1
|
Cavallero A, Donadel G, Puccini P, Gervasi PG, Gabisonia K, Longo V, Gabriele M. New insight on porcine carboxylesterases expression and activity in lung tissues. Res Vet Sci 2024; 175:105314. [PMID: 38823354 DOI: 10.1016/j.rvsc.2024.105314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Over the course of the last twenty years, there has been a growing recognition of the pig's potential as a valuable model for studying human drug metabolism. This study aimed to investigate the expression, enzymatic activity, inhibitory susceptibility, and cellular localization of carboxylesterases (CES) in porcine lung tissue not yet explored. Our results showed that CESs hydrolysis activity followed Michaelis-Menten kinetics in both cytosolic and microsomal fractions of porcine lung tissues (N = 8), with comparable hydrolysis rates for tested substrates, namely 4-nitrophenyl acetate (pNPA), 4-methylumbelliferyl acetate (4-MUA), and fluorescein diacetate (FD). We also determined the CESs hydrolysis activity in a representative sample of the porcine liver that, as expected, displayed higher activity than the lung ones. The study demonstrated variable levels of enzyme activities and interindividual variability in both porcine lung fractions. Inhibition studies used to assess the CESs' involvement in the hydrolysis of pNPA, 4-MUA, and FD suggested that CESs may be the enzymes primarily involved in the metabolism of ester compounds in the pig lung tissue. Overall, this study provides insight into the distribution and diversity of CES isoforms involved in substrate hydrolysis across different cellular fractions (cytosol and microsomes) in porcine lungs.
Collapse
Affiliation(s)
- Andrea Cavallero
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Moruzzi 1, 56124 Pisa, Italy
| | - Giorgia Donadel
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Moruzzi 1, 56124 Pisa, Italy
| | - Paola Puccini
- Chiesi Farmaceutici S.P.A., via Palermo 26/A, Parma, Italy
| | - Pier Giovanni Gervasi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Moruzzi 1, 56124 Pisa, Italy
| | - Khatia Gabisonia
- Interdisciplinary Center "Health Science", Scuola Superiore Sant'Anna, c/o Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche, via Moruzzi 1, 56124 Pisa, Italy
| | - Vincenzo Longo
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Moruzzi 1, 56124 Pisa, Italy
| | - Morena Gabriele
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
2
|
Medication with fenbendazole in feed: plasma concentrations and effects on hepatic xenobiotic metabolizing enzymes in swine. Vet Res Commun 2022; 47:803-815. [DOI: 10.1007/s11259-022-10041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
|
3
|
Ge J, Huang Y, Lv M, Zhang C, Talukder M, Li J, Li J. Cadmium induced Fak -mediated anoikis activation in kidney via nuclear receptors (AHR/CAR/PXR)-mediated xenobiotic detoxification pathway. J Inorg Biochem 2021; 227:111682. [PMID: 34902763 DOI: 10.1016/j.jinorgbio.2021.111682] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/16/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) is a toxic heavy metal of considerable toxicity, possessing a serious environmental problem that threatening food safety and human health. However, the underlying mechanisms of Cd-induced nephrotoxicity and detoxification response remain largely unclear. Cd was administered at doses of 35, 70, and 140 mg/kg diet with feed for 90 days and produced potential damage to chickens' kidneys. The results showed that Cd exposure induced renal anatomical and histopathological injuries. Cd exposure up-regulated cytochrome P450 enzymes (CYP450s), activated nuclear xenobiotic receptors (NXRs) response, including aryl hydro-carbon receptor (AHR), constitutive androstane receptor (CAR), and pregnane X receptor (PXR) by low and moderate doses of Cd, and induced an increase in CYP isoforms expression. Cd exposure down-regulated phase II detoxification enzymes (glutathione-S-transferase (GST), glutathione peroxidase (GSH-PX) activities, and glutathione (GSH) content), and GST isoforms transcription . Furthermore, ATP-binding cassette (ABC) transporters, multidrug resistance protein (MRP1), and P-glycoprotein (P-GP) levels were elevated by low dose, but high dose inhibited the P-GP expression. Activation of detoxification enzymes lost their ability of resistance as increasing dose of Cd, afterwards brought into severe renal injury. Additionally, Cd suppressed focal adhesion kinase (Fak) and integrins protein expression as well as activated extrinsic pathway and intrinsic pathways, thereby producing anoikis. In conclusion, these results indicated that Cd induced Fak-mediated anoikis activation in the kidney via nuclear receptors (AHR/CAR/PXR)-mediated xenobiotic detoxification pathway.
Collapse
Affiliation(s)
- Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, United States
| | - Yan Huang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, United States
| | - MeiWei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - JinYang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - JinLong Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
4
|
Skydsgaard M, Dincer Z, Haschek WM, Helke K, Jacob B, Jacobsen B, Jeppesen G, Kato A, Kawaguchi H, McKeag S, Nelson K, Rittinghausen S, Schaudien D, Vemireddi V, Wojcinski ZW. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Nonproliferative and Proliferative Lesions of the Minipig. Toxicol Pathol 2021; 49:110-228. [PMID: 33393872 DOI: 10.1177/0192623320975373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions) Project (www.toxpath.org/inhand.asp) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying microscopic lesions observed in most tissues and organs from the minipig used in nonclinical safety studies. Some of the lesions are illustrated by color photomicrographs. The standardized nomenclature presented in this document is also available electronically on the internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions as well as lesions induced by exposure to test materials. Relevant infectious and parasitic lesions are included as well. A widely accepted and utilized international harmonization of nomenclature for lesions in laboratory animals will provide a common language among regulatory and scientific research organizations in different countries and increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
| | - Zuhal Dincer
- Pathology Department, Covance Laboratories Limited, Harrogate, United Kingdom
| | - Wanda M Haschek
- Department of Pathobiology, University of Illinois, Urbana, IL, USA
| | - Kris Helke
- Medical University of South Carolina, Charleston, SC, USA
| | | | - Bjoern Jacobsen
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Gitte Jeppesen
- Charles River Laboratories Copenhagen, Lille Skensved, Denmark
| | - Atsuhiko Kato
- Chugai Pharmaceutical Co, Ltd Research Division, Shizuoka, Japan
| | | | - Sean McKeag
- Pathology Department, Covance Laboratories Limited, Harrogate, United Kingdom
| | | | - Susanne Rittinghausen
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | | | | |
Collapse
|
5
|
Zhang Q, Huang R, Ma X, Jiang N, Zhou W, Gao C, Zhao M, Niu P, Zhang Z, Li Q, Zhou J, Li P. Association of Rs339939442 in the AHR Gene with Litter Size are Inconsistent among Chinese Indigenous Pigs and Western Commercial Pigs. Animals (Basel) 2019; 10:ani10010011. [PMID: 31861561 PMCID: PMC7023200 DOI: 10.3390/ani10010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/08/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022] Open
Abstract
Eastern and Southern Chinese pigs have been imported to Western countries to improve economic traits including fertility in Western pig breeds by intensive selecting Chinese advantage genes. It was reported that the selected Asian-derived non-synonymous mutations including rs339939442 (G > T) in the aryl hydrocarbon receptor (AHR) gene could increase litter size in multiple European commercial lines. The objective of this study is to identify whether rs339939442 in the AHR gene is polymorphic and has an influence on the litter size in 10 pig populations including five Chinese indigenous breeds, one cultivated breed, one lean-type breed, two North American lean-type breeds, and one European lean-type breed. We found that rs339939442 had polymorphism in all 10 populations, whereas rs339939442 was associated with litter size only in French Yorkshire (FRA-Y) and Chinese cultivated Suhuai (SH) pigs containing approximately 75% British Yorkshire pigs ancestry. Our results indicated that rs339939442 in the AHR gene was a potential marker to improve litter size in European commercial lines and the pigs containing ancestries of European commercial lines, whereas this locus maybe not a causal mutation affecting the litter size but only in linkage disequilibrium with the causal mutation for litter size.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (Q.Z.); (R.H.); (X.M.); (N.J.); (W.Z.); (C.G.); (M.Z.)
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China; (P.N.); (Z.Z.)
| | - Ruihua Huang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (Q.Z.); (R.H.); (X.M.); (N.J.); (W.Z.); (C.G.); (M.Z.)
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China; (P.N.); (Z.Z.)
| | - Xiang Ma
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (Q.Z.); (R.H.); (X.M.); (N.J.); (W.Z.); (C.G.); (M.Z.)
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China; (P.N.); (Z.Z.)
| | - Nengjing Jiang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (Q.Z.); (R.H.); (X.M.); (N.J.); (W.Z.); (C.G.); (M.Z.)
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China; (P.N.); (Z.Z.)
| | - Wuduo Zhou
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (Q.Z.); (R.H.); (X.M.); (N.J.); (W.Z.); (C.G.); (M.Z.)
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China; (P.N.); (Z.Z.)
| | - Chen Gao
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (Q.Z.); (R.H.); (X.M.); (N.J.); (W.Z.); (C.G.); (M.Z.)
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China; (P.N.); (Z.Z.)
| | - Moran Zhao
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (Q.Z.); (R.H.); (X.M.); (N.J.); (W.Z.); (C.G.); (M.Z.)
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China; (P.N.); (Z.Z.)
| | - Peipei Niu
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China; (P.N.); (Z.Z.)
| | - Zongping Zhang
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China; (P.N.); (Z.Z.)
| | - Qiang Li
- Huaiyin Pig Breeding Farm of Huaian City, Huaian 223322, China; (Q.L.); (J.Z.)
| | - Juan Zhou
- Huaiyin Pig Breeding Farm of Huaian City, Huaian 223322, China; (Q.L.); (J.Z.)
| | - Pinghua Li
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (Q.Z.); (R.H.); (X.M.); (N.J.); (W.Z.); (C.G.); (M.Z.)
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China; (P.N.); (Z.Z.)
- Correspondence:
| |
Collapse
|
6
|
Cheng K, Zeng X, Wu H, Su W, Fan W, Bai Y, Yao H, Li P. Effects of Naringin on the Activity and mRNA Expression of CYP Isozymes in Rats. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19894180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Naringin (NRG) is a common dietary flavonoid in citrus fruits and has been documented to possess multiple pharmacological activities, including anti-oxidant, anti-inflammatory, and neuroprotective effects. Naringin is frequently consumed in combination with common clinical drugs. To date, the effects of NRG on cytochrome P450 enzymes have not been fully investigated yet. In this study, the activities of hepatic CYP1A2, CYP2D2, CYP2C9, CYP2C19, and CYP2E1 in rats after the continuous oral administration of NRG (50 and 500 mg/kg) were evaluated using cocktail probe-drug method. The concentrations of 5 probe drugs (phenacetin, dextromethorphan, diclofenac sodium, omeprazole, and chlorzoxazone) in rat plasma were simultaneously determined with a validated HPLC-MS/MS (high performance liquid chromatography-tandem mass spectrometry) method and then used to calculate corresponding pharmacokinetic parameters. Compared with the control group, the AUC(0- t), AUC(0-∞), t 1/2, and C max of each probe drug in treatment groups showed no significant differences. Meanwhile, fluorescence quantitative polymerase chain reaction (FQ-PCR) analysis revealed that NRG did not significantly affect the mRNA expressions of genes CYP1a2, CYP2d2, CYP2c6, CYP2c11, and CYP2e1 in rat liver. Based on these results, it could be concluded that NRG showed no significant effects on the activities and mRNA expressions of tested CYP450 in rats.
Collapse
Affiliation(s)
- Keling Cheng
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xuan Zeng
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hao Wu
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Weiwei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Weiyang Fan
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yang Bai
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Drug Synthesis and Evaluation Center, Guangdong Institute of Applied Biological Resources, Guangzhou, People’s Republic of China
| | - Peibo Li
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
7
|
Baker JR, Sakoff JA, McCluskey A. The aryl hydrocarbon receptor (AhR) as a breast cancer drug target. Med Res Rev 2019; 40:972-1001. [PMID: 31721255 DOI: 10.1002/med.21645] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/04/2019] [Accepted: 10/29/2019] [Indexed: 12/25/2022]
Abstract
Breast cancer is the most common cancer in women, with more than 1.7 million diagnoses worldwide per annum. Metastatic breast cancer remains incurable, and the presence of triple-negative phenotypes makes targeted treatment impossible. The aryl hydrocarbon receptor (AhR), most commonly associated with the metabolism of xenobiotic ligands, has emerged as a promising biological target for the treatment of this deadly disease. Ligands for the AhR can be classed as exogenous or endogenous and may have agonistic or antagonistic activity. It has been well reported that agonistic ligands may have potent and selective growth inhibition activity in a number of oncogenic cell lines, and one (aminoflavone) has progressed to phase I clinical trials for breast cancer sufferers. In this study, we examine the current state of the literature in this area and elucidate the promising advances that are being made in hijacking the cytosolic-to-nuclear pathway of the AhR for the possible future treatment of breast cancer.
Collapse
Affiliation(s)
- Jennifer R Baker
- Chemistry, School of Environmental & Life Sciences, the University of Newcastle, Callaghan, NSW, Australia
| | - Jennette A Sakoff
- Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, the University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
8
|
Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch Toxicol 2019; 93:3419-3489. [PMID: 31673725 DOI: 10.1007/s00204-019-02602-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
The xenobiotic metabolism in the lung, an organ of first entry of xenobiotics into the organism, is crucial for inhaled compounds entering this organ intentionally (e.g. drugs) and unintentionally (e.g. work place and environmental compounds). Additionally, local metabolism by enzymes preferentially or exclusively occurring in the lung is important for favorable or toxic effects of xenobiotics entering the organism also by routes other than by inhalation. The data collected in this review show that generally activities of cytochromes P450 are low in the lung of all investigated species and in vitro models. Other oxidoreductases may turn out to be more important, but are largely not investigated. Phase II enzymes are generally much higher with the exception of UGT glucuronosyltransferases which are generally very low. Insofar as data are available the xenobiotic metabolism in the lung of monkeys comes closed to that in the human lung; however, very few data are available for this comparison. Second best rate the mouse and rat lung, followed by the rabbit. Of the human in vitro model primary cells in culture, such as alveolar macrophages and alveolar type II cells as well as the A549 cell line appear quite acceptable. However, (1) this generalization represents a temporary oversimplification born from the lack of more comparable data; (2) the relative suitability of individual species/models is different for different enzymes; (3) when more data become available, the conclusions derived from these comparisons quite possibly may change.
Collapse
|
9
|
Characterization of Porcine Hepatic and Intestinal Drug Metabolizing CYP450: Comparison with Human Orthologues from A Quantitative, Activity and Selectivity Perspective. Sci Rep 2019; 9:9233. [PMID: 31239454 PMCID: PMC6592956 DOI: 10.1038/s41598-019-45212-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Over the past two decades, the pig has gained attention as a potential model for human drug metabolism. Cytochrome P450 enzymes (CYP450), a superfamily of biotransformation enzymes, are pivotal in drug metabolism. Porcine CYP450 has been demonstrated to convert typical substrates of human CYP450. Nevertheless, knowledge and insight into porcine CYP450 quantity and substrate selectivity is scant, especially regarding intestinal CYP450. The current study aimed to map the quantities of hepatic and intestinal CYP450 in the conventional pig by using a proteomic approach. Moreover, the selectivity of the six most common used probe substrates (phenacetin, coumarin, midazolam, tolbutamide, dextromethorphan, and chlorzoxazone) for drug metabolizing enzyme subfamilies (CYP1A, CYP2A, CYP3A, CYP2C, CYP2D and CYP2E respectively), was investigated. Hepatic relative quantities were 4% (CYP1A), 31% (CYP2A), 14% (CYP3A), 10% (CYP2C), 28% (CYP2D) and 13% (CYP2E), whereas for the intestine only duodenal CYP450 could be determined with 88% for CYP3A and 12% for CYP2C. Furthermore, the results indicate that coumarin (CYP2A), midazolam (CYP3A), tolbutamide (CYP2C), and dextromethorphan (CYP2D) are as selective for porcine as for human CYP450. However, phenacetin (CYP1A2) and chlorzoxazone (CYP2E1) are less selective for the specific enzyme, despite similarities in selectivity towards the different enzymes involved compared to humans.
Collapse
|
10
|
Molcan T, Swigonska S, Nynca A, Sadowska A, Ruszkowska M, Orlowska K, Ciereszko RE. Is CYP1B1 involved in the metabolism of dioxins in the pig? Biochim Biophys Acta Gen Subj 2018; 1863:291-303. [PMID: 30278240 DOI: 10.1016/j.bbagen.2018.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 11/19/2022]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most difficult to biodegradate and the most toxic dioxin congener. Previously, we demonstrated in silico the ability of pig CYP1A1 to hydroxylate 2,7-dichlorodibenzo-p-dioxin (DiCDD), but not TCDD. To increase our knowledge concerning the low effectiveness of TCDD biodegradability, we analyzed in silico the binding selectivity and affinity between pig CYP1B1 and the two dioxins by means of molecular modeling. We also compared the effects of TCDD and DiCDD on CYP1B1 gene expression (qRT-PCR) and catalytic (EROD) activity in porcine granulosa cells. It was found that DiCDD and TCDD were stabilized within the pig CYP1B1 active site by hydrophobic interactions. The analysis of substrate channel availability revealed that both dioxins opened the exit channel S, allowing metabolites to leave the enzyme active site. Moreover, DiCDD and TCDD increased the CYP1B1 gene expression and catalytic activity in porcine granulosa cells. On the other hand, TCDD demonstrated higher than DiCDD calculated affinity to pig CYP1B1, hindering TCDD exit from the active site. The great distance between CYP1B1's heme and TCDD also might contribute to the lower hydroxylation effectiveness of TCDD compared to that of DiCDD. Moreover, the narrow active site of pig CYP1B1 may immobilize TCDD molecule, inhibiting its hydroxylation. The results of the access channel analysis and the distance from pig CYP1B1's heme to TCDD suggest that the metabolizing potential of pig CYP1B1 is higher than that of pig CYP1A1. However, this potential is probably not sufficiently high to considerably improve the slow TCDD biodegradation.
Collapse
Affiliation(s)
- Tomasz Molcan
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Sylwia Swigonska
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Anna Nynca
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Agnieszka Sadowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Monika Ruszkowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Karina Orlowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Renata E Ciereszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland; Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| |
Collapse
|
11
|
Yim B, Kim H, Kim J, Kim H, Won EJ, Lee YM. Identification and molecular characterization of cytochrome P450 (CYP450) family genes in the marine ciliate Euplotes crassus: The effect of benzo[a]pyrene and beta-naphthoflavone. Comp Biochem Physiol C Toxicol Pharmacol 2017; 196:71-80. [PMID: 28341215 DOI: 10.1016/j.cbpc.2017.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/12/2017] [Accepted: 03/19/2017] [Indexed: 11/20/2022]
Abstract
Marine ciliate Euplotes crassus, a single-cell eukaryote, and has been considered as a model organism for monitoring of environmental pollutions in sediments. Cytochrome P450 (CYP450) monooxygenase are phase I enzyme involved in detoxification of environmental pollutants, such as polycyclic aromatic hydrocarbons (PAHs). However, little information on CYP450 family genes in ciliate is available. In the present study, acute toxicity of PAH, benzo[a]pyrene (B[a]P) and PAH-like model compound, beta-naphthoflavone (β-NF), was investigated; full-length cDNA sequences and genomic structure of five CYP450 genes (CYP5680A1, CYP5681A1, CYP5681B1, CYP5682A1, and CYP5683A1) were analyzed; and finally their activities and transcriptional changes were measured after exposure to PAHs for 48h. According to the results, B[a]P exposure showed a negative effect on E. crassus survival, whereas β-NF exposure showed no significant effect. The 8h-LC50 value of B[a]P was determined to be 2.449μM (95%-C.L., 7.726-3.619μM). Five genes belonging to the CYP450 family had conserved domains and clustered with those of ciliate group, as revealed in phylogenetic analysis. CYP activity did not change after exposure to B[a]P, whereas it was slightly, but significantly, induced after exposure to β-NF. The mRNA expression of five CYP450 genes was significantly modulated in a concentration- and time-dependent manner after exposure to both the chemicals. Our findings suggest that CYP450 genes in E. crassus may be involved in detoxification of B[a]P and β-NF. This study would give a better understanding about the mode of action of B[a]P and β-NF in marine ciliates at the molecular level.
Collapse
Affiliation(s)
- Bora Yim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Hokyun Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Jisoo Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Haeyeon Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Eun-Ji Won
- Marine Chemistry & Geochemistry Research Center, Korea Institute of Ocean Science & Technology, Ansan 15627, Republic of Korea
| | - Young-Mi Lee
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
12
|
Constitutive expression and activity of cytochrome P450 in conventional pigs. Res Vet Sci 2017; 111:75-80. [DOI: 10.1016/j.rvsc.2016.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/06/2016] [Accepted: 12/15/2016] [Indexed: 12/14/2022]
|
13
|
Helke KL, Nelson KN, Sargeant AM, Jacob B, McKeag S, Haruna J, Vemireddi V, Greeley M, Brocksmith D, Navratil N, Stricker-Krongrad A, Hollinger C. Pigs in Toxicology. Toxicol Pathol 2016; 44:575-90. [DOI: 10.1177/0192623316639389] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Both a rodent and a nonrodent species are required for evaluation in nonclinical safety studies conducted to support human clinical trials. Historically, dogs and nonhuman primates have been the nonrodent species of choice. Swine, especially the miniature swine or minipigs, are increasingly being used in preclinical safety as an alternate nonrodent species. The pig is an appropriate option for these toxicology studies based on metabolic pathways utilized in xenobiotic biotransformation. Both similarities and differences exist in phase I and phase II biotransformation pathways between humans and pigs. There are numerous breeds of pigs, yet only a few of these breeds are characterized with regard to both xenobiotic-metabolizing enzymes and background pathology findings. Some specific differences in these enzymes based on breed and sex are known. Although swine have been used extensively in biomedical research, there is also a paucity of information in the current literature detailing the incidence of background lesions and differences between commonly used breeds. Here, the xenobiotic-metabolizing enzymes are compared between humans and pigs, and minipig background pathology changes are reviewed with emphasis on breed differences.
Collapse
Affiliation(s)
- Kristi L. Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | - Binod Jacob
- Charles River Laboratories, Spencerville, Ohio, USA
| | | | | | | | | | - Derek Brocksmith
- Sinclair Research Center and Sinclair Bio Resources, Auxvasse, Missouri, USA
| | | | | | - Charlotte Hollinger
- Zoological Health Program, Wildlife Conservation Society, Bronx, New York, USA
| |
Collapse
|
14
|
Mary VS, Valdehita A, Navas JM, Rubinstein HR, Fernández-Cruz ML. Effects of aflatoxin B1, fumonisin B1 and their mixture on the aryl hydrocarbon receptor and cytochrome P450 1A induction. Food Chem Toxicol 2015; 75:104-11. [DOI: 10.1016/j.fct.2014.10.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/22/2014] [Accepted: 10/25/2014] [Indexed: 11/30/2022]
|
15
|
Cabaret O, Puel O, Botterel F, Delaforge M, Bretagne S. Metabolic detoxification pathways for 5-methoxy-sterigmatocystin in primary tracheal epithelial cells. Xenobiotica 2013; 44:1-9. [PMID: 23756242 DOI: 10.3109/00498254.2013.804635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Jablonska O, Ciereszko RE. The Expression of Aryl Hydrocarbon Receptor in Porcine Ovarian Cells. Reprod Domest Anim 2013; 48:710-6. [DOI: 10.1111/rda.12145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 12/28/2012] [Indexed: 11/27/2022]
Affiliation(s)
- O Jablonska
- Department of Animal Physiology; University of Warmia and Mazury in Olsztyn; Olsztyn; Poland
| | - RE Ciereszko
- Department of Animal Physiology; University of Warmia and Mazury in Olsztyn; Olsztyn; Poland
| |
Collapse
|
17
|
Puccinelli E, Gervasi PG, Pelosi G, Puntoni M, Longo V. Modulation of cytochrome P450 enzymes in response to continuous or intermittent high-fat diet in pigs. Xenobiotica 2013; 43:686-98. [PMID: 23360109 DOI: 10.3109/00498254.2012.756558] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1. To date, no information has been available on the modulation of cytochrome P450 enzymes (CYPs) following the administration of a hyperlipidemic diet in pigs. 2. We investigated the potential modulation of xenobiotic-metabolizing CYPs in liver, heart and duodenum of pigs subjected to a high-fat/high-cholesterol diet for 2 months continuously (C-HFD) or on alternate weeks (A-HFD). 3. The administration of the high-fat diet resulted in considerably increased plasma cholesterol levels although the animals were still able to manage the lipid overload efficiently, and no sign of effective tissue inflammation occurred in livers. Plasma lipid profile and liver histology indicated a better adaptive response of the A-HFD pigs compared to the C-HFD group. We showed a post-transcriptional induction of hepatic CYP2E1 activity in C-HFD pigs and a transcriptional induction of hepatic CYP3As - especially in the A-HFD group. No further CYP modulation was observed in either liver or extra-hepatic tissues. 4. In conclusion, the administration of a high-fat diet in pigs resulted in limited effects on the drug metabolism system. The better adaptive response of A-HFD pigs compared to C-HFD pigs is a very interesting observation since the intermittent administration of the diet reflects the mode of human behavior more closely.
Collapse
|
18
|
Helke KL, Swindle MM. Animal models of toxicology testing: the role of pigs. Expert Opin Drug Metab Toxicol 2012; 9:127-39. [PMID: 23216131 DOI: 10.1517/17425255.2013.739607] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION In regulatory toxicological testing, both a rodent and non-rodent species are required. Historically, dogs and non-human primates (NHP) have been the species of choice of the non-rodent portion of testing. The pig is an appropriate option for these tests based on metabolic pathways utilized in xenobiotic biotransformation. AREAS COVERED This review focuses on the Phase I and Phase II biotransformation pathways in humans and pigs and highlights the similarities and differences of these models. This is a growing field and references are sparse. Numerous breeds of pigs are discussed along with specific breed differences in these enzymes that are known. While much available data are presented, it is grossly incomplete and sometimes contradictory based on methods used. EXPERT OPINION There is no ideal species to use in toxicology. The use of dogs and NHP in xenobiotic testing continues to be the norm. Pigs present a viable and perhaps more reliable model of non-rodent testing.
Collapse
Affiliation(s)
- Kristi L Helke
- Medical University South Carolina, Comparative Medicine, 114 Doughty St, Ste 648, MSC777, Charleston, SC 29425, USA.
| | | |
Collapse
|
19
|
Fused mesoionic heterocyclic compounds are a new class of aryl hydrocarbon receptor (AhR) agonist of exceptional potency. Toxicology 2012; 302:140-5. [DOI: 10.1016/j.tox.2012.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 11/22/2022]
|
20
|
Expression and inducibility of CYP1A1, 1A2, 1B1 by β-naphthoflavone and CYP2B22, CYP3As by rifampicin in heart regions and coronary arteries of pig. Res Vet Sci 2012; 94:77-83. [PMID: 22889553 DOI: 10.1016/j.rvsc.2012.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 07/02/2012] [Accepted: 07/07/2012] [Indexed: 02/02/2023]
Abstract
In this study, the constitutive and inducible expression of the CYP genes (1A1, 1A2, 1B1, 2B22, 3A22, 3A29 and 3A46), related transcriptional factors (AhR, CAR, PXR, and Nrf2) and the antioxidant enzymes SOD, catalase, GSSH-reductase and GSH-peroxidase were investigated in the liver, heart regions and coronary arteries of control pigs and pigs treated with β-naphthoflavone (βNF) or with rifampicin (RIF). Real-time PCR experiments and enzymatic or immunoblot assays showed that CYP1A1 was predominantly enhanced by βNF in a similar manner in all the heart regions, whereas antioxidant enzyme activity was not affected. The rifampicin treatment resulted in an induction of CYP2B22 and CYP3As, at the transcriptional, activity and protein level in liver but not in heart nor in the coronary arteries, despite the expression of CAR and PXR in the cardiac tissues. These results obtained in vivo suggest that pig cardiac tissues may represent a useful model for humans.
Collapse
|
21
|
Rasmussen MK, Zamaratskaia G, Ekstrand B. Gender-related differences in cytochrome P450 in porcine liver--implication for activity, expression and inhibition by testicular steroids. Reprod Domest Anim 2011; 46:616-23. [PMID: 21091800 DOI: 10.1111/j.1439-0531.2010.1714.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In pigs, the hepatic cytochrome P450 (CYP) 1A2, 2A and 2E1 activity is important in the regulation of skatole accumulation in adipose tissue. This study investigated gender-related differences in CYP1A2, 2A and 2E1 dependent activity, protein and mRNA expression. This study also investigated the gonadal steroid dependent inhibition of CYP activity in relation to gender and dietary composition. Microsomes were prepared from the liver of female and entire male pigs (Landrace × Yorkshire sire and Duroc boars) reared under similar conditions and slaughtered at an age of 164 days. A group of entire male pigs fed dried chicory root for 16 days prior to slaughter were included in the study. CYP activities were assessed by the use of probe substrates, whilst mRNA and protein expression were analysed by RT-PCR and Western blotting. Furthermore inhibition of CYP dependent activity by gonadal steroids was assessed in vitro. Microsomes from female pigs had greater CYP1A2 and 2A activity, as well as mRNA expression compared to entire male pigs. The antibodies used did not detected differences in protein expression. In vitro inhibition by 17β-oestradiol, oestrone, androstenone and 3β-OH androstenol of CYP2E1 activity in microsomes from entire male pigs as well as inhibition of CYP1A activity in chicory fed entire male pigs was observed. Apart from that no effect of steroids was shown. In conclusion, female pigs show greater CYP activity and mRNA expression. Including chicory in the diet for 16 days changed the gonadal steroid dependent inhibition of CYP activity in entire male pigs.
Collapse
Affiliation(s)
- M K Rasmussen
- Department of Food Science, Aarhus University, Tjele, Denmark.
| | | | | |
Collapse
|
22
|
Jablonska O, Piasecka J, Ostrowska M, Sobocinska N, Wasowska B, Wasowka B, Ciereszko RE. The expression of the aryl hydrocarbon receptor in reproductive and neuroendocrine tissues during the estrous cycle in the pig. Anim Reprod Sci 2011; 126:221-8. [PMID: 21715111 DOI: 10.1016/j.anireprosci.2011.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 04/30/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
The aryl hydrocarbon receptor (AhR) has been recognized as a mediator of xenobiotic-induced toxicity. In addition, it was demonstrated that the AhR is able to influence the regulation of reproductive processes in females. The aim of this study was to examine AhR mRNA (real-time PCR) and protein (Western-blot) expression in ovarian follicles and stroma, corpora lutea (CL), oviducts, endometrium, myometrium as well as in medial basal hypothalami (MBH), and anterior (AP) and posterior (PP) pituitaries harvested during the follicular (days 17-19) and luteal (days 8-10) phase of the porcine estrous cycle. The AhR transcript and protein were found in all structures collected during both phases. AhR mRNA expression tended (p=0.06) to be higher in the CL than in follicles. The AhR protein expression in ovarian stroma was higher (p≤0.01) during the follicular than in the luteal phase. Endometrial expression of AhR mRNA was higher (p≤0.01), while AhR protein was lower (p≤0.01) during the follicular phase in comparison to the luteal phase. Within neuroendocrine tissues, AhR mRNA and protein content in hypothalamus were relatively low and did not differ (p>0.05) between phases. In contrast, higher AhR mRNA expression in AP (p≤0.001) and protein expression in PP (p≤0.01) were found during the luteal phase compared to the follicular phase. Differences in AhR expression observed in reproductive and neuroendocrine tissues during the follicular and luteal phase of the estrous cycle indicate the involvement of AhR in the regulation of reproductive function in pigs.
Collapse
Affiliation(s)
- Olga Jablonska
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, Oczapowski 1A, Olsztyn, Poland
| | | | | | | | | | | | | |
Collapse
|
23
|
Rasmussen MK, Zamaratskaia G, Ekstrand B. In vivo effect of dried chicory root (Cichorium intybus L.) on xenobiotica metabolising cytochrome P450 enzymes in porcine liver. Toxicol Lett 2011; 200:88-91. [PMID: 21056093 DOI: 10.1016/j.toxlet.2010.10.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 01/17/2023]
Abstract
Cytochrome P450 (CYP) enzymes are widely studied for their involvement in metabolism of drugs and endogenous compounds. In porcine liver, CYP1A2, 2A and 2E1 are important for the metabolism of skatole. Feeding chicory roots to pigs is known to decrease the skatole concentration in plasma and fat. In the present study we investigated the effect of chicory on CYP mRNA and protein expression, as well as their activity. Male pigs were feed dried chicory root for 16 days before liver samples were collected. By the use of RT-PCR and Western blotting we showed that the mRNA and protein expression of CYP1A2 and 2A were increased in chicory fed pigs. The mRNA expression of CYP2E1 was increased, while there was no effect on protein expression. Activity of CYP1A2 and 2A were increased in chicory feed pigs; this was not the case for CYP2E1 activity. In conclusion; oral administration of chicory root for 16 days to pigs increased the mRNA expression of CYP1A2, 2A and 2E1; and the protein expression of CYP1A2 and 2A. The activities of CYP1A2 and 2A were increased.
Collapse
|
24
|
Puccinelli E, Gervasi PG, La Marca M, Beffy P, Longo V. Expression and inducibility by phenobarbital of CYP2C33, CYP2C42, CYP2C49, CYP2B22, and CYP3As in porcine liver, kidney, small intestine, and nasal tissues. Xenobiotica 2010; 40:525-35. [PMID: 20509749 DOI: 10.3109/00498254.2010.489125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, the expression and inducibility of CYP2C33, CYP2C42, CYP2C49, CYP2B22, CYP3A22, CYP3A29, and CYP3A46 were investigated at activity and/or transcriptional level in liver, kidney, small intestine, respiratory, and olfactory nasal mucosa of control and phenobarbital (PB)-treated pigs. PB treatment resulted in an up-regulation of mRNA levels of all analyzed CYPs in liver, of CYP2C42 and CYP2C49 in kidney, of CYP2C42, CYP2C49, CYP2B22, and CYP3As in small intestine. In liver microsomes from PB-treated pigs, these transcriptional activations were accompanied by an increase of various marker activities of human CYP2B6, CYP3As, CYP2C9, CYP2C19. Among the extrahepatic tissues, a significant induction by PB was observed only in kidney for the marker activities of CYP2C9. Taken together, our results demonstrated that the PB administration in pigs induced at least in liver, in addition to CYP2B22 and CYP3As, the expression of CYP2C33, CYP2C42, and CYP2C49 at transcriptional and activity levels. Furthermore our findings showed that the catalytic activities of porcine CYP2Cs are different amongst those observed and with respect to the human counterparts. Thus, the use of pigs as a model for humans in studies using drugs as substrates and/or inducers of CYP2Cs should be considered carefully.
Collapse
|
25
|
Cabaret O, Puel O, Botterel F, Pean M, Khoufache K, Costa JM, Delaforge M, Bretagne S. Metabolic Detoxication Pathways for Sterigmatocystin in Primary Tracheal Epithelial Cells. Chem Res Toxicol 2010; 23:1673-81. [DOI: 10.1021/tx100127b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Odile Cabaret
- UMR BIPAR, U-PEC, AFSSA, ENVA, Faculté de Médecine, Créteil Cedex F-94010, France, AP-HP, Groupe hospitalier Henri Mondor-Albert Chenevier, Laboratoire de Parasitologie-Mycologie, Créteil Cedex F-94010, France, INRA, UR 66, Laboratoire de Pharmacologie-Toxicologie, Toulouse F-31027, France, CEA, DSV, IBEB, Group Rech Appl Phytotechnol, Saint-Paul-lez-Durance F-13108, France, CNRS, UMR Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance F-13108, France, Aix-Marseille Université, Saint-Paul-lez-Durance
| | - Olivier Puel
- UMR BIPAR, U-PEC, AFSSA, ENVA, Faculté de Médecine, Créteil Cedex F-94010, France, AP-HP, Groupe hospitalier Henri Mondor-Albert Chenevier, Laboratoire de Parasitologie-Mycologie, Créteil Cedex F-94010, France, INRA, UR 66, Laboratoire de Pharmacologie-Toxicologie, Toulouse F-31027, France, CEA, DSV, IBEB, Group Rech Appl Phytotechnol, Saint-Paul-lez-Durance F-13108, France, CNRS, UMR Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance F-13108, France, Aix-Marseille Université, Saint-Paul-lez-Durance
| | - Françoise Botterel
- UMR BIPAR, U-PEC, AFSSA, ENVA, Faculté de Médecine, Créteil Cedex F-94010, France, AP-HP, Groupe hospitalier Henri Mondor-Albert Chenevier, Laboratoire de Parasitologie-Mycologie, Créteil Cedex F-94010, France, INRA, UR 66, Laboratoire de Pharmacologie-Toxicologie, Toulouse F-31027, France, CEA, DSV, IBEB, Group Rech Appl Phytotechnol, Saint-Paul-lez-Durance F-13108, France, CNRS, UMR Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance F-13108, France, Aix-Marseille Université, Saint-Paul-lez-Durance
| | - Michel Pean
- UMR BIPAR, U-PEC, AFSSA, ENVA, Faculté de Médecine, Créteil Cedex F-94010, France, AP-HP, Groupe hospitalier Henri Mondor-Albert Chenevier, Laboratoire de Parasitologie-Mycologie, Créteil Cedex F-94010, France, INRA, UR 66, Laboratoire de Pharmacologie-Toxicologie, Toulouse F-31027, France, CEA, DSV, IBEB, Group Rech Appl Phytotechnol, Saint-Paul-lez-Durance F-13108, France, CNRS, UMR Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance F-13108, France, Aix-Marseille Université, Saint-Paul-lez-Durance
| | - Khaled Khoufache
- UMR BIPAR, U-PEC, AFSSA, ENVA, Faculté de Médecine, Créteil Cedex F-94010, France, AP-HP, Groupe hospitalier Henri Mondor-Albert Chenevier, Laboratoire de Parasitologie-Mycologie, Créteil Cedex F-94010, France, INRA, UR 66, Laboratoire de Pharmacologie-Toxicologie, Toulouse F-31027, France, CEA, DSV, IBEB, Group Rech Appl Phytotechnol, Saint-Paul-lez-Durance F-13108, France, CNRS, UMR Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance F-13108, France, Aix-Marseille Université, Saint-Paul-lez-Durance
| | - Jean-Marc Costa
- UMR BIPAR, U-PEC, AFSSA, ENVA, Faculté de Médecine, Créteil Cedex F-94010, France, AP-HP, Groupe hospitalier Henri Mondor-Albert Chenevier, Laboratoire de Parasitologie-Mycologie, Créteil Cedex F-94010, France, INRA, UR 66, Laboratoire de Pharmacologie-Toxicologie, Toulouse F-31027, France, CEA, DSV, IBEB, Group Rech Appl Phytotechnol, Saint-Paul-lez-Durance F-13108, France, CNRS, UMR Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance F-13108, France, Aix-Marseille Université, Saint-Paul-lez-Durance
| | - Marcel Delaforge
- UMR BIPAR, U-PEC, AFSSA, ENVA, Faculté de Médecine, Créteil Cedex F-94010, France, AP-HP, Groupe hospitalier Henri Mondor-Albert Chenevier, Laboratoire de Parasitologie-Mycologie, Créteil Cedex F-94010, France, INRA, UR 66, Laboratoire de Pharmacologie-Toxicologie, Toulouse F-31027, France, CEA, DSV, IBEB, Group Rech Appl Phytotechnol, Saint-Paul-lez-Durance F-13108, France, CNRS, UMR Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance F-13108, France, Aix-Marseille Université, Saint-Paul-lez-Durance
| | - Stéphane Bretagne
- UMR BIPAR, U-PEC, AFSSA, ENVA, Faculté de Médecine, Créteil Cedex F-94010, France, AP-HP, Groupe hospitalier Henri Mondor-Albert Chenevier, Laboratoire de Parasitologie-Mycologie, Créteil Cedex F-94010, France, INRA, UR 66, Laboratoire de Pharmacologie-Toxicologie, Toulouse F-31027, France, CEA, DSV, IBEB, Group Rech Appl Phytotechnol, Saint-Paul-lez-Durance F-13108, France, CNRS, UMR Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance F-13108, France, Aix-Marseille Université, Saint-Paul-lez-Durance
| |
Collapse
|
26
|
Effect of β-naphthoflavone on AhR-regulated genes (CYP1A1, 1A2, 1B1, 2S1, Nrf2, and GST) and antioxidant enzymes in various brain regions of pig. Toxicology 2009; 265:69-79. [DOI: 10.1016/j.tox.2009.09.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/16/2009] [Accepted: 09/17/2009] [Indexed: 12/30/2022]
|
27
|
MATAL J, TUNKOVÁ A, ŠILLER M, ANZENBACHEROVÁ E, ANZENBACHER P. Isolation of two cytochrome P450 forms, CYP2A19 and CYP1A, from pig liver microsomes. J Vet Pharmacol Ther 2009; 32:470-6. [DOI: 10.1111/j.1365-2885.2009.01076.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Chen Y, Tu JH, He YJ, Zhang W, Wang G, Tan ZR, Zhou G, Fan L, Zhou HH. Effect of sodium tanshinone II A sulfonate on the activity of CYP1A2 in healthy volunteers. Xenobiotica 2009; 39:508-13. [PMID: 19534587 DOI: 10.1080/00498250902951763] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Sodium tanshinone IIA sulfonate (STS) is a water-soluble derivative of tanshinone IIA, a famous Chinese medicine which has been used in the treatment of cardiovascular disorders for many years. Using caffeine as a probe drug, this project was designed to investigate the effect of STS on the activity of CYP1A2 in humans. Sixteen unrelated healthy volunteers were recruited for this two-phase, randomized and crossover study. The volunteers received either placebo or 60 mg day(-1) of STS injections through vein for 13 days. Pharmacokinetics of caffeine and the metabolite paraxanthine was determined by high-performance liquid chromatography. CYP1A2 activity was monitored by the ratio of paraxanthine to caffeine at 6 h in plasma. Enzyme activity analysis showed that STS significantly increased the activity of CYP1A2 by 41.1% [90% confidence interval (CI), 17.4-64.8%] (p = 0.036). The area under the curve [AUC((0-24h))] of caffeine significantly decreased by 13.3% [90% CI = 7.0-19.6%] (p = 0.005) with 13 days of treatment of STS. AUC((0-24h)) of paraxanthine significantly increased by 17.4% [90% CI = 4.3-30.5%] (p = 0.035). No significant difference was found for other parameters of caffeine and paraxanthine between two phases. STS has significantly induced the activity of CYP1A2 in vivo. Simultaneously, AUC((0-24h)) of caffeine and paraxanthine were significantly affected by STS. The findings have provided some useful information for safe and effective usage of STS in clinic.
Collapse
Affiliation(s)
- Y Chen
- Institute of Clinical Pharmacology, Hunan Medical University, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Messina A, Nannelli A, Fiorio R, Longo V, Gervasi PG. Expression and inducibility of CYP1A1, 1A2, 1B1 by beta-naphthoflavone and CYP2B22, 3A22, 3A29, 3A46 by rifampicin in the respiratory and olfactory mucosa of pig. Toxicology 2009; 260:47-52. [PMID: 19464568 DOI: 10.1016/j.tox.2009.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 02/25/2009] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
Abstract
The presence and inducibility of specific CYPs (1A1, 1A2, 1B1, 2B22, 3A22, 3A29 and 3A46) and the related transcriptional factors (AhR, CAR, PXR, and HNF4alpha) were investigated, at activity and/or transcriptional level, in liver, respiratory and olfactory mucosa of control and beta-naphthoflavone (betaNF)-treated pigs an agonist of AhR, or rifampicin (RIF), an agonist of PXR. Experiments with real-time PCR showed that CYP1A1 mRNA was enhanced by betaNF, although at different extent, in liver, respiratory and olfactory tissues, whereas mRNAs of CYP1A2 and 1B1 were increased only in liver. Accordingly, in microsomes of both nasal tissues, the transcriptional activation of CYP1A1 was accompanied by an induction of ethoxyresorufin deethylase activity (a marker of this isoform) but not of methoxyresorufin demethylase activity (a marker of CYP1A2). The rifampicin treatment resulted in a transcriptional activation of CYP2B22 and CYP3As genes in liver but not in respiratory and olfactory mucosa. In parallel, the marker activity of CYP2B (ethoxy 4-(trifluoromethyl)coumarin deethylase) and CYP3As (6beta-testosterone hydroxylase and benzyloxyquinoline debenzylase) were induced in liver microsomes but not in the nasal ones. Considering the transcriptional factors, the basal expression of AhR mRNA was found to be as high in liver as in both nasal tissues but not susceptible to induction by betaNF. Also PXR mRNA was found, aside liver, well expressed in the nasal tissues, whereas CAR and HNF4alpha mRNAs were barely detected. In any case, these transcripts appeared to be enhanced by RIF treatment. Our results demonstrated that in the respiratory and olfactory mucosa of pig, although the presence of AhR, only CYP1A1, but not 1A2 and 1B1 resulted to be inducible by betaNF. Similarly, it was observed that in these nasal tissues, although the presence of PXR, neither CYP2B22 nor any CYP3A resulted to be inducible by RIF. Thus, the regulation mechanism of CYP1A2, 1B1, 2B22, 3A22, 3A29, and 3A46, in the nasal mucosa involves tissue-enriched transcriptional factors others than AhR, CAR, PXR, and HNF4alpha, which are fundamental in liver.
Collapse
Affiliation(s)
- A Messina
- Istituto di Fisiologia Clinica CNR, Area della Ricerca CNR, Pisa, Italy
| | | | | | | | | |
Collapse
|
30
|
Modulation of porcine cytochrome P450 enzyme activities by surgical castration and immunocastration. Animal 2009; 3:1124-32. [DOI: 10.1017/s1751731109004510] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
31
|
Nannelli A, Chirulli V, Longo V, Gervasi PG. Expression and induction by rifampicin of CAR- and PXR-regulated CYP2B and CYP3A in liver, kidney and airways of pig. Toxicology 2008; 252:105-12. [PMID: 18786598 DOI: 10.1016/j.tox.2008.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 07/23/2008] [Accepted: 08/13/2008] [Indexed: 10/21/2022]
Abstract
The transcript levels of CYP2B22, 3A22, 3A29, 3A46, CAR, PXR and HNF4alpha were investigated in liver, kidney and airways from control and rifampicin-treated male pigs. The presence and induction of CYP genes transcription were studied by RT-PCR, real-time PCR, Western blotting and enzymatic activity whereas the expression of receptors was studied by RT-PCR or real-time PCR. Pretreatment with rifampicin resulted in a transcriptional activation, although to different extents, of all the CYP3A genes in liver but not in kidney, lung, bronchi or trachea. In the hepatic microsomes, the induction of CYP3A genes was accompanied by an increase of CYP3As marker activities and of two protein bands immunoreactive with anti-human CYP3A4. The CYP2B22 transcript was found to be markedly induced only in liver and kidney. In parallel, a protein band immunoreactive with anti-rat CYP2B1 was elevated while enhanced CYP2B marker activities were observed in hepatic and renal microsomes. As expected, based on human data, the basal expression of CAR, PXR and HNF4alpha was found to be high in liver and low in airways and not susceptible to induction by rifampicin. A significant expression of these transcriptional factors was also demonstrated in kidney. Thus, it is likely that rifampicin induced CYP2B22 both in liver and kidney of pig, not via activation of CAR, but via PXR, through a cross-talk mechanism, as previously observed in human liver. Taken together, our results demonstrated a differential expression and regulation of three individual CYP3As, CYP2B22, CAR, PXR and HNF4alpha genes in liver, kidney and airways of pig.
Collapse
Affiliation(s)
- Annalisa Nannelli
- Istituto di Fisiologia Clinica, CNR, Area della Ricerca CNR, via Moruzzi, 1, 56100 Pisa, Italy
| | | | | | | |
Collapse
|
32
|
Implications of hepatic cytochrome P450-related biotransformation processes in veterinary sciences. Eur J Pharmacol 2008; 585:502-9. [DOI: 10.1016/j.ejphar.2008.03.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 02/07/2023]
|