1
|
Vellingiri B. A deeper understanding about the role of uranium toxicity in neurodegeneration. ENVIRONMENTAL RESEARCH 2023; 233:116430. [PMID: 37329943 DOI: 10.1016/j.envres.2023.116430] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/01/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Natural deposits and human-caused releases of uranium have led to its contamination in the nature. Toxic environmental contaminants such as uranium that harm cerebral processes specifically target the brain. Numerous experimental researches have shown that occupational and environmental uranium exposure can result in a wide range of health issues. According to the recent experimental research, uranium can enter the brain after exposure and cause neurobehavioral problems such as elevated motion related activity, disruption of the sleep-wake cycle, poor memory, and elevated anxiety. However, the exact mechanism behind the factor for neurotoxicity by uranium is still uncertain. This review primarily aims on a brief overview of uranium, its route of exposure to the central nervous system, and the likely mechanism of uranium in neurological diseases including oxidative stress, epigenetic modification, and neuronal inflammation has been described, which could present the probable state-of-the-art status of uranium in neurotoxicity. Finally, we offer some preventative strategies to workers who are exposed to uranium at work. In closing, this study highlights the knowledge of uranium's health dangers and underlying toxicological mechanisms is still in its infancy, and there is still more to learn about many contentious discoveries.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India.
| |
Collapse
|
2
|
Schilz JR, Dashner-Titus EJ, Simmons KA, Erdei E, Bolt AM, MacKenzie DA, Hudson LG. The immunotoxicity of natural and depleted uranium: From cells to people. Toxicol Appl Pharmacol 2022; 454:116252. [PMID: 36152676 PMCID: PMC10044422 DOI: 10.1016/j.taap.2022.116252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/30/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022]
Abstract
Uranium is a naturally occurring element found in the environment as a mixture of isotopes with differing radioactive properties. Enrichment of mined material results in depleted uranium waste with substantially reduced radioactivity but retains the capacity for chemical toxicity. Uranium mine and milling waste are dispersed by wind and rain leading to environmental exposures through soil, air, and water contamination. Uranium exposure is associated with numerous adverse health outcomes in humans, yet there is limited understanding of the effects of depleted uranium on the immune system. The purpose of this review is to summarize findings on uranium immunotoxicity obtained from cell, rodent and human population studies. We also highlight how each model contributes to an understanding of mechanisms that lead to immunotoxicity and limitations inherent within each system. Information from population, animal, and laboratory studies will be needed to significantly expand our knowledge of the contributions of depleted uranium to immune dysregulation, which may then inform prevention or intervention measures for exposed communities.
Collapse
Affiliation(s)
- Jodi R Schilz
- Division of Physical Therapy, School of Medicine, University of New Mexico, Albuquerque, NM, United States of America.
| | - Erica J Dashner-Titus
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| | - Karen A Simmons
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| | - Esther Erdei
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| | - Alicia M Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| | - Debra A MacKenzie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| |
Collapse
|
3
|
Manto MU. Cerebellotoxic Agents. HANDBOOK OF THE CEREBELLUM AND CEREBELLAR DISORDERS 2022:2363-2408. [DOI: 10.1007/978-3-030-23810-0_96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
4
|
Hoffman JF, Vergara VB, Kalinich JF. Brain region- and metal-specific effects of embedded metals in a shrapnel wound model in the rat. Neurotoxicology 2021; 83:116-128. [PMID: 33453298 DOI: 10.1016/j.neuro.2021.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/03/2021] [Accepted: 01/03/2021] [Indexed: 02/07/2023]
Abstract
The health effects of prolonged exposure to embedded metal fragments, such as those found in shrapnel wounds sustained by an increasing number of military personnel, are not well known. As part of a large collaborative effort to expand this knowledge, we use an animal model of shrapnel wounds originally developed to investigate effects of embedded depleted uranium to investigate effects of military-relevant metals tungsten, nickel, cobalt, iron, copper, aluminum, lead, and depleted uranium compared to an inert control, tantalum. Rats are surgically implanted with pellets of one of the metals of interest in the gastrocnemius (leg) muscle and tracked until 1 month, 3 months, 6 months, or 12 months from the time of implant, at which point they are euthanized and multiple organs and tissue samples are collected for inspection. Here we focus on four regions of the brain: frontal cortex, hippocampus, amygdala, and cerebellum. We examined changes in accumulated metal concentration in each region as well as changes in expression of proteins related to blood brain barrier tight junction formation, occludin and ZO-1, and synapse function, PSD95, spinophilin, and synaptotagmin. We report few changes in metal accumulation or blood brain barrier protein expression, but a large number of synapse proteins have reduced expression levels, particularly within the first 6 months of exposure, but there are regional and metal-specific differences in effects.
Collapse
Affiliation(s)
- Jessica F Hoffman
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| | - Vernieda B Vergara
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| | - John F Kalinich
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
5
|
Manto MU. Cerebellotoxic Agents. HANDBOOK OF THE CEREBELLUM AND CEREBELLAR DISORDERS 2021:1-46. [DOI: 10.1007/978-3-319-97911-3_96-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 09/02/2023]
|
6
|
Lu B, Ran Y, Wang S, Li J, Zhao Y, Ran X, Li R, Hao Y. Chronic oral depleted uranium leads to reproductive damage in male rats through the ROS-hnRNP A2/B1-COX-2 signaling pathway. Toxicology 2020; 449:152666. [PMID: 33359576 DOI: 10.1016/j.tox.2020.152666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Depleted uranium (DU) is widely used in civil and military activities. The testis is one of the target organs of DU chronic toxicity. In this study, male SD rats were chronically exposed to DU by 3, 30, 300 mg U/kg through oral intake. After 6 months and 12 months of exposure, it was found that DU could lead to increased oxidative stress levels, decreased glutathione S-transferases (GSTs) expression, resulting in testicular injury and decreased serum testosterone (T) level in rats. Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) expression increases with the increase of DU exposure dose. After upregulation of hnRNP A2/B1 expression, the GC-1 cell injury caused by DU is aggravated, suggesting that hnRNP A2/B1 may play an important role in the reproductive toxicity of DU. At the same time, 12 months after chronic oral exposure to DU, the expression level of cyclooxygenase-2 (COX-2) and proinflammatory factor prostaglandin E2 (PGE2) in testicular tissue were increased, and the level of hnRNP A2/B1 caused by DU was decreased by reactive oxygen scavenger N-acetylcysteine (NAC). As hnRNP A2/B1 is a COX-2 regulator, DU may lead to the upregulation of hnRNP A2/B1 expression through the increase of oxidative stress level in germ cells, which in turn leads to the increase of COX-2 and PGE2 level, and ultimately result in the reproductive toxicity. In this study, the regulation mechanism of the ROS-hnRNP A2/B1-COX-2 pathway on DU-induced reproductive damage in male rats was hypothesized, providing a new target for the prevention and treatment of chronic poisoning of DU.
Collapse
Affiliation(s)
- Binghui Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yonghong Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Shuang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Juan Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yazhen Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xinze Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Rong Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| | - Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
7
|
Hoffman JF, Kalinich JF. Effects of Incubation of Human Brain Microvascular Endothelial Cells and Astrocytes with Pyridostigmine Bromide, DEET, or Permethrin in the Absence or Presence of Metal Salts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228336. [PMID: 33187257 PMCID: PMC7696739 DOI: 10.3390/ijerph17228336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
Gulf War Illness (GWI) is a chronic, multi-symptom illness suffered by over one-third of American military veterans who served in the Persian Gulf War between 1990 and 1991. No current single-exposure scenario accounts for all the symptoms observed in GWI, and instead may be due to a multi-exposure scenario. As a larger effort to understand how one category of multi-exposure scenarios of organic compounds such as nerve gas prophylactic pyridostigmine bromide, or insecticides/pesticides such as N,N-diethyl-m-toluamide (DEET) and permethrin, plus heavy metals found in inhaled dust particles (Al, Fe, Ni, Sr, DU, Co, Cu, Mn, and Zn) might play a role in neural aspects of GWI, we begin this initial study to examine the toxicity and oxidative damage markers of human brain endothelial cell and human astrocyte cell cultures in response to these compounds. A battery of cytotoxicity assessments, including the MTT assay, Neutral Red uptake, and direct microscopic observation, was used to determine a non-toxic dose of the test compounds. After testing a wide range of doses of each compound, we chose a sub-toxic dose of 10 µM for the three organic compounds and 1 µM for the nine metals of interest for co-exposure experiments on cell cultures and examined an array of oxidative stress-response markers including nitric oxide production, formation of protein carbonyls, production of thiobarbituric acid-reactive substances, and expression of proteins involved in oxidative stress and cell damage. Many markers were not significantly altered, but we report a significant increase in nitric oxide after exposure to any of the three compounds in conjunction with depleted uranium.
Collapse
|
8
|
Ran Y, Wang S, Zhao Y, Li J, Ran X, Hao Y. A review of biological effects and treatments of inhaled depleted uranium aerosol. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 222:106357. [PMID: 32755761 DOI: 10.1016/j.jenvrad.2020.106357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Depleted uranium (DU) is primarily used for DU bombs and DU tanks in the military. Aerosol inhalation is considered the primary route of DU exposure. Although laboratory tests have confirmed that inhalation of DU aerosol can cause lung, kidney, and other organ damage, epidemiological studies have found no conclusive evidence that persons in areas with prolonged exposure to DU-containing bombs are affected. After the body inhaled DU aerosols, we first clear the insoluble DU through whole-lung lavage (WLL). Then we eliminate the soluble uranium by the chelating agent. Besides, reducing DU damage to tissues and cells through drugs is also an important treatment method. In future research, emphasis should be placed on the damage mechanism of DU aerosol, the laboratory and clinical research of DU chelating agents, the research on the combination of DU chelating agent and WLL, and the research and development of new drugs to prevent DU damage.
Collapse
Affiliation(s)
- Yonghong Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Shuang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yazhen Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Juan Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xinze Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
9
|
A A Aly H, G Eid B. Cisplatin induced testicular damage through mitochondria mediated apoptosis, inflammation and oxidative stress in rats: impact of resveratrol. Endocr J 2020; 67:969-980. [PMID: 32507773 DOI: 10.1507/endocrj.ej20-0149] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The target of this study was to explore the role of mitochondria mediated apoptosis and inflammation in cisplatin-induced testicular damage and to evaluate the ameliorative effect of resveratrol. Adult male Wistar rats were randomly allocated to 4 groups. Group I (Control) received normal saline, Group II (Resveratrol) received resveratrol (50 mg/kg/day), Group III (Cisplatin) received cisplatin (7.5 mg/kg/week, i.p.) and Group IV (Resveratrol + Cisplatin) received resveratrol and cisplatin in the same regimen of treatment. Treatment with resveratrol in Groups II and IV started 48h before cisplatin injection and continued for further 4 successive weeks. Cisplatin-treated rats showed reduced body weight, absolute testes weight and sperm count, motility and viability. On the other hand, cisplatin treatment increased the percentage of sperm abnormalities. It also decreased serum testosterone level, mitochondrial membrane potential while, increased cytochrome C liberation from the mitochondria into the cytosol. The activities of caspase-3 & -9 were increased. The level of TNF-α, IL-6 and Bax were increased whereas Bcl-2 was decreased. Oxidative stress markers were found to increase with a concomitant reduction in the antioxidant enzymes and GSH levels. These results were confirmed by immunohistochemical and histopathological analysis. Contrary to all these results, there were improvements in cisplatin induced testicular damage through attenuation of mitochondria mediated apoptosis, inflammation, and oxidative stress owing to resveratrol pretreatment. Thus, resveratrol, as a potential therapeutic agent, may hold promise in preventing mitochondria mediated apoptosis and inflammation in cisplatin-induced testicular damage in rats.
Collapse
Affiliation(s)
- Hamdy A A Aly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Yisireyili M, Wulamu W, Aili A, Li Y, Alimujiang A, Aipire A, Aizezi M, Zhang W, Cao Z, Mijiti A, Abudureyimu K. Chronic restraint stress induces esophageal fibrosis with enhanced oxidative stress in a murine model. Exp Ther Med 2019; 18:1375-1383. [PMID: 31316626 DOI: 10.3892/etm.2019.7669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 04/11/2019] [Indexed: 12/29/2022] Open
Abstract
Although the underlying mechanism of stress remains unknown, it has been associated with the pathophysiology of gastroesophageal reflux diseases, the development of which appear to be accelerated by oxidative stress and fibrosis. The aim of the current study was to investigate the effect of chronic restraint stress on esophageal oxidative stress and fibrosis, as well as the impact of oxidative stress in a murine model whereby 8-week old C57BL/6J male mice were subjected to intermittent chronic restraint stress for a two-week period. The current study demonstrated that chronic restraint stress significantly reduced the body weight of mice compared with the control group. Although chronic restraint stress did not significantly alter the levels of triglycerides or cholesterol, free fatty acid concentration was significantly increased compared with the control group. Furthermore, chronic restraint stress significantly upregulated the expression levels of several fibrotic biomarkers including collagen type I, transforming growth factor β-1, α-smooth muscle actin and SMAD-3 compared with the control group. In addition, the expression levels of the reactive oxygen species (ROS) NADPH oxidase-4 and malondialdehyde were significantly increased, while the expression levels of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 were significantly decreased in esophageal tissue from mice in the chronic restraint stress group compared with the control group. In conclusion, chronic restraint stress may induce esophageal fibrosis by accumulating ROS and increasing fibrotic gene expression in a murine model.
Collapse
Affiliation(s)
- Maimaiti Yisireyili
- Research Institute of General and Minimally Invasive Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China.,Department of Minimally Invasive Surgery, Hernia and Abdominal Wall Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Wubulikasimu Wulamu
- Research Institute of General and Minimally Invasive Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China.,Department of Minimally Invasive Surgery, Hernia and Abdominal Wall Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Aikebaier Aili
- Research Institute of General and Minimally Invasive Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China.,Department of Minimally Invasive Surgery, Hernia and Abdominal Wall Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Yiliang Li
- Department of Minimally Invasive Surgery, Hernia and Abdominal Wall Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Aziguli Alimujiang
- Department of Obstetrics and Gynecology Clinic, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Aliyeguli Aipire
- Research Institute of General and Minimally Invasive Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Maimaitiaili Aizezi
- Department of Cardiac Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Weimin Zhang
- Department of Cardiac Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Zhengyi Cao
- Department of Minimally Invasive Surgery, Hernia and Abdominal Wall Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Abulajiang Mijiti
- Department of Minimally Invasive Surgery, Hernia and Abdominal Wall Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Kelimu Abudureyimu
- Research Institute of General and Minimally Invasive Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China.,Department of Minimally Invasive Surgery, Hernia and Abdominal Wall Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| |
Collapse
|
11
|
Wulamu W, Yisireyili M, Aili A, Takeshita K, Alimujiang A, Aipire A, Li Y, Jiang Y, Aizezi M, Li Z, Abudureyimu K. Chronic stress augments esophageal inflammation, and alters the expression of transient receptor potential vanilloid 1 and protease‑activated receptor 2 in a murine model. Mol Med Rep 2019; 19:5386-5396. [PMID: 31059059 DOI: 10.3892/mmr.2019.10192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 03/07/2019] [Indexed: 11/06/2022] Open
Abstract
Stress is a pivotal factor for inflammation, reactive oxygen species (ROS) production and formation of visceral hypersensitivity (VH) in the process of gastroesophageal reflux disease (GERD). In the present study, the effects of stress on esophageal inflammation, oxidative stress and VH were investigated in a chronic restraint stress mouse model. C57BL/6J male mice were subjected to 2 weeks of intermittent restraint stress, and histopathological analysis revealed that stress induced esophageal inflammation and fibrosis, while no distinct changes were detected in non‑stressed control mice. In addition, increased NADPH oxidase 4 expression was observed in the plasma and esophagus of stressed mice, indicating accumulation of ROS. The expression levels of antioxidants, including Mn‑superoxide dismutase (MnSOD), Cu/Zn‑SOD, catalase and glutathione peroxidase, were also analyzed using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). In addition, transient receptor potential vanilloid 1 (TRPV‑1) and protease‑activated receptor 2 (PAR‑2), which are crucial receptors for VH, were measured by immunohistochemistry and RT‑qPCR. The results demonstrated that stress markedly reduced antioxidant expression, while it significantly upregulated TRPV‑1 and PAR‑2 expression levels in the mouse esophagus. Finally, 2 weeks of restraint stress significantly increased the esophageal and plasma levels of inflammatory cytokines, including interleukin (IL)‑6, IL‑8, interferon‑γ and tumor necrosis factor‑α. Taken together, the present study results indicated that stress‑induced esophageal inflammation and ROS generation involves VH.
Collapse
Affiliation(s)
- Wubulikasimu Wulamu
- Research Institute of General and Minimally Invasive Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Maimaiti Yisireyili
- Research Institute of General and Minimally Invasive Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Aikebaier Aili
- Research Institute of General and Minimally Invasive Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Kyosuke Takeshita
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 460‑8550, Japan
| | - Aziguli Alimujiang
- Department of Obstetrics and Gynecology Clinic, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Aliyeguli Aipire
- Research Institute of General and Minimally Invasive Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Yiliang Li
- Department of Minimally Invasive Surgery, Hernia and Abdominal Wall Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Yuan Jiang
- Department of Minimally Invasive Surgery, Hernia and Abdominal Wall Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Maimaitiaili Aizezi
- Department of Cardiac Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Zanlin Li
- Department of Minimally Invasive Surgery, Hernia and Abdominal Wall Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Kelimu Abudureyimu
- Research Institute of General and Minimally Invasive Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| |
Collapse
|
12
|
l-Arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway. Food Chem Toxicol 2018; 115:315-328. [DOI: 10.1016/j.fct.2018.03.029] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 01/15/2023]
|
13
|
Asic A, Kurtovic-Kozaric A, Besic L, Mehinovic L, Hasic A, Kozaric M, Hukic M, Marjanovic D. Chemical toxicity and radioactivity of depleted uranium: The evidence from in vivo and in vitro studies. ENVIRONMENTAL RESEARCH 2017; 156:665-673. [PMID: 28472753 DOI: 10.1016/j.envres.2017.04.032] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/03/2017] [Accepted: 04/22/2017] [Indexed: 06/07/2023]
Abstract
The main aim of this review is to summarize and discuss the current state of knowledge on chemical toxicity and radioactivity of depleted uranium (DU) and their effect on living systems and cell lines. This was done by presenting a summary of previous investigations conducted on different mammalian body systems and cell cultures in terms of potential changes caused by either chemical toxicity or radioactivity of DU. In addition, the authors aimed to point out the limitations of those studies and possible future directions. The majority of both in vitro and in vivo studies performed using animal models regarding possible effects caused by acute or chronic DU exposure has been reviewed. Furthermore, exposure time and dose, DU particle solubility, and uranium isotopes as factors affecting the extent of DU effects have been discussed. Special attention has been dedicated to chromosomal aberrations, DNA damage and DNA breaks, as well as micronuclei formation and epigenetic changes, as DU has recently been considered a possible causative factor of all these processes. Therefore, this approach might represent a novel area of study of DU-related irradiation effects on health. Since different studies offer contradictory results, the main aim of this review is to summarize and briefly discuss previously obtained results in order to identify the current opinion on DU toxicity and radioactivity effects in relation to exposure type and duration, as well as DU properties.
Collapse
Affiliation(s)
- Adna Asic
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, Ilidza, 71210 Sarajevo, Bosnia and Herzegovina
| | - Amina Kurtovic-Kozaric
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, Ilidza, 71210 Sarajevo, Bosnia and Herzegovina; Department of Pathology, Cytology and Human Genetics, Clinical Center of the University of Sarajevo, Bolnicka 25, 71000 Sarajevo, Bosnia and Herzegovina; Department of Biology, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Larisa Besic
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, Ilidza, 71210 Sarajevo, Bosnia and Herzegovina
| | - Lejla Mehinovic
- Department of Biology, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Azra Hasic
- Department of Biology, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mirza Kozaric
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, Ilidza, 71210 Sarajevo, Bosnia and Herzegovina; Department of Pathology, Cytology and Human Genetics, Clinical Center of the University of Sarajevo, Bolnicka 25, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mirsada Hukic
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, Ilidza, 71210 Sarajevo, Bosnia and Herzegovina; Academy of Sciences and Art of Bosnia and Herzegovina, Bistrik 7, 71000 Sarajevo, Bosnia and Herzegovina; Institute for Biomedical Diagnostics Nalaz, Hasana Brkica 2, Sarajevo, Bosnia and Herzegovina
| | - Damir Marjanovic
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, Ilidza, 71210 Sarajevo, Bosnia and Herzegovina; Institute for Anthropologic Research, Ljudevita Gaja 32, 10000 Zagreb, Croatia
| |
Collapse
|
14
|
Annamalai SK, Arunachalam KD. Uranium ( 238U) bioaccumulation and its persuaded alterations on hematological, serological and histological parameters in freshwater fish Pangasius sutchi. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:262-275. [PMID: 28477471 DOI: 10.1016/j.etap.2017.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/26/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
The early biomarkers for the hematological, serological and histological alterations due to the effect of ½ and ¼ LC50 of 238U in different organs in freshwater fish Pangasius sutchi for water-borne 238U accumulation was investigated. The toxicological data due to 238U accumulation on the hematological parameters such as hemoglobin (Hb), red blood cells (RBCs), white blood cells (WBCs) and hematocrit (Hct) to evaluate the oxygen carrying capacity has been indicated as the secondary response of the organisms. The biomarkers of liver damage were determined as by Serum Glutamic Oxaloacetic Transaminase (SGOT), Serum Glutamic Pyruvic Transaminase (SGPT), Alkaline Phosphatase (ALP), γ-Glutamyl Transferase (γ-GT). Similarly, the renal biomarkers of kidney damage were accessed by creatinine, uric acid, triglycerides, and cholesterol. The decrease in hemoglobin in the experimental group due to disturbed synthesis of hemoglobin was directly proportional to the concentration and exposure duration of 238U. The histological studies proved that liver and gills are the target organ for 238U toxicity. The extensive histological lesions were observed in various tissues due to oxidative stress by the accumulation of 238U, and the 238U toxicity in the organs was in the order of Gills<liver<brain<muscle. This study can be useful indicators of 238U toxicity to assess fish health in Uranium (238U) biomonitoring programs.
Collapse
Affiliation(s)
- Sathesh Kumar Annamalai
- Center for Environmental Nuclear Research, SRM University, Kattankulathur, Chennai, Tamil Nadu, 603203 India
| | - Kantha D Arunachalam
- Center for Environmental Nuclear Research, SRM University, Kattankulathur, Chennai, Tamil Nadu, 603203 India.
| |
Collapse
|
15
|
Marouani N, Hallegue D, Sakly M, Benkhalifa M, Ben Rhouma K, Tebourbi O. p,p'-DDT induces testicular oxidative stress-induced apoptosis in adult rats. Reprod Biol Endocrinol 2017; 15:40. [PMID: 28549437 PMCID: PMC5446748 DOI: 10.1186/s12958-017-0259-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/09/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDT) is a known persistent organic pollutant and male reproductive toxicant. The present study is designed to test the hypothesis that oxidative stress mediates p,p'-DDT-induced apoptosis in testis. METHODS Male Wistar rats received an intraperitoneal (ip) injection of the pesticide at doses of 50 and 100mg/kg for 10 consecutive days. The oxidative stress was evaluated by biomarkers such lipid peroxidation (LPO) and metallothioneins (MTs) levels. Antioxidant enzymes activities was assessed by determination of superoxide dismutase (SOD), catalase (CAT) and hydrogen peroxide (H2O2) production. In addition, glutathione-dependent enzymes and reducing power in testis was evaluated by glutathione peroxidase (Gpx), glutathione reductase (GR), glutathione S-transferase (GST) activities and reduced and oxidized glutathione (GSH - GSSG) levels. Apoptosis was evaluated by DNA fragmentation detected by agarose gel electrophoresis. Germinal cells apoptosis and the apoptotic index was assessed through the TUNEL assay. RESULTS After 10 days of treatment, an increase in LPO level and H2O2 production occurred, while MTs level, SOD and CAT activities were decreased. Also, the Gpx, GR, GST, and GSH activities were decreased, whereas GSSG activity was increased. Testicular tissues of treated rats showed pronounced degradation of the DNA into oligonucleotides as seen in the typical electrophoretic DNA ladder pattern. Intense apoptosis was observed in germinal cells of DDT-exposed rats. In addition, the apoptotic index was significantly increased in testis of DDT-treated rats. CONCLUSIONS These results clearly suggest that DDT sub-acute treatment causes oxidative stress in rat testis leading to apoptosis.
Collapse
Affiliation(s)
- Neila Marouani
- 0000 0001 2295 3249grid.419508.1Laboratory of Integrated Physiology, Faculty of Sciences, Carthage University Tunisia, Bizerte, Jarzouna Tunisia
| | - Dorsaf Hallegue
- 0000 0001 2295 3249grid.419508.1Laboratory of Integrated Physiology, Faculty of Sciences, Carthage University Tunisia, Bizerte, Jarzouna Tunisia
| | - Mohsen Sakly
- 0000 0001 2295 3249grid.419508.1Laboratory of Integrated Physiology, Faculty of Sciences, Carthage University Tunisia, Bizerte, Jarzouna Tunisia
| | - Moncef Benkhalifa
- 0000 0001 0789 1385grid.11162.35Reproductive Medicine and Medical Cytogenetics Department, Regional University Hospital and School of Medicine, Picardie University Jules Verne, Amiens, France
| | - Khémais Ben Rhouma
- 0000 0001 2295 3249grid.419508.1Laboratory of Integrated Physiology, Faculty of Sciences, Carthage University Tunisia, Bizerte, Jarzouna Tunisia
| | - Olfa Tebourbi
- 0000 0001 2295 3249grid.419508.1Laboratory of Integrated Physiology, Faculty of Sciences, Carthage University Tunisia, Bizerte, Jarzouna Tunisia
| |
Collapse
|
16
|
Saint-Marc B, Elie C, Manens L, Tack K, Benderitter M, Gueguen Y, Ibanez C. Chronic uranium contamination alters spinal motor neuron integrity via modulation of SMN1 expression and microglia recruitment. Toxicol Lett 2016; 254:37-44. [PMID: 27153795 DOI: 10.1016/j.toxlet.2016.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/25/2016] [Accepted: 05/02/2016] [Indexed: 11/26/2022]
Abstract
Consequences of uranium contamination have been extensively studied in brain as cognitive function impairments were observed in rodents. Locomotor disturbances have also been described in contaminated animals. Epidemiological studies have revealed increased risk of motor neuron diseases in veterans potentially exposed to uranium during their military duties. To our knowledge, biological response of spinal cord to uranium contamination has not been studied even though it has a crucial role in locomotion. Four groups of rats were contaminated with increasing concentrations of uranium in their drinking water compared to a control group to study cellular mechanisms involved in locomotor disorders. Nissl staining of spinal cord sections revealed the presence of chromatolytic neurons in the ventral horn. This observation was correlated with a decreased number of motor neurons in the highly contaminated group and a decrease of SMN1 protein expression (Survival of Motor Neuron 1). While contamination impairs motor neuron integrity, an increasing number of microglial cells indicates the trigger of a neuroinflammation process. Potential overexpression of a microglial recruitment chemokine, MCP-1 (Monocyte Chimioattractant Protein 1), by motor neurons themselves could mediate this process. Studies on spinal cord appear to be relevant for risk assessment of population exposed via contaminated food and water.
Collapse
Affiliation(s)
- Brice Saint-Marc
- Institut de Radioprotection et de SÛreté Nucléaire, Pôle Radioprotection de l'Homme, Service de Radiobiologie et d'Epidémiologie, Laboratoire de Radiotoxicologie Expérimentale, BP17, 92262 Fontenay aux Roses, France
| | - Christelle Elie
- Institut de Radioprotection et de SÛreté Nucléaire, Pôle Radioprotection de l'Homme, Service de Radiobiologie et d'Epidémiologie, Laboratoire de Radiotoxicologie Expérimentale, BP17, 92262 Fontenay aux Roses, France
| | - Line Manens
- Institut de Radioprotection et de SÛreté Nucléaire, Pôle Radioprotection de l'Homme, Service de Radiobiologie et d'Epidémiologie, Laboratoire de Radiotoxicologie Expérimentale, BP17, 92262 Fontenay aux Roses, France
| | - Karine Tack
- Institut de Radioprotection et de SÛreté Nucléaire, Pôle Radioprotection de l'Homme, Service de Radiobiologie et d'Epidémiologie, Laboratoire de Radiotoxicologie Expérimentale, BP17, 92262 Fontenay aux Roses, France
| | - Marc Benderitter
- Institut de Radioprotection et de SÛreté Nucléaire, Pôle Radioprotection de l'Homme, Service de Radiobiologie et d'Epidémiologie, Laboratoire de Radiotoxicologie Expérimentale, BP17, 92262 Fontenay aux Roses, France
| | - Yann Gueguen
- Institut de Radioprotection et de SÛreté Nucléaire, Pôle Radioprotection de l'Homme, Service de Radiobiologie et d'Epidémiologie, Laboratoire de Radiotoxicologie Expérimentale, BP17, 92262 Fontenay aux Roses, France
| | - Chrystelle Ibanez
- Institut de Radioprotection et de SÛreté Nucléaire, Pôle Radioprotection de l'Homme, Service de Radiobiologie et d'Epidémiologie, Laboratoire de Radiotoxicologie Expérimentale, BP17, 92262 Fontenay aux Roses, France.
| |
Collapse
|
17
|
3-Hydroxypyridinone derivatives as metal-sequestering agents for therapeutic use. Future Med Chem 2015; 7:383-410. [PMID: 25826364 DOI: 10.4155/fmc.14.162] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although iron is one of the most important metal ions for living organisms, it becomes toxic when in excess or misplaced. This review presents a glance at representative examples of hydroxypyridinone-based chelators, which have been recently developed as potential clinically useful drugs for metal overload diseases, mostly associated with excess of iron but also other hard metal-ions. It also includes a detailed discussion on the factors assisting chelator design strategy toward fulfillment of the most relevant biochemical properties of hydroxypyridinone chelators, highlighting structure-activity relationships and a variety of potential clinical applications, beyond chelatotherapy. This study appears as a response to the growing interest on metal chelation therapy and opens new perspectives of possible applications in future medicine.
Collapse
|
18
|
Dinocourt C, Legrand M, Dublineau I, Lestaevel P. The neurotoxicology of uranium. Toxicology 2015; 337:58-71. [PMID: 26277741 DOI: 10.1016/j.tox.2015.08.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/05/2015] [Accepted: 08/11/2015] [Indexed: 11/26/2022]
Abstract
The brain is a target of environmental toxic pollutants that impair cerebral functions. Uranium is present in the environment as a result of natural deposits and release by human applications. The first part of this review describes the passage of uranium into the brain, and its effects on neurological functions and cognitive abilities. Very few human studies have looked at its cognitive effects. Experimental studies show that after exposure, uranium can reach the brain and lead to neurobehavioral impairments, including increased locomotor activity, perturbation of the sleep-wake cycle, decreased memory, and increased anxiety. The mechanisms underlying these neurobehavioral disturbances are not clearly understood. It is evident that there must be more than one toxic mechanism and that it might include different targets in the brain. In the second part, we therefore review the principal mechanisms that have been investigated in experimental models: imbalance of the anti/pro-oxidant system and neurochemical and neurophysiological pathways. Uranium effects are clearly specific according to brain area, dose, and time. Nonetheless, this review demonstrates the paucity of data about its effects on developmental processes and the need for more attention to the consequences of exposure during development.
Collapse
Affiliation(s)
- Céline Dinocourt
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle de la Radioprotection de l'Homme, Service de Radiobiologie et d'Epidémiologie, Laboratoire de Radiotoxicologie Expérimentale, BP 17, F-92262 Fontenay-aux-Roses, France.
| | - Marie Legrand
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle de la Radioprotection de l'Homme, Service de Radiobiologie et d'Epidémiologie, Laboratoire de Radiotoxicologie Expérimentale, BP 17, F-92262 Fontenay-aux-Roses, France.
| | - Isabelle Dublineau
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle de la Radioprotection de l'Homme, Service de Radiobiologie et d'Epidémiologie, Laboratoire de Radiotoxicologie Expérimentale, BP 17, F-92262 Fontenay-aux-Roses, France.
| | - Philippe Lestaevel
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle de la Radioprotection de l'Homme, Service de Radiobiologie et d'Epidémiologie, Laboratoire de Radiotoxicologie Expérimentale, BP 17, F-92262 Fontenay-aux-Roses, France.
| |
Collapse
|
19
|
Liu Y, Lan N, Ren J, Wu Y, Wang ST, Huang XF, Yu Y. Orientin improves depression-like behavior and BDNF in chronic stressed mice. Mol Nutr Food Res 2015; 59:1130-42. [PMID: 25788013 DOI: 10.1002/mnfr.201400753] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 02/12/2015] [Accepted: 03/05/2015] [Indexed: 01/11/2023]
Abstract
SCOPE Oxidative stress is involved in chronic stress-induced depression and the disruption of neurotransmission and neuroplasticity. Recently, orientin, a phenolic compound abundant in some fruits, millet, and herbs, has been shown to have antioxidant properties. This study investigated the potential antidepressant effects of orientin against chronic stress and its underlying mechanisms. METHODS AND RESULTS The chronic unpredictable mild stress (CUMS) model was used to investigate the effects of orientin on behavior and biochemical alterations in mice. After 2 weeks of the CUMS protocol, the mice were treated with orientin (20 mg/kg and 40 mg/kg, oral gavage) for 3 weeks. Administration of orientin significantly alleviated the CUMS-induced depression-like behavior, including sucrose preference reduction, locomotor activity decline, and hypomotility. Orientin treatment attenuated the oxidative stress markers and increased the concentrations of serotonin and norepinephrine in the hippocampus and prefrontal cortex of CUMS mice. Orientin treatment also increased the brain-derived neurotrophic factor and synapse-associated proteins (synaptophysin and postsynaptic density protein 95) of CUMS mice. CONCLUSION Orientin exerts antidepressant-like effects on CUMS mice, specifically by improving central oxidative stress, neurotransmission, and neuroplasticity. Therefore, supplementation with orientin-enriched food or fruit could be beneficial as a preventive strategy for chronic stress-induced depression.
Collapse
Affiliation(s)
- Yi Liu
- School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, P. R. China.,Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Nuo Lan
- School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, P. R. China
| | - Jing Ren
- School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, P. R. China
| | - Yizhen Wu
- Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Shu-ting Wang
- School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, P. R. China
| | - Xu-Feng Huang
- Schizophrenia Research Institute (SRI), Sydney, NSW, Australia.,Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Yinghua Yu
- Schizophrenia Research Institute (SRI), Sydney, NSW, Australia.,Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| |
Collapse
|
20
|
Lestaevel P, Dhieux B, Delissen O, Benderitter M, Aigueperse J. Uranium modifies or not behavior and antioxidant status in the hippocampus of rats exposed since birth. J Toxicol Sci 2015; 40:99-107. [DOI: 10.2131/jts.40.99] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Philippe Lestaevel
- Institut de Radioprotection et de Sûreté Nucléaire, Direction de la RadioProtection de l’Homme, Service de Radiobiologie et d’Epidémiologie, Laboratoire de RadioToxicologie Expérimentale, France
| | - Bernadette Dhieux
- Institut de Radioprotection et de Sûreté Nucléaire, Direction de la RadioProtection de l’Homme, Service de Radiobiologie et d’Epidémiologie, Laboratoire de RadioToxicologie Expérimentale, France
| | - Olivia Delissen
- Institut de Radioprotection et de Sûreté Nucléaire, Direction de la RadioProtection de l’Homme, Service de Radiobiologie et d’Epidémiologie, Laboratoire de RadioToxicologie Expérimentale, France
| | - Marc Benderitter
- Institut de Radioprotection et de Sûreté Nucléaire, Direction de la RadioProtection de l’Homme, Service de Radiobiologie et d’Epidémiologie, Laboratoire de RadioToxicologie Expérimentale, France
| | - Jocelyne Aigueperse
- Institut de Radioprotection et de Sûreté Nucléaire, Direction de la RadioProtection de l’Homme, Service de Radiobiologie et d’Epidémiologie, Laboratoire de RadioToxicologie Expérimentale, France
| |
Collapse
|
21
|
Rashidi Nassab H, Bakhshi M, Amini MK. Adsorptive Cathodic Stripping Voltammetric Determination of Uranium(VI) in Presence ofN-Phenylanthranilic Acid. ELECTROANAL 2014. [DOI: 10.1002/elan.201400107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Unexpected lack of deleterious effects of uranium on physiological systems following a chronic oral intake in adult rat. BIOMED RESEARCH INTERNATIONAL 2014; 2014:181989. [PMID: 24693537 PMCID: PMC3944956 DOI: 10.1155/2014/181989] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 01/09/2023]
Abstract
Uranium level in drinking water is usually in the range of microgram-per-liter, but this value may be as much as 100 to 1000 times higher in some areas, which may raise question about the health consequences for human populations living in these areas. Our purpose was to improve knowledge of chemical effects of uranium following chronic ingestion. Experiments were performed on rats contaminated for 9 months via drinking water containing depleted uranium (0.2, 2, 5, 10, 20, 40, or 120 mg/L). Blood biochemical and hematological indicators were measured and several different types of investigations (molecular, functional, and structural) were conducted in organs (intestine, liver, kidneys, hematopoietic cells, and brain). The specific sensitivity of the organs to uranium was deduced from nondeleterious biological effects, with the following thresholds (in mg/L): 0.2 for brain, >2 for liver, >10 for kidneys, and >20 for intestine, indicating a NOAEL (No-Observed-Adverse-Effect Level) threshold for uranium superior to 120 m g/L. Based on the chemical uranium toxicity, the tolerable daily intake calculation yields a guideline value for humans of 1350 μg/L. This value was higher than the WHO value of 30 μg/L, indicating that this WHO guideline for uranium content in drinking water is very protective and might be reconsidered.
Collapse
|
23
|
Bellés M, Linares V, Perelló G, Domingo JL. Human dietary exposure to uranium in catalonia, Spain. Biol Trace Elem Res 2013; 152:1-8. [PMID: 23315285 DOI: 10.1007/s12011-012-9587-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
Abstract
The purpose of this study was to determine the daily dietary intake of uranium (U) by the general population of Catalonia, Spain. Uranium concentrations were measured in foods widely consumed by the population living in that autonomous community. Food samples were randomly acquired in 12 representative cities of Catalonia. The dietary intake of U was estimated for various age-gender groups: children, adolescents, adults, and seniors. Fish and seafood was the food group showing the highest U concentrations (0.090 μg/g of fresh weight (fw)), followed by dairy products (0.044 μg/g fw). In contrast, the lowest U levels were found in oils and fats (0.003 μg/g fw), while in tubers and milk, U was not detected in any sample. The estimated dietary intake of U for a standard male adult of 70 kg body weight living in Catalonia was 15.48 μg/day. According to the age/gender of the population, the highest dietary intake of U corresponded to children (20.32 μg/day), while senior females was the subgroup with the lowest U intake (10.04 μg/day). Based on the tolerable daily intake established for U, the current dietary intake of this metal by the general population of Catalonia should not mean health risks for any of the different age/gender groups of consumers.
Collapse
Affiliation(s)
- Montserrat Bellés
- Laboratory of Toxicology and Environmental Health and Physiology Unit, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorens 21, 43201 Reus, Catalonia, Spain
| | | | | | | |
Collapse
|
24
|
Zama M, Ansari M, Dimri U, Hoque M, Maiti S, Kinjavdekar P. Effect of therapeutic ultrasound and diathermy on oxidant–antioxidant balance in dogs suffering from hind quarter weakness. JOURNAL OF APPLIED ANIMAL RESEARCH 2013. [DOI: 10.1080/09712119.2012.738217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Shaki F, Hosseini MJ, Ghazi-Khansari M, Pourahmad J. Depleted uranium induces disruption of energy homeostasis and oxidative stress in isolated rat brain mitochondria. Metallomics 2013; 5:736-44. [DOI: 10.1039/c3mt00019b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Manto M. Cerebellotoxic Agents. HANDBOOK OF THE CEREBELLUM AND CEREBELLAR DISORDERS 2013:2079-2117. [DOI: 10.1007/978-94-007-1333-8_96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
27
|
Abstract
Stress is a potent risk factor for depression, yet the underlying mechanism is not clearly understood. In the present study, we explored the mechanism of development and maintenance of depression in a stress-induced animal model. Mice restrained for 2 h daily for 14 d showed distinct depressive behavior, and the altered behavior persisted for >3 months in the absence of intervention. Acute restraint induced a surge of oxidative stress in the brain, and stress-induced oxidative stress progressively increased with repetition of stress. In vitro, the stress hormone glucocorticoid generated superoxide via upregulation of NADPH oxidase. Consistently, repeated restraints increased the expression of the key subunits of NADPH oxidase, p47phox and p67phox, in the brain. Moreover, stressed brains markedly upregulated the expression of p47phox to weak restress evoked in the poststress period, and this molecular response was reminiscent of amplified ROS surge to restress. Pharmacological inhibition of NADPH oxidase by the NADPH oxidase inhibitor apocynin during the stress or poststress period completely blocked depressive behavior. Consistently, heterozygous p47phox knock-out mice (p47phox(+/-)) or molecular inhibition of p47phox with Lenti shRNA-p47phox in the hippocampus suppressed depressive behavior. These results suggest that repeated stress promotes depressive behavior through the upregulation of NADPH oxidase and the resultant metabolic oxidative stress, and that the inhibition of NADPH oxidase provides beneficial antidepression effects.
Collapse
|
28
|
Behera SK, Dimri U, Singh SK, Mohanta RK. The curative and antioxidative efficiency of ivermectin and ivermectin + vitamin E-selenium treatment on canine Sarcoptes scabiei infestation. Vet Res Commun 2011; 35:237-44. [DOI: 10.1007/s11259-011-9468-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2011] [Indexed: 11/27/2022]
|
29
|
Linares V, Alonso V, Domingo JL. Oxidative stress as a mechanism underlying sulfasalazine-induced toxicity. Expert Opin Drug Saf 2011; 10:253-63. [PMID: 21219240 DOI: 10.1517/14740338.2011.529898] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Sulfasalazine (SASP) is a drug commonly used in the treatment of inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn's disease (CD) and rheumatoid arthritis (RA). A high incidence of side effects limits therapy with this drug. Getting a wider knowledge of drug pharmacology, indications and side effects is essential to ensure the best possible clinical care, minimizing toxicity and inappropriate use. AREAS COVERED This paper gives an overview of recent research about SASP and its main adverse effects, highlighting the mechanisms underlying them. To give an overview and comment on the data available so far on this topic, relevant literature was identified using a PubMed search of articles published up to December 2009. Search terms included: 'sulfasalazine', 'oxidative stress, 'renal effects', 'hepatotoxicity' and 'male fertility'. Original papers were reviewed and relevant citations from these articles were also considered. EXPERT OPINION Although SASP and 5-aminosalicylic acid also scavenge ROS, which may account for some of their anti-inflammatory properties, the reaction with ROS may also generate toxic free radicals; hence, the ability of other antioxidants to suppress the toxicity of SASP in vivo. Further investigations, particularly about SASP mechanism, are still needed.
Collapse
Affiliation(s)
- Victoria Linares
- Physiology Unit, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | | | | |
Collapse
|
30
|
Yapar K, Cavuşoğlu K, Oruç E, Yalçin E. Protective role of Ginkgo biloba against hepatotoxicity and nephrotoxicity in uranium-treated mice. J Med Food 2010; 13:179-88. [PMID: 20136453 DOI: 10.1089/jmf.2009.0028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to investigate the protective role of Ginkgo biloba leaf extract against uranium (U)-induced toxicity in Swiss albino mice. The mice were randomly divided into six groups, each consisting of six animals: Group I (control) received tap water alone, Group II received U at a dose of 5 mg/kg of body weight, Group III received G. biloba at a dose of 50 mg/kg of body weight, Group IV received G. biloba at a dose of 150 mg/kg of body weight, Group V received G. biloba (50 mg/kg of body weight) and U (5 mg/kg of body weight), and Group VI received G. biloba (150 mg/kg of body weight) and U (5 mg/kg of body weight) by oral gavage for 5 days. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), and creatinine levels were determined to assess liver and kidney function, respectively. Also, liver and kidney samples were taken for the determination of tissue malondialdehyde (MDA) and reduced glutathione (GSH) levels, and histopathological changes in liver and kidneys were investigated. The results indicated that there was a significant increase (P < .05) in selected serum parameters. Serum AST, ALT, BUN, and creatinine levels significantly increased in mice treated with U alone when compared to the other groups. Moreover, U-induced oxidative damage caused a significant decrease in GSH levels and a significant increase in MDA levels of liver and kidney tissues. Treatment with G. biloba produced amelioration in biochemical indices of hepatotoxicity and nephrotoxicity according to Group II. Each dose of G. biloba provided significant protection against U-induced toxicity, and its strongest effect was observed at a dose of 150 mg/kg of body weight. In vivo results showed that G. biloba extract is a potent protector against U-induced toxicity, and its protective role is dose-dependent.
Collapse
Affiliation(s)
- Kürşad Yapar
- Department of Medical Pharmacology, Internal Medical Sciences Division, Faculty of Medicine, Giresun University, Giresun, Turkey.
| | | | | | | |
Collapse
|
31
|
Lourenço J, Castro BB, Machado R, Nunes B, Mendo S, Gonçalves F, Pereira R. Genetic, biochemical, and individual responses of the teleost fish Carassius auratus to uranium. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 58:1023-1031. [PMID: 20012274 DOI: 10.1007/s00244-009-9432-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 11/08/2009] [Indexed: 05/28/2023]
Abstract
Carassius auratus were exposed for 96 h to different concentrations of uranyl nitrate (corresponding to 0, 100, 450, and 2,025 microg U L(-1)) and killed after different postexposure periods (0, 48, and 96 h) to assess uranium bioaccumulation, peroxisome proliferation (catalase [CAT]), lipid peroxidation (thiobarbituric acid reactive substances [TBARS]), and DNA integrity in erythrocytes (comet assay). In addition, feeding behaviour was recorded as a general response to toxicant exposure. Results provided evidence of uranium bioaccumulation in muscle of C. auratus after exposure to the highest concentrations (450 and 2,025 microg U L(-1)). This tissue was able to depurate uranium to control levels 96 h after exposure ceased. However, no perturbations in feeding behaviour or cell damage were observed in the tested organisms, except for the apparent irreversible inhibition of CAT activity immediately after exposure in the highest concentration tested. Data on DNA integrity (comets) showed that waterborne uranium exposure was able to induce genotoxicity in C. auratus erythrocytes because fish exposed to all concentrations exhibited higher DNA damage than controls 96 h after exposure. No DNA damage repair was apparent throughout the postexposure period, which was contrary to a recovery scenario. This experiment provides evidence of uranium's ability to induce physiologic impairment and genotoxicity in freshwater fish at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Joana Lourenço
- Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | | | |
Collapse
|
32
|
The toxicity of depleted uranium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:303-13. [PMID: 20195447 PMCID: PMC2819790 DOI: 10.3390/ijerph7010303] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 01/20/2010] [Indexed: 12/22/2022]
Abstract
Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed.
Collapse
|
33
|
Lestaevel P, Romero E, Dhieux B, Ben Soussan H, Berradi H, Dublineau I, Voisin P, Gourmelon P. Different pattern of brain pro-/anti-oxidant activity between depleted and enriched uranium in chronically exposed rats. Toxicology 2008; 258:1-9. [PMID: 19154773 DOI: 10.1016/j.tox.2008.12.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 12/17/2008] [Accepted: 12/18/2008] [Indexed: 02/01/2023]
Abstract
Uranium is not only a heavy metal but also an alpha particle emitter. The main toxicity of uranium is expected to be due to chemiotoxicity rather than to radiotoxicity. Some studies have demonstrated that uranium induced some neurological disturbances, but without clear explanations. A possible mechanism of this neurotoxicity could be the oxidative stress induced by reactive oxygen species imbalance. The aim of the present study was to determine whether a chronic ingestion of uranium induced anti-oxidative defence mechanisms in the brain of rats. Rats received depleted (DU) or 4% enriched (EU) uranyl nitrate in the drinking water at 2mg(-1)kg(-1)day(-1) for 9 months. Cerebral cortex analyses were made by measuring mRNA and protein levels and enzymatic activities. Lipid peroxidation, an oxidative stress marker, was significantly enhanced after EU exposure, but not after DU. The gene expression or activity of the main antioxidant enzymes, i.e. superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), increased significantly after chronic exposure to DU. On the contrary, oral EU administration induced a decrease of these antioxidant enzymes. The NO-ergic pathway was almost not perturbed by DU or EU exposure. Finally, DU exposure increased significantly the transporters (Divalent-Metal-Transporter1; DMT1), the storage molecule (ferritin) and the ferroxidase enzyme (ceruloplasmin), but not EU. These results illustrate that oxidative stress plays a key role in the mechanism of uranium neurotoxicity. They showed that chronic exposure to DU, but not EU, seems to induce an increase of several antioxidant agents in order to counteract the oxidative stress. Finally, these results demonstrate the importance of the double toxicity, chemical and radiological, of uranium.
Collapse
Affiliation(s)
- P Lestaevel
- Institut de Radioprotection et de Sûreté Nucléaire, Direction de la RadioProtection de l'Homme, Service de Radiobiologie et d'Epidémiologie, Laboratoire de RadioToxicologie Expérimentale. IRSN, Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Linares V, Alonso V, Albina ML, Bellés M, Sirvent JJ, Domingo JL, Sánchez DJ. Lipid peroxidation and antioxidant status in kidney and liver of rats treated with sulfasalazine. Toxicology 2008; 256:152-6. [PMID: 19071188 DOI: 10.1016/j.tox.2008.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 11/19/2022]
Abstract
Sulfasalazine (SASP) is a drug commonly used in the treatment of inflammatory bowel diseases (IBD). In this study, the changes in endogenous antioxidant capacity and oxidative damage in liver and kidney of SASP-treated rats were investigated. Adult male Sprague-Dawley rats were orally given 0, 300, or 600 mg SASP/kg body weight for 14 days. One half of the animals in each group remained 14 additional days without SASP treatment. At the end of the experimental period, rats were euthanized and liver and kidney were removed. In both organs, the following stress markers were determined: reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), and thiobarbituric acid-reactive substances (TBARS). Moreover, histological examination of kidneys showed phagolysosomes after 14 days of SASP withdrawal. A dropsical degeneration was also observed in renal tissue. Oral SASP administration induced a significant increase in TBARS levels in both liver and kidney. After 2 weeks without SASP administration, a recovery of these levels was noted. SOD activity was significantly reduced, while CAT activity significantly increased at 600 mg SASP/(kg day). In kidney, GPx activity significantly increased, while GST activity and GSH levels were significantly reduced at 600 mg SASP/(kg day). These results suggest that in male rats, oxidative damage can be a mechanism for nephro- and hepatotoxicity related with SASP treatment.
Collapse
Affiliation(s)
- Victoria Linares
- Laboratory of Toxicology and Environmental Health, School of Medicine, Rovira i Virgili University, Sant Llorens 21, 43201 Reus, Catalonia, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
Alonso V, Linares V, Bellés M, Albina ML, Sirvent JJ, Domingo JL, Sánchez DJ. Sulfasalazine induced oxidative stress: a possible mechanism of male infertility. Reprod Toxicol 2008; 27:35-40. [PMID: 19028562 DOI: 10.1016/j.reprotox.2008.10.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/17/2008] [Accepted: 10/24/2008] [Indexed: 02/08/2023]
Abstract
The mechanism of action of sulfasalazine (SASP) in male infertility is not well elucidated. For it, an oxidative stress-like mechanism inductor of infertility was hypothesized. Adult male Sprague-Dawley rats (20/group) were orally administered 0, 300, and 600mg SASP/kg body weight for 14 days. One-half of animals in each group remained an additional period of 14 days without treatment. SASP induced a significant decrease of superoxide dismutase (SOD) and glutathione reductase (GR) at the highest dose in both testis and epididymis. GR remained altered in these tissues within the recovery period. However, an increase in SOD was noted in epididymis. An increase in thiobarbituric acid-reactive substances (TBARS) was noted in all SASP-treated groups. In epididymis, catalase (CAT) significantly increased at 600mg/(kgday). These results suggest that SASP induces oxidative stress, which in turn might act as a possible mechanism of male-induced infertility.
Collapse
Affiliation(s)
- Virginia Alonso
- Laboratory of Toxicology and Environmental Health, School of Medicine, "Rovira i Virgili" University, Sant Llorens 21, 43201 Reus, Spain
| | | | | | | | | | | | | |
Collapse
|