656.x] [Citation(s) in RCA: 282] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Every year almost 500,000 new patients are diagnosed with hepatocellular carcinoma (HCC), a primary malignancy of the liver that is associated with a poor prognosis. Numerous experimental models have been developed to define the pathogenesis of HCC and to test novel drug candidates. This review analyses several mouse models useful for HCC research and points out their advantages and weaknesses. Chemically induced HCC mice models mimic the injury-fibrosis-malignancy cycle by administration of a genotoxic compound alone or, if necessary, followed by a promoting agent. Xenograft models develop HCC by implanting hepatoma cell lines in mice, either ectopically or orthotopically; these models are suitable for drug screening, although extrapolation should be considered with caution as multiple cell lines must always be used. The hollow fibre assay offers a solution for limiting the number of test animals in xenograft research because of the ability for implanting multiple cell lines in one mouse. There is also a broad range of genetically modified mice engineered to investigate the pathophysiology of HCC. Transgenic mice expressing viral genes, oncogenes and/or growth factors allow the identification of pathways involved in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Femke Heindryckx
- Department of Gastroenterology and Hepatology, Ghent University Hospital, 9000 Ghent, Belgium.
| | | | | |
Collapse
|
14
|
Yang L, Xiong A, He Y, Wang Z, Wang C, Wang Z, Li W, Yang L, Hu Z. Bile acids metabonomic study on the CCl4- and alpha-naphthylisothiocyanate-induced animal models: quantitative analysis of 22 bile acids by ultraperformance liquid chromatography-mass spectrometry. Chem Res Toxicol 2009; 21:2280-8. [PMID: 19053324 DOI: 10.1021/tx800225q] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bile acids (BAs) are crucial for the diagnosis, follow-up, and prognostics of liver and intestinal disorders and other diseases affecting BA metabolism. A rapid, simple, and sensitive analytical method is needed to demonstrate the full metabolic profile and simultaneously determine the individual BAs in biological samples. In our present study, an ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) method has been established and validated for simultaneous quantitation of 22 BAs and a metabonomic study was performed based on the chemometric analysis of the serum samples from carbon tetrachloride (CCl4)- and alpha-naphthylisothiocyanate (ANIT)-induced liver failure rats. The optimal chromatographic condition was effected by UPLC (Acquity UPLC BEH column, 1.7 microm, 2.1 mm x 100 mm) using a linear gradient elution system of methanol-5 mM ammonium acetate containing 0.01% acetic acid after a simple-step deproteinization by precipitation. The separation of the 22 BAs can be finished in less than 12 min, and the concentrations of these BAs in rat serums were simultaneously determined using a selective ions monitoring mode. The method was validated with respect to repeatability (relative standard deviation < 9.78%) and accuracy (relative errors from -13.55 to 9.58%). The range of each BA was found from not detected (nd) to 8301 ng mL(-1), respectively. Furthermore, the developed method was successfully applied to the metabonomics analysis of BAs in CCl4- and ANIT-induced liver failure rats, using principle component analysis and canonical discriminant analysis. The serum samples from the two types of rat liver injury could be distinguished from each other and from the untreated animals according to the varieties of BAs. It indicated that the level of BAs could be considered as a sensitive parameter of hepatotoxicity induced by different chemical toxins. This novel metabonomics study of BAs based on the UPLC-MS profile provides not only an accurate quantitative assay of the serum concentrations of biomarkers but also a promising methodology for evaluation of liver injury.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Standardization of Chinese Medicines of Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-tech Park, Shanghai 201203, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen P, Li C, Pang W, Zhao Y, Dong W, Wang S, Zhang J. The protective role of Per2 against carbon tetrachloride-induced hepatotoxicity. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 174:63-70. [PMID: 19056852 DOI: 10.2353/ajpath.2009.080430] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Period 2 (Per2) is a key component of the core clock oscillator and is involved in regulating a number of different biological processes and pathways. Here we report that Per2 plays a protective role in carbon tetrachloride (CCl(4))-induced hepatotoxicity via the modulation of uncoupling protein-2 (Ucp2) gene expression in mice. Hepatic injury after acute CCl(4) injection was monitored in both wild-type and Per2-null mice. At the 12-hour time point after CCl(4) treatment, many more vacuolations were observed in the liver tissues of Per2-null mice whereas fatty tissue degeneration primarily occurred in the liver tissues of wide-type mice. Serum alanine and aspartate aminotransferase activities were elevated in Per2-null mice compared with wide-type mice at 24 hours after CCl(4) treatment, which was in agreement with the observation of significantly larger areas of centrilobular necrosis in the livers of Per2-null mice. A deficit of the Per2 gene enhanced Ucp2 gene expression levels in the liver. As a consequence, intracellular levels of ATP markedly decreased in the liver, allowing increased production of toxic CCl(4) derivatives. The absence of Per2 expression caused a dramatic elevation of Clock expression and influenced Ucp2 through a mechanism that involved a Clock-controlled PPAR-alpha signal transduction pathway. Our studies suggest that the Per2 gene functions in hepatocyte protection from chemical toxicants via the regulation of hepatic Ucp2 gene expression levels.
Collapse
Affiliation(s)
- Peng Chen
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
16
|
de Oliveira Christoff A, de Oliveira A, Chaim OM, Lugarini D, Bastos Pereira AL, Paludo KS, Queiroz Telles JE, Bracht A, Veiga SS, Acco A. Effects of the venom and the dermonecrotic toxin LiRecDT1 of Loxosceles intermedia in the rat liver. Toxicon 2008; 52:695-704. [DOI: 10.1016/j.toxicon.2008.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/31/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
|
17
|
Kim YC, Yim HK, Jung YS, Park JH, Kim SY. Hepatic injury induces contrasting response in liver and kidney to chemicals that are metabolically activated: Role of male sex hormone. Toxicol Appl Pharmacol 2007; 223:56-65. [PMID: 17610925 DOI: 10.1016/j.taap.2007.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 05/15/2007] [Accepted: 05/15/2007] [Indexed: 10/23/2022]
Abstract
Injury to liver, resulting in loss of its normal physiological/biochemical functions, may adversely affect a secondary organ. We examined the response of the liver and kidney to chemical substances that require metabolic activation for their toxicities in mice with a preceding liver injury. Carbon tetrachloride treatment 24 h prior to a challenging dose of carbon tetrachloride or acetaminophen decreased the resulting hepatotoxicity both in male and female mice as determined by histopathological examination and increases in serum enzyme activities. In contrast, the renal toxicity of the challenging toxicants was elevated markedly in male, but not in female mice. Partial hepatectomy also induced similar changes in the hepatotoxicity and nephrotoxicity of a challenging toxicant, suggesting that the contrasting response of male liver and kidney was associated with the reduction of the hepatic metabolizing capacity. Carbon tetrachloride pretreatment or partial hepatectomy decreased the hepatic xenobiotic-metabolizing enzyme activities in both sexes but elevated the renal p-nitrophenol hydroxylase, p-nitroanisole O-demethylase and aminopyrine N-demethylase activities significantly only in male mice. Increases in Cyp2e1 and Cyp2b expression were also evident in male kidney. Castration of males or testosterone administration to females diminished the sex-related differences in the renal response to an acute liver injury. The results indicate that reduction of the hepatic metabolizing capacity induced by liver injury may render secondary target organs susceptible to chemical substances activated in these organs. This effect may be sex-specific. It is also suggested that an integrated approach should be taken for proper assessment of chemical hazards.
Collapse
Affiliation(s)
- Young C Kim
- College of Pharmacy, Seoul National University, San 56-1 Shinrim-Dong, Kwanak-Ku, Seoul, Korea.
| | | | | | | | | |
Collapse
|