1
|
Sette KN, Alugubelly N, Glenn LB, Guo-Ross SX, Parkes MK, Wilson JR, Seay CN, Carr RL. The mechanistic basis for the toxicity difference between juvenile rats and mice following exposure to the agricultural insecticide chlorpyrifos. Toxicology 2022; 480:153317. [PMID: 36096317 DOI: 10.1016/j.tox.2022.153317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
Abstract
At high exposure levels, organophosphorus insecticides (OPs) exert their toxicity in mammals through the inhibition of brain acetylcholinesterase (AChE) leading to the accumulation of acetylcholine in cholinergic synapses and hyperactivity of the nervous system. Currently, there is a concern that low-level exposure to OPs induces negative impacts in developing children and the chemical most linked to these issues is chlorpyrifos (CPF). Our laboratory has observed that a difference in the susceptibility to repeated exposure to CPF exists between juvenile mice and rats with respect to the inhibition of brain AChE. The basis for this difference is unknown but differences in the levels of the detoxification mechanisms could play a role. To investigate this, 10-day old rat and mice pups were exposed daily for 7 days to either corn oil or a range of dosages of CPF via oral gavage. Four hours following the last administration of CPF on day 16, brain, blood, and liver were collected. The inhibition of brain AChE activity was higher in juvenile rats as compared to juvenile mice. The levels of activity of the detoxification enzymes and the impact of CPF exposure on their activity were determined in the two species at this age. In blood and liver, the enzyme paraoxonase-1 (PON1) hydrolyzes the active metabolite of CPF (CPF-oxon), and the enzymes carboxylesterase (CES) and cholinesterase (ChE) act as alternative binding sites for CPF-oxon removing it from circulation and providing protection. Both species had similar levels of PON1 activity in the liver and serum. Mice had higher ChE activity in liver and serum than rats but, following CPF exposure, the percentage inhibition was similar between species at an equivalent dosage. Even though rats had slightly higher liver CES activity than mice, the level of inhibition following exposure was higher in rats. In serum, juvenile mice had an 8-fold higher CES activity than rats, and exposure to a CPF dosage that almost eliminated CES activity in rats only resulted in 22% inhibition in mice suggesting that the high serum CES activity in mice as compared to rats is a key component in this species difference. In addition, there was a species difference in the sensitivity of CES to inhibition by CPF-oxon with rats having a lower IC50 in both liver and serum as compared to mice. This greater enzyme sensitivity suggests that saturation of CES would occur more rapidly in juvenile rats than in mice, resulting in more CPF reaching the brain to inhibit AChE in rats.
Collapse
Affiliation(s)
- Katelyn N Sette
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Navatha Alugubelly
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Lauren B Glenn
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Shirley X Guo-Ross
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - M Katherine Parkes
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Juliet R Wilson
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Caitlin N Seay
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Russell L Carr
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA.
| |
Collapse
|
2
|
Kondakala S, Ross MK, Chambers JE, Howell GE. Effect of high fat diet on the toxicokinetics and toxicodynamics of chlorpyrifos following acute exposure in male C57BL/6J mice. J Biochem Mol Toxicol 2022; 36:e23028. [DOI: 10.1002/jbt.23028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/18/2022] [Accepted: 02/11/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Sandeep Kondakala
- Department of Comparative Biomedical Sciences Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Mississippi State University Starkville Mississippi USA
| | - Matthew K. Ross
- Department of Comparative Biomedical Sciences Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Mississippi State University Starkville Mississippi USA
| | - Janice E. Chambers
- Department of Comparative Biomedical Sciences Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Mississippi State University Starkville Mississippi USA
| | - George E. Howell
- Department of Comparative Biomedical Sciences Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Mississippi State University Starkville Mississippi USA
| |
Collapse
|
3
|
Dash SR, Bag SS, Golder AK. Carbon Dots Derived from Waste Psidium Guajava Leaves for Electrocatalytic Sensing of Chlorpyrifos. ELECTROANAL 2022. [DOI: 10.1002/elan.202100344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Smruti Ranjan Dash
- Centre for the Environment Indian Institute of Technology Guwahati Assam 781039 INDIA
| | - Subhendu Sekhar Bag
- Centre for the Environment Indian Institute of Technology Guwahati Assam 781039 INDIA
- Department of Chemistry Indian Institute of Technology Guwahati Assam 781039 INDIA
| | - Animes Kumar Golder
- Centre for the Environment Indian Institute of Technology Guwahati Assam 781039 INDIA
- Department of Chemical Engineering Indian Institute of Technology Guwahati Assam 781039 INDIA
| |
Collapse
|
4
|
Szafran BN, Borazjani A, Seay CN, Carr RL, Lehner R, Kaplan BLF, Ross MK. Effects of Chlorpyrifos on Serine Hydrolase Activities, Lipid Mediators, and Immune Responses in Lungs of Neonatal and Adult Mice. Chem Res Toxicol 2021; 34:1556-1571. [PMID: 33900070 DOI: 10.1021/acs.chemrestox.0c00488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chlorpyrifos (CPF) is an organophosphate (OP) pesticide that causes acute toxicity by inhibiting acetylcholinesterase (AChE) in the nervous system. However, endocannabinoid (eCB) metabolizing enzymes in brain of neonatal rats are more sensitive than AChE to inhibition by CPF, leading to increased levels of eCBs. Because eCBs are immunomodulatory molecules, we investigated the association between eCB metabolism, lipid mediators, and immune function in adult and neonatal mice exposed to CPF. We focused on lung effects because epidemiologic studies have linked pesticide exposures to respiratory diseases. CPF was hypothesized to disrupt lung eCB metabolism and alter lung immune responses to lipopolysaccharide (LPS), and these effects would be more pronounced in neonatal mice due to an immature immune system. We first assessed the biochemical effects of CPF in adult mice (≥8 weeks old) and neonatal mice after administering CPF (2.5 mg/kg, oral) or vehicle for 7 days. Tissues were harvested 4 h after the last CPF treatment and lung microsomes from both age groups demonstrated CPF-dependent inhibition of carboxylesterases (Ces), a family of xenobiotic and lipid metabolizing enzymes, whereas AChE activity was inhibited in adult lungs only. Activity-based protein profiling (ABPP)-mass spectrometry of lung microsomes identified 31 and 32 individual serine hydrolases in neonatal lung and adult lung, respectively. Of these, Ces1c/Ces1d/Ces1b isoforms were partially inactivated by CPF in neonatal lung, whereas Ces1c/Ces1b and Ces1c/BChE were partially inactivated in adult female and male lungs, respectively, suggesting age- and sex-related differences in their sensitivity to CPF. Monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) activities in lung were unaffected by CPF. When LPS (1.25 mg/kg, i.p.) was administered following the 7-day CPF dosing period, little to no differences in lung immune responses (cytokines and immunophenotyping) were noted between the CPF and vehicle groups. However, a CPF-dependent increase in the amounts of dendritic cells and certain lipid mediators in female lung following LPS challenge was observed. Experiments in neonatal and adult Ces1d-/- mice yielded similar results as wild type mice (WT) following CPF treatment, except that CPF augmented LPS-induced Tnfa mRNA in adult Ces1d-/- mouse lungs. This effect was associated with decreased expression of Ces1c mRNA in Ces1d-/- mice versus WT mice in the setting of LPS exposure. We conclude that CPF exposure inactivates several Ces isoforms in mouse lung and, during an inflammatory response, increases certain lipid mediators in a female-dependent manner. However, it did not cause widespread altered lung immune effects in response to an LPS challenge.
Collapse
Affiliation(s)
- Brittany N Szafran
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Abdolsamad Borazjani
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Caitlin N Seay
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Russell L Carr
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Richard Lehner
- Departments of Cell Biology and Pediatrics, Group on Molecular & Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Barbara L F Kaplan
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Matthew K Ross
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
5
|
Inhibition of cholinergic and non-cholinergic targets following subacute exposure to chlorpyrifos in normal and high fat fed male C57BL/6J mice. Food Chem Toxicol 2018; 118:821-829. [PMID: 29935250 DOI: 10.1016/j.fct.2018.06.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022]
Abstract
The effects of obesity on organophosphate pesticide-mediated toxicities, including both cholinergic and non-cholinergic targets, have not been fully elucidated. Therefore, the present study was designed to determine if high fat diet intake alters the effects of repeated exposure to chlorpyrifos (CPS) on the activities of both cholinergic and noncholinergic serine hydrolase targets. Male C57BL/6J mice were placed on either standard rodent chow or high fat diet for four weeks with CPS exposure (2.0 mg/kg) for the last 10 days of diet intake. Exposure to CPS did not alter acetylcholinesterase in the central nervous system, but it did significantly inhibit circulating cholinesterase activities in both diet groups. CPS significantly inhibited hepatic carboxylesterase and fatty acid amide hydrolase and this inhibition was significantly greater in high fat fed animals. Additionally, CPS exposure and high fat diet intake downregulated genes involved in hepatic de novo lipogenesis as well as cytochrome P450 enzymes involved in hepatic xenobiotic metabolism. In summary, the present study demonstrates that high fat diet intake potentiates CPS mediated inhibition of both carboxylesterase and fatty acid amide hydrolase in the liver of obese animals following subacute exposure and suggests obesity may be a risk factor for increased non-cholinergic hepatic CPS toxicity.
Collapse
|
6
|
Kondakala S, Lee JH, Ross MK, Howell GE. Effects of acute exposure to chlorpyrifos on cholinergic and non-cholinergic targets in normal and high-fat fed male C57BL/6J mice. Toxicol Appl Pharmacol 2017; 337:67-75. [DOI: 10.1016/j.taap.2017.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
|
7
|
Two cholinesterase inhibitors trigger dissimilar effects on behavior and body weight in C57BL/6 mice: The case of chlorpyrifos and rivastigmine. Behav Brain Res 2017; 318:1-11. [DOI: 10.1016/j.bbr.2016.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 01/03/2023]
|
8
|
Kumaravel A, Chandrasekaran M. Electrochemical Determination of Chlorpyrifos on a Nano-TiO₂Cellulose Acetate Composite Modified Glassy Carbon Electrode. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6150-6156. [PMID: 26075585 DOI: 10.1021/acs.jafc.5b02057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A rapid and simple method of determination of chlorpyrifos is important in environmental monitoring and quality control. Electrochemical methods for the determination of pesticides are fast, sensitive, reproducible, and cost-effective. The key factor in electrochemical methods is the choice of suitable electrode materials. The electrode materials should have good stability, reproducibility, more sensitivity, and easy method of preparation. Mercury-based electrodes have been widely used for the determination of chlorpyrifos. From an environmental point of view mercury cannot be used. In this study a biocompatible nano-TiO2/cellulose acetate modified glassy carbon electrode was prepared by a simple method and used for the electrochemical sensing of chlorpyrifos in aqueous methanolic solution. Electroanalytical techniques such as cyclic voltammetry, differential pulse voltammetry, and amperometry were used in this work. This electrode showed very good stability, reproducibility, and sensitivity. A well-defined peak was obtained for the reduction of chlorpyrifos in cyclic voltammetry and differential pulse voltammetry. A smooth noise-free current response was obtained in amperometric analysis. The peak current obtained was proportional to the concentration of chlorpyrifos and was used to determine the unknown concentration of chlorpyrifos in the samples. Analytical parameters such as LOD, LOQ, and linear range were estimated. Analysis of real samples was also carried out. The results were validated through HPLC. This composite electrode can be used as an alternative to mercury electrodes reported in the literature.
Collapse
Affiliation(s)
- Ammasai Kumaravel
- §PSG Institute of Technology and Applied Research, Coimbatore 641062, Tamil Nadu, India
| | - Maruthai Chandrasekaran
- †CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630006, Tamil Nadu, India
| |
Collapse
|
9
|
Chronic exposure to chlorpyrifos triggered body weight increase and memory impairment depending on human apoE polymorphisms in a targeted replacement mouse model. Physiol Behav 2015; 144:37-45. [DOI: 10.1016/j.physbeh.2015.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 11/20/2022]
|
10
|
Peris-Sampedro F, Salazar JG, Cabré M, Reverte I, Domingo JL, Sánchez-Santed F, Colomina MT. Impaired retention in AβPP Swedish mice six months after oral exposure to chlorpyrifos. Food Chem Toxicol 2014; 72:289-94. [DOI: 10.1016/j.fct.2014.07.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/22/2014] [Accepted: 07/28/2014] [Indexed: 02/07/2023]
|
11
|
Cellular impact of combinations of endosulfan, atrazine, and chlorpyrifos on human primary hepatocytes and HepaRG cells after short and chronic exposures. Cell Biol Toxicol 2013; 30:17-29. [DOI: 10.1007/s10565-013-9266-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 12/02/2013] [Indexed: 12/31/2022]
|
12
|
Khaldoun-Oularbi H, Richeval C, Djenas N, Lhermitte M, Humbert L, Baz A. Effect of sub-acute exposure to abamectin “insecticide” on liver rats (Rattus norvegicus). ACTA ACUST UNITED AC 2013. [DOI: 10.1051/ata/2013039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Fu Y, Li M, Liu C, Qu JP, Zhu WJ, Xing HJ, Xu SW, Li S. Effect of atrazine and chlorpyrifos exposure on cytochrome P450 contents and enzyme activities in common carp gills. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 94:28-36. [PMID: 23702303 DOI: 10.1016/j.ecoenv.2013.04.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/21/2013] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
Chlorpyrifos (CPF) and atrazine (ATR) are the most widely used organophosphate insecticides and triazine herbicides, respectively, worldwide. This study aimed at investigating the effects of ATR, CPF and mixture on common carp gills following 40-d exposure and 40-d recovery experiments. Cytochrome P450 content, activities of aminopyrine N-demethylase (APND) and erythromycin N-demethylase (ERND) and the mRNA levels of the CYP1 family (CYP1A, CYP1B, and CYP1C) were determined. In total, 220 common carps were divided into eleven groups, and each group was treated with a specific concentration of ATR (4.28, 42.8 and 428 μg/L), CPF (1.16, 11.6 and 116 μg/L) or ATR-CPF mixture (1.13, 11.3 and 113 μg/L). The results showed that P450 content and activities of APND and ERND in fish exposed to ATR and mixture were significantly higher than those in the control group. After the 40-d recovery treatment (i.e., depuration), the P450 content and the activities of APND and ERND in fish decreased to the background levels. A similar tendency was also found in the mRNA levels of the CYP1 family (CYP1A, CYP1B, and CYP1C) in common carp gills. The CPF-treated fish showed no significant difference from the control groups, except for a significant CYP1C induction. These results indicated that CYP enzyme levels are induced by ATR but were only slightly affected by CPF in common carp gills. In addition, the ATR and CPF exposure showed an antagonistic effect on P450 enzymes in common carp gills.
Collapse
Affiliation(s)
- Yao Fu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sandhu MA, Saeed AA, Khilji MS, Ahmed A, Latif MSZ, Khalid N. Genotoxicity evaluation of chlorpyrifos: a gender related approach in regular toxicity testing. J Toxicol Sci 2013; 38:237-44. [DOI: 10.2131/jts.38.237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Mansur A. Sandhu
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, PMAS, Arid Agriculture University, Pakistan
| | - Abdullah A. Saeed
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, PMAS, Arid Agriculture University, Pakistan
| | - Muhammad S. Khilji
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, PMAS, Arid Agriculture University, Pakistan
| | - Anwaar Ahmed
- Department of Food Technology, Faculty of Crop and Food Sciences, PMAS, Arid Agriculture University, Pakistan
| | - Malik Shah Z. Latif
- Department of Biochemistry, Khawaja Muhammad Safdar Medical College, Sialkot, Pakistan
| | - Nauman Khalid
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, Japan
| |
Collapse
|
15
|
The contribution of human small intestine to chlorpyrifos biotransformation. Toxicol Lett 2012; 215:42-8. [DOI: 10.1016/j.toxlet.2012.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 11/21/2022]
|
16
|
Lee S, Poet TS, Smith JN, Hjerpe AL, Gunawan R, Timchalk C. Impact of repeated nicotine and alcohol coexposure on in vitro and in vivo chlorpyrifos dosimetry and cholinesterase inhibition. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:1334-1350. [PMID: 21899407 DOI: 10.1080/15287394.2011.567958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chlorpyrifos (CPF) is an organophosphorus insecticide, and neurotoxicity results from inhibition of acetylcholinesterase (AChE) by its metabolite, chlorpyrifos-oxon. Routine consumption of alcohol and tobacco modifies metabolic and physiological processes impacting the metabolism and pharmacokinetics of other xenobiotics, including pesticides. This study evaluated the influence of repeated ethanol and nicotine coexposure on in vivo CPF dosimetry and cholinesterase (ChE) response (ChE- includes AChE and/or butyrylcholinesterase (BuChE)). Hepatic microsomes were prepared from groups of naive, ethanol-only (1 g/kg/d, 7 d, po), and ethanol + nicotine (1 mg/kg/d 7 d, sc)-treated rats, and the in vitro metabolism of CPF was evaluated. For in vivo studies, rats were treated with saline or ethanol (1 g/kg/d, po) + nicotine (1 mg/kg/d, sc) in addition to CPF (1 or 5 mg/kg/d, po) for 7 d. The major CPF metabolite, 3,5,6-trichloro-2-pyridinol (TCPy), in blood and urine and the plasma ChE and brain acetylcholinesterase (AChE) activities were measured in rats. There were differences in pharmacokinetics, with higher TCPy peak concentrations and increased blood TCPy AUC in ethanol + nicotine groups compared to CPF only (approximately 1.8- and 3.8-fold at 1 and 5 mg CPF doses, respectively). Brain AChE activities after ethanol + nicotine treatments showed significantly less inhibition following repeated 5 mg CPF/kg dosing compared to CPF only (96 ± 13 and 66 ± 7% of naive at 4 h post last CPF dosing, respectively). Although brain AChE activity was minimal inhibited for the 1-mg CPF/kg/d groups, the ethanol + nicotine pretreatment resulted in a similar trend (i.e., slightly less inhibition). No marked differences were observed in plasma ChE activities due to the alcohol + nicotine treatments. In vitro, CPF metabolism was not markedly affected by repeated ethanol or both ethanol + nicotine exposures. Compared with a previous study of nicotine and CPF exposure, there were no apparent additional exacerbating effects due to ethanol coexposure.
Collapse
Affiliation(s)
- S Lee
- Food and Drug Administration, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
17
|
Tripathi S, Ajai Kumar Srivastav. Nephrotoxicity induced by long-term oral administration of different doses of chlorpyrifos. Toxicol Ind Health 2010; 26:439-47. [DOI: 10.1177/0748233710371110] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wistar rats (male) were divided into 3 groups — group A (GA) served as control, group B (GB) were daily administered chlorpyrifos (Anu Products Ltd., India) orally at a dose of 5 mg/kg b wt. and animals in group C (GC) received daily an oral administration of chlorpyrifos at a dose of 10 mg/kg b wt. Rats were sacrificed on 1st, 2nd, 4th, 6th and 8th week after initiation of the experiment. Kidneys were extirpated and fixed in aqueous Bouin’s solution. The tissues thus fixed were routinely processed for histological studies. The present study showed that the histopathological changes were caused in kidney of rats by chlorpyrifos administration. The changes noticed were mainly the shrinkage of glomerulus at initial stage of treatment, the tubular dilation, the glomerular hypercellularity, hypertrophy of tubular epithelium, degeneration of glomerulus and renal tubules, deposition of eosin-positive substances in the glomerulus and renal tubules and infiltration of leucocytes. A decrease in the body weight gain was observed in chlorpyrifos-treated rats. However, variable intensities of these changes were noticed depending upon the doses and duration of the treatment.
Collapse
Affiliation(s)
- Sarojni Tripathi
- Department of Zoology, DDU Gorakhpur University, Gorakhpur 273 009, India
| | | |
Collapse
|
18
|
Lee S, Poet TS, Smith JN, Busby-Hjerpe AL, Timchalk C. Effect of in vivo nicotine exposure on chlorpyrifos pharmacokinetics and pharmacodynamics in rats. Chem Biol Interact 2010; 184:449-57. [PMID: 20097188 DOI: 10.1016/j.cbi.2010.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/12/2010] [Accepted: 01/15/2010] [Indexed: 11/18/2022]
Abstract
Routine use of tobacco products may modify physiological and metabolic functions, including drug metabolizing enzymes, which may impact the pharmacokinetics of environmental contaminants. Chlorpyrifos is an organophosphorus (OP) insecticide that is bioactivated to chlorpyrifos-oxon, and manifests its neurotoxicity by inhibiting acetylcholinesterase (AChE). The objective of this study was to evaluate the impact of repeated nicotine exposure on the pharmacokinetics of chlorpyrifos (CPF) and its major metabolite, 3,5,6-trichloro-2-pyridinol (TCPy) in blood and urine and also to determine the impact on cholinesterase (ChE) activity in plasma and brain. Animals were exposed to 7-daily doses of either 1mg nicotine/kg or saline, and to either a single oral dose of 35mg CPF/kg or a repeated dose of 5mg CPF/kg/day for 7 days. Groups of rats were then sacrificed at multiple time-points after receiving the last dose of CPF. Repeated nicotine and CPF exposures resulted in enhanced metabolism of CPF to TCPy, as evidenced by increases in the measured TCPy peak concentration and AUC in blood. However, there was no significant difference in the amount of TCPy (free or total) excreted in the urine within the first 24-h post last dose. The extent of brain acetylcholinesterase (AChE) inhibition was reduced due to nicotine co-exposure consistent with an increase in CYP450-mediated dearylation (detoxification) versus desulfuration. It was of interest to note that the impact of nicotine co-exposure was experimentally observed only after repeated CPF doses. A physiologically based pharmacokinetic model for CPF was used to simulate the effect of increasing the dearylation V(max) based upon previously conducted in vitro metabolism studies. Predicted CPF-oxon concentrations in blood and brain were lower following the expected V(max) increase in nicotine treated groups. These model results were consistent with the experimental data. The current study demonstrated that repeated nicotine exposure could alter CPF metabolism in vivo, resulting in altered brain AChE inhibition.
Collapse
Affiliation(s)
- Sookwang Lee
- Pacific Northwest National Laboratory, Center for Biological Monitoring and Modeling, 902 Battelle Boulevard, Richland, WA 99352, USA
| | | | | | | | | |
Collapse
|
19
|
Eaton DL, Daroff RB, Autrup H, Bridges J, Buffler P, Costa LG, Coyle J, McKhann G, Mobley WC, Nadel L, Neubert D, Schulte-Hermann R, Spencer PS. Review of the Toxicology of Chlorpyrifos With an Emphasis on Human Exposure and Neurodevelopment. Crit Rev Toxicol 2008; 38 Suppl 2:1-125. [PMID: 18726789 DOI: 10.1080/10408440802272158] [Citation(s) in RCA: 428] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|