1
|
Peng X, Guo H, Zhang X, Yang Z, Ruganzu JB, Yang Z, Wu X, Bi W, Ji S, Yang W. TREM2 Inhibits Tau Hyperphosphorylation and Neuronal Apoptosis via the PI3K/Akt/GSK-3β Signaling Pathway In vivo and In vitro. Mol Neurobiol 2023; 60:2470-2485. [PMID: 36662361 DOI: 10.1007/s12035-023-03217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Abstract
Triggering receptor expressed on myeloid cells-2 (TREM2), a cell surface receptor mainly expressed on microglia, has been shown to play a critical role in Alzheimer's disease (AD) pathogenesis and progression. Our recent results showed that overexpression of TREM2 inhibited inflammatory response in APP/PS1 mice and BV2 cells. Several studies indicated that TREM2 ameliorated tau hyperphosphorylation might be ascribed to the inhibition of neuroinflammation. However, the precise signaling pathways underlying the effect of TREM2 on tau pathology and neuronal apoptosis have not been fully elucidated. In the present study, upregulation of TREM2 significantly inhibited tau hyperphosphorylation at Ser199, Ser396, and Thr205, respectively, as well as prevented neuronal loss and apoptosis. We also found that upregulation of TREM2 alleviated behavioral deficits and improved the spatial cognitive ability of APP/PS1 mice. Further study revealed that TREM2 could activate phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, resulting in an inhibitory effect on glycogen synthase kinase-3β (GSK-3β), which is a major kinase responsible for tau hyperphosphorylation in AD. In line with in vivo findings, TREM2-overexpressing BV2 microglia following β-amyloid (Aβ) stimulation led to a significant increase in the phosphorylation of PI3K, Akt, and GSK-3β, accompanied by a decrease in tau hyperphosphorylation and apoptosis in co-cultured SH-SY5Y cells. Furthermore, LY294002, a specific PI3K inhibitor, was observed to abolish the beneficial effects of TREM2 on tau hyperphosphorylation, neuronal apoptosis, and spatial cognitive impairments in vivo and in vitro. Thus, our findings indicated that TREM2 inhibits tau hyperphosphorylation and neuronal apoptosis, at least in part, by the activation of the PI3K/Akt/GSK-3β signaling pathway. Taken together, the above results allow us to better understand how TREM2 protects against tau pathology and suggest that upregulation of TREM2 may provide new ideas and therapeutic targets for AD.
Collapse
Affiliation(s)
- Xiaoqian Peng
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hongsong Guo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiao Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Zikang Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Qide College, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - John Bosco Ruganzu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Zhuoyuan Yang
- Medical Undergraduates of the Second Clinical Medical School of Xi'an Medical University, Xi'an, 710038, Shaanxi, China
| | - Xiangyuan Wu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Wei Bi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Shengfeng Ji
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Weina Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
2
|
Forest KH, Taketa R, Arora K, Todorovic C, Nichols RA. The Neuroprotective Beta Amyloid Hexapeptide Core Reverses Deficits in Synaptic Plasticity in the 5xFAD APP/PS1 Mouse Model. Front Mol Neurosci 2021; 14:576038. [PMID: 33912008 PMCID: PMC8075567 DOI: 10.3389/fnmol.2021.576038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the aging population. Evidence implicates elevated soluble oligomeric Aβ as one of the primary triggers during the prodromic phase leading to AD, effected largely via hyperphosphorylation of the microtubule-associated protein tau. At low, physiological levels (pM-nM), however, oligomeric Aβ has been found to regulate synaptic plasticity as a neuromodulator. Through mutational analysis, we found a core hexapeptide sequence within the N-terminal domain of Aβ (N-Aβcore) accounting for its physiological activity, and subsequently found that the N-Aβcore peptide is neuroprotective. Here, we characterized the neuroprotective potential of the N-Aβcore against dysfunction of synaptic plasticity assessed in ex vivo hippocampal slices from 5xFAD APP/PS1 mice, specifically hippocampal long-term potentiation (LTP) and long-term depression (LTD). The N-Aβcore was shown to reverse impairment in synaptic plasticity in hippocampal slices from 5xFAD APP/PS1 model mice, both for LTP and LTD. The reversal by the N-Aβcore correlated with alleviation of downregulation of hippocampal AMPA-type glutamate receptors in preparations from 5xFAD mice. The action of the N-Aβcore depended upon a critical di-histidine sequence and involved the phosphoinositide-3 (PI3) kinase pathway via mTOR (mammalian target of rapamycin). Together, the present findings indicate that the non-toxic N-Aβcore hexapeptide is not only neuroprotective at the cellular level but is able to reverse synaptic dysfunction in AD-like models, specifically alterations in synaptic plasticity.
Collapse
Affiliation(s)
| | | | | | | | - Robert A. Nichols
- Department of Cell & Molecular Biology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
3
|
Recovery of Human Embryonic Stem Cells-Derived Neural Progenitors Exposed to Hypoxic-Ischemic-Reperfusion Injury by Indirect Exposure to Wharton’s Jelly Mesenchymal Stem Cells Through Phosphatidyl-inositol-3-Kinase Pathway. Cell Mol Neurobiol 2020; 42:1167-1188. [DOI: 10.1007/s10571-020-01007-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
|
4
|
Chen D, Zhang T, Lee TH. Cellular Mechanisms of Melatonin: Insight from Neurodegenerative Diseases. Biomolecules 2020; 10:biom10081158. [PMID: 32784556 PMCID: PMC7464852 DOI: 10.3390/biom10081158] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are the second most common cause of death and characterized by progressive impairments in movement or mental functioning in the central or peripheral nervous system. The prevention of neurodegenerative disorders has become an emerging public health challenge for our society. Melatonin, a pineal hormone, has various physiological functions in the brain, including regulating circadian rhythms, clearing free radicals, inhibiting biomolecular oxidation, and suppressing neuroinflammation. Cumulative evidence indicates that melatonin has a wide range of neuroprotective roles by regulating pathophysiological mechanisms and signaling pathways. Moreover, melatonin levels are decreased in patients with neurodegenerative diseases. In this review, we summarize current knowledge on the regulation, molecular mechanisms and biological functions of melatonin in neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, vascular dementia and multiple sclerosis. We also discuss the clinical application of melatonin in neurodegenerative disorders. This information will lead to a better understanding of the regulation of melatonin in the brain and provide therapeutic options for the treatment of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Dongmei Chen
- Correspondence: (D.C.); (T.H.L.); Tel.: +86-591-2286-2498 (D.C.); +86-591-2286-2498 (T.H.L.)
| | | | - Tae Ho Lee
- Correspondence: (D.C.); (T.H.L.); Tel.: +86-591-2286-2498 (D.C.); +86-591-2286-2498 (T.H.L.)
| |
Collapse
|
5
|
Dual Effect of Doxazosin: Anticancer Activity on SH-SY5Y Neuroblastoma Cells and Neuroprotection on an In Vitro Model of Alzheimer's Disease. Neuroscience 2019; 404:314-325. [DOI: 10.1016/j.neuroscience.2019.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
|
6
|
Neural Stem Cell Death Mechanisms Induced by Amyloid Beta. Dement Neurocogn Disord 2017; 16:121-127. [PMID: 30906383 PMCID: PMC6428004 DOI: 10.12779/dnd.2017.16.4.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose Amyloid beta (Aβ) is the main component of amyloid plaques, which are deposited in the brains of patients with Alzheimer's disease (AD). Biochemical and animal studies support the central role of Aβ in AD pathogenesis. Despite several investigations focused on the pathogenic mechanisms of Aβ, it is still unclear how Aβ accumulates in the central nervous system and subsequently initiates the disease at the cellular level. In this study, we investigated the pathogenic mechanisms of Aβ using proteomics and antibody microarrays. Methods To evaluate the effect of Aβ on neural stem cells (NSCs), we treated primary cultured cortical NSCs with several doses of Aβ for 48 h. A 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, trypan blue staining, and bromodeoxyuridine cell proliferation assay were performed. We detected several intracellular proteins that may be associated with Aβ by proteomics and Western blotting analysis. Results Various viability tests showed that Aβ decreased NSCs viability and cell proliferation in a concentration-dependent manner. Aβ treatment significantly decreased lactate dehydrogenase B, high-mobility group box 1, aldolase C, Ezrin, and survival signals including phosphorylated phosphoinositide 3-kinase, Akt, and glycogen synthase kinase-3β. Conclusions These results suggest that several factors determined by proteomics and Western blot hold the clue to Aβ pathogenesis. Further studies are required to investigate the role of these factors.
Collapse
|
7
|
Mohamed A, Viveiros A, Williams K, Posse de Chaves E. Aβ inhibits SREBP-2 activation through Akt inhibition. J Lipid Res 2017; 59:1-13. [PMID: 29122977 PMCID: PMC5748492 DOI: 10.1194/jlr.m076703] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 10/21/2017] [Indexed: 12/20/2022] Open
Abstract
We previously demonstrated that oligomeric amyloid β42 (oAβ42) inhibits the mevalonate pathway impairing cholesterol synthesis and protein prenylation. Enzymes of the mevalonate pathway are regulated by the transcription factor SREBP-2. Here, we show that in several neuronal types challenged with oAβ42, SREBP-2 activation is reduced. Moreover, SREBP-2 activation is also decreased in the brain cortex of the Alzheimer's disease (AD) mouse model, TgCRND8, suggesting that SREBP-2 may be affected in vivo early in the disease. We demonstrate that oAβ42 does not affect enzymatic cleavage of SREBP-2 per se, but may impair SREBP-2 transport from the endoplasmic reticulum (ER) to the Golgi. Trafficking of SREBP-2 from the ER to the Golgi requires protein kinase B (Akt) activation. oAβ42 significantly reduces Akt phosphorylation and this decrease is responsible for the decline in SREBP-2 activation. Overexpression of constitutively active Akt prevents the effect of oAβ42 on SREBP-2 and the downstream inhibition of cholesterol synthesis and protein prenylation. Our work provides a novel mechanistic link between Aβ and the mevalonate pathway, which will impact the views on issues related to cholesterol, isoprenoids, and statins in AD. We also identify SREBP-2 as an indirect target of Akt in neurons, which may play a role in the cross-talk between AD and diabetes.
Collapse
Affiliation(s)
- Amany Mohamed
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Anissa Viveiros
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kathleen Williams
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Elena Posse de Chaves
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Candesartan Restores the Amyloid Beta-Inhibited Proliferation of Neural Stem Cells by Activating the Phosphatidylinositol 3-Kinase Pathway. Dement Neurocogn Disord 2017; 16:64-71. [PMID: 30906373 PMCID: PMC6427981 DOI: 10.12779/dnd.2017.16.3.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 11/27/2022] Open
Abstract
Background and Purpose Neurogenesis in the adult brain is important for memory and learning, and the alterations in neural stem cells (NSCs) may be an important aspect of Alzheimer's disease (AD) pathogenesis. The phosphatidylinositol 3-kinase (PI3K) pathway has been suggested to have an important role in neuronal cell survival and is highly involved in adult neurogenesis. Candesartan is an angiotensin II receptor antagonist used for the treatment of hypertension and several studies have reported that it also has some neuroprotective effects. We investigated whether candesartan could restore the amyloid-β(25–35) (Aβ25-35) oligomer-inhibited proliferation of NSCs by focusing on the PI3K pathway. Methods To evaluate the effects of candesartan on the Aβ25-35 oligomer-inhibited proliferation of NSCs, the NSCs were treated with several concentrations of candesartan and/or Aβ25-35 oligomers, and MTT assay and trypan blue staining were performed. To evaluate the effect of candesartan on the Aβ-inhibited proliferation of NSCs, we performed a bromodeoxyuridine (BrdU) labeling assay. The levels of p85α PI3K, phosphorylated Akt (pAkt) (Ser473), phosphorylated glycogen sinthase kinase-3β (pGSK-3β) (Ser9), and heat shock transcription factor-1 (HSTF-1) were analyzed by Western blotting. Results The BrdU assays demonstrated that NSC proliferation decreased with Aβ25-35 oligomer treatment; however, a combined treatment with candesartan restored it. Western blotting displayed that candesartan treatment increased the expression levels of p85α PI3K, pAkt (Ser473), pGSK-3β (Ser9), and HSTF. The NSCs were pretreated with a PI3K inhibitor, LY294002; the effects of candesartan on the proliferation of NSCs inhibited by Aβ25-35 oligomers were almost completely blocked. Conclusions Together, these results suggest that candesartan restores the Aβ25-35 oligomer-inhibited proliferation of NSCs by activating the PI3K pathway.
Collapse
|
9
|
Guo XQ, Cao YL, Hao F, Yan ZR, Wang ML, Liu XW. Tangeretin alters neuronal apoptosis and ameliorates the severity of seizures in experimental epilepsy-induced rats by modulating apoptotic protein expressions, regulating matrix metalloproteinases, and activating the PI3K/Akt cell survival pathway. Adv Med Sci 2017; 62:246-253. [PMID: 28501723 DOI: 10.1016/j.advms.2016.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE Epilepsy is complex neural disarray categorized by recurring seizures. Despite recent advances in pharmacotherapies for epilepsy, its treatment remains a challenge due to the contrary effects of the drugs. As a result, the identification of novel anti-epileptic drugs (AEDs) with neuroprotective properties and few side effects is of great value. Thus, the present study assessed the treatment effects of tangeretin using a rat model of pilocarpine-induced epilepsy. MATERIALS AND METHODS Separate groups of male Wistar rats received oral administrations of tangeretin at 50, 100, or 200mg/kg for 10 days and then, on the 10th day, they received an intraperitoneal injection of pilocarpine (30mg/kg). Subsequently, neuronal degeneration and apoptosis were assessed using Nissl staining and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay procedures. Additionally, the expressions of phosphatidylinositol-3-kinase (PI3K/Akt) pathway proteins, cleaved caspase-3, Bad, Bcl-2, Bcl-xL, and Bax were determined using Western blot analyses. RESULTS Tangeretin reduced the seizure scores and latency to first seizure of the rats and effectively activated the pilocarpine-induced suppression of PI3K/Akt signaling. Additionally, tangeretin effectively regulated the levels of apoptosis-inducing factor (AIF) in mitochondria as well as the expressions of apoptotic pathway proteins. Seizure-induced elevations in the activities and expressions of matrix metalloproteinases (MMPs)-2 and -9 were also modulated. CONCLUSION The present results indicate that tangeretin exerted potent neuroprotective effects against pilocarpine-induced seizures via the activation of PI3K/Akt signaling and the regulation of MMPs.
Collapse
Affiliation(s)
- Xiao-Qian Guo
- Department of Neurology, Qilu Hospital, Shandong University, Jinan 250012, China; Department of Neurology, Jining First People's Hospital, Jining 272011, China
| | - Yu-Ling Cao
- Department of Neurology, Jining First People's Hospital, Jining 272011, China
| | - Fang Hao
- Department of Neurology, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Zhong-Rui Yan
- Department of Neurology, Jining First People's Hospital, Jining 272011, China
| | - Mei-Ling Wang
- Department of Neurology, Affiliated Hospital of Binzhou Medical University, Binzhou 256603, China
| | - Xue-Wu Liu
- Department of Neurology, Qilu Hospital, Shandong University, Jinan 250012, China.
| |
Collapse
|
10
|
Deng LJ, Cheng C, Wu J, Wang CH, Zhou HB, Huang J. Oxabicycloheptene Sulfonate Protects Against β-Amyloid-induced Toxicity by Activation of PI3K/Akt and ERK Signaling Pathways Via GPER1 in C6 Cells. Neurochem Res 2017; 42:2246-2256. [DOI: 10.1007/s11064-017-2237-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/20/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
|
11
|
Non-amyloidogenic effects of α2 adrenergic agonists: implications for brimonidine-mediated neuroprotection. Cell Death Dis 2016; 7:e2514. [PMID: 27929541 PMCID: PMC5260990 DOI: 10.1038/cddis.2016.397] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 12/18/2022]
Abstract
The amyloid beta (Aβ) pathway is strongly implicated in neurodegenerative conditions such as Alzheimer's disease and more recently, glaucoma. Here, we identify the α2 adrenergic receptor agonists (α2ARA) used to lower intraocular pressure can prevent retinal ganglion cell (RGC) death via the non-amyloidogenic Aβ-pathway. Neuroprotective effects were confirmed in vivo and in vitro in different glaucoma-related models using α2ARAs brimonidine (BMD), clonidine (Clo) and dexmedetomidine. α2ARA treatment significantly reduced RGC apoptosis in experimental-glaucoma models by 97.7% and 92.8% (BMD, P<0.01) and 98% and 92.3% (Clo, P<0.01)) at 3 and 8 weeks, respectively. A reduction was seen in an experimental Aβ-induced neurotoxicity model (67% BMD and 88.6% Clo, both P<0.01, respectively), and in vitro, where α2ARAs significantly (P<0.05) prevented cell death, under both hypoxic (CoCl2) and stress (UV) conditions. In experimental-glaucoma, BMD induced ninefold and 25-fold and 36-fold and fourfold reductions in Aβ and amyloid precursor protein (APP) levels at 3 and 8 weeks, respectively, in the RGC layer, with similar results with Clo, and in vitro with all three α2ARAs. BMD significantly increased soluble APPα (sAPPα) levels at 3 and 8 weeks (2.1 and 1.6-fold) in vivo and in vitro with the CoCl2 and UV-light insults. Furthermore, treatment of UV-insulted cells with an sAPPα antibody significantly reduced cell viability compared with BMD-treated control (52%), co-treatment (33%) and untreated control (27%). Finally, we show that α2ARAs modulate levels of laminin and MMP-9 in RGCs, potentially linked to changes in Aβ through APP processing. Together, these results provide new evidence that α2ARAs are neuroprotective through their effects on the Aβ pathway and sAPPα, which to our knowledge, is the first description. Studies have identified the need for α-secretase activators and sAPPα-mimetics in neurodegeneration; α2ARAs, already clinically available, present a promising therapy, with applications not only to reducing RGC death in glaucoma but also other neurodegenerative processes involving Aβ.
Collapse
|
12
|
Ryu IH, Lee KY, Do SI. Aβ-affected pathogenic induction of S-nitrosylation of OGT and identification of Cys-NO linkage triplet. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:609-21. [DOI: 10.1016/j.bbapap.2016.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/30/2016] [Accepted: 02/03/2016] [Indexed: 12/25/2022]
|
13
|
Son JW, Choi H, Yoo A, Park HH, Kim YS, Lee KY, Lee YJ, Koh SH. Activation of the phosphatidylinositol 3-kinase pathway plays important roles in reduction of cerebral infarction by cilnidipine. J Neurochem 2015. [DOI: 10.1111/jnc.13254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeong-Woo Son
- Department of Translational Medicine; Hanyang University Graduate School of Biomedical Science & Engineering; Seoul Korea
| | - Hojin Choi
- Department of Neurology; Hanyang University College of Medicine; Seoul Korea
| | - Arum Yoo
- Department of Neurology; Hanyang University College of Medicine; Seoul Korea
| | - Hyun-Hee Park
- Department of Neurology; Hanyang University College of Medicine; Seoul Korea
| | - Young-Seo Kim
- Department of Neurology; Hanyang University College of Medicine; Seoul Korea
| | - Kyu-Yong Lee
- Department of Neurology; Hanyang University College of Medicine; Seoul Korea
| | - Young Joo Lee
- Department of Neurology; Hanyang University College of Medicine; Seoul Korea
| | - Seong-Ho Koh
- Department of Translational Medicine; Hanyang University Graduate School of Biomedical Science & Engineering; Seoul Korea
- Department of Neurology; Hanyang University College of Medicine; Seoul Korea
| |
Collapse
|
14
|
Ali T, Kim MO. Melatonin ameliorates amyloid beta-induced memory deficits, tau hyperphosphorylation and neurodegeneration via PI3/Akt/GSk3β pathway in the mouse hippocampus. J Pineal Res 2015; 59:47-59. [PMID: 25858697 DOI: 10.1111/jpi.12238] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/03/2015] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disease, pathologically characterized by the accumulation of amyloid beta (Aβ) aggregation in the brain, and is considered to be the primary cause of cognitive dysfunction. Aβ aggregates lead to synaptic disorder, tau hyperphosphorylation, and neurodegeneration. In this study, the underlying neuroprotective mechanism of melatonin against Aβ1-42-induced neurotoxicity was investigated in the mice hippocampus. Intracerebroventricular (i.c.v.) Aβ1-42-injection triggered memory impairment, synaptic disorder, hyperphosphorylation of tau protein, and neurodegeneration in the mice hippocampus. After 24 hr of Aβ1-42 injection, the mice were treated with melatonin (10 mg/kg, intraperitonially) for 3 wks, reversed the Aβ1-42-induced synaptic disorder via increasing the level of presyanptic (Synaptophysin and SNAP-25) and postsynaptic protein [PSD95, p-GluR1 (Ser845), SNAP23, and p-CREB (Ser133)], respectively, and attenuated the Aβ1-42-induced memory impairment. Chronic melatonin treatment attenuated the hyperphosphorylation of tau protein via PI3K/Akt/GSK3β signaling by activating the p-PI3K, p-Akt (Ser 473) and p-GSK3β (Ser9) in the Aβ1-42-treated mice. Furthermore, melatonin decreased Aβ1-42 -induced apoptosis through decreasing the overexpression of caspase-9, caspase-3, and PARP-1 level. Additionally, the evaluation of immunohistochemical analysis of caspase-3, Fluorojade-B, and Nissl staining indicated that melatonin prevented neurodegeneration in Aβ1-42-treated mice. Our results demonstrated that melatonin has neuroprotective effect against Aβ1-42-induced neurotoxicity through decreasing memory impairment, synaptic disorder, tau hyperphosphorylation, and neurodegeneration via PI3K/Akt/GSK3β signaling in the Aβ1-42-treated mouse model of AD. On the basis of these results, we suggest that melatonin could be an effective, promising, and safe neuroprotective candidate for the treatment of progressive neurodegenerative disorders, such as AD.
Collapse
Affiliation(s)
- Tahir Ali
- Department of Biology and Applied Life Science (BK 21), College of Natural Sciences (RINS), Gyeongsang National University, Jinju, Korea
| | - Myeong Ok Kim
- Department of Biology and Applied Life Science (BK 21), College of Natural Sciences (RINS), Gyeongsang National University, Jinju, Korea
| |
Collapse
|
15
|
Jiang L, Huang M, Xu S, Wang Y, An P, Feng C, Chen X, Wei X, Han Y, Wang Q. Bis(propyl)-cognitin Prevents β-amyloid-induced Memory Deficits as Well as Synaptic Formation and Plasticity Impairments via the Activation of PI3-K Pathway. Mol Neurobiol 2015; 53:3832-3841. [DOI: 10.1007/s12035-015-9317-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 06/23/2015] [Indexed: 01/09/2023]
|
16
|
Campanha HM, Carvalho F, Schlosser PM. Active and peripheral anionic sites of acetylcholinesterase have differential modulation effects on cell proliferation, adhesion and neuritogenesis in the NG108-15 cell line. Toxicol Lett 2014; 230:122-31. [PMID: 24680925 DOI: 10.1016/j.toxlet.2014.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 03/02/2014] [Accepted: 03/19/2014] [Indexed: 11/26/2022]
Abstract
The classical enzymatic role of acetylcholinesterase (AChE) is to terminate impulse transmission at cholinergic synapses through rapid hydrolysis of acetylcholine (ACh). Inactivation of this enzyme's catalytic site is the primary mechanism of acute toxicity of OP insecticides (e.g. parathion, chlorpyrifos). There is now sufficient evidence to suggest that AChE has a neurotrophic function that may be altered by organophosphate (OP) exposure, resulting in defects of neuronal growth and development, though the clarification of the mechanisms involved require further in vitro investigation. In the present study, the mouse neuroblastoma×rat glioma hybrid NG108-15 cell line was used to investigate the differential effects between inhibition of the catalytic site and peripheral anionic site (PAS) of acetylcholinesterase (AChE) on cell adhesion, proliferation and neuritogenesis, in the presence and absence of human red blood cell (hRBC) AChE (ED3.1.1.7). AChE active-site inhibitor paraoxon (PO; 0.1-1.0μM), when added to NG108-15 cells grown on AChE-coated plates, had no effect on cell proliferation, but exerted a significant reduction in strongly adherent viable cells accompanied by mostly short process formations, with 18% of cells considered to be neuritogenic, similar to that observed on uncoated plates. In contrast, PO had no significant effect on cell adhesion and proliferation of NG108-15 cells on uncoated plates. The PAS-ligand thioflavin-T (Th-T; 0.5-25μM), however, decreased cell adhesion and proliferation, on both uncoated and ACh-E coated plates, with less magnitude on AChE-coated plates. Taken together, these results suggest that strong cell adherence and neuritogenesis are sensitive to PO in this cell culture model, with no impact on proliferation, in the presence of membrane bound AChE-coating, while there is no sensitivity to PO on uncoated plates. On the other hand, binding of Th-T directly to the PAS affects both cell adherence and proliferation, with less magnitude in the presence of membrane-bound AChE. The current study indicates that PO is deleterious in neural development during critical periods of strong cell adhesion and differentiation, interfering with AChE trophic function.
Collapse
Affiliation(s)
- Helen M Campanha
- Rutgers, New Jersey Medical School-Graduate School of Biomedical Sciences, 185 South Orange Avenue, MSB H609, Newark, NJ 07103, United States.
| | - Félix Carvalho
- REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Paul M Schlosser
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Washington, DC, United States
| |
Collapse
|
17
|
Choi NY, Choi H, Park HH, Lee EH, Yu HJ, Lee KY, Joo Lee Y, Koh SH. Neuroprotective effects of amlodipine besylate and benidipine hydrochloride on oxidative stress-injured neural stem cells. Brain Res 2014; 1551:1-12. [PMID: 24440775 DOI: 10.1016/j.brainres.2014.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/11/2013] [Accepted: 01/07/2014] [Indexed: 12/19/2022]
Abstract
Hypertension is associated with oxidative stress. Amlodipine besylate (AB) and benidipine hydrochloride (BH), which are Ca(2+) antagonists, have been reported to reduce oxidative stress. In this study, we examined the neuroprotective effects of AB and BH on oxidative stress-injured neural stem cells (NSCs), with a focus on the phosphatidylinositol 3-kinase (PI3K) pathway and the extracellular signal-regulated kinase (ERK) pathway. After treatment with H2O2, the viability of NSCs decreased in a concentration-dependent manner; however, co-treatment with AB or BH restored the viability of H2O2-injured NSCs. H2O2 increased free radical production and apoptosis in NSCs, whereas co-treatment with AB or BH attenuated these effects. To evaluate the effects of AB or BH on the H2O2-inhibited proliferation of NSCs, we performed BrdU labeling and colony formation assays and found that NSC proliferation decreased upon H2O2 treatment but that combined treatment with AB or BH restored this proliferation. Western blot analysis showed that AB and BH increased the expression of cell survival-related proteins that were linked with the PI3K and ERK pathways but decreased the expression of cell death-related proteins. To investigate whether the PI3K and ERK pathways were directly involved in the neuroprotective effects of AB and BH on H2O2-treated NSCs, NSCs were pretreated with the PI3K inhibitor, LY294002, or the ERK inhibitor, FR180204, which significantly blocked the effects of AB and BH. Together, our results suggest that AB and BH restore the H2O2-inhibited viability and proliferation of NSCs by inhibiting oxidative stress and by activating the PI3K and ERK pathways.
Collapse
Affiliation(s)
- Na-Young Choi
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea; Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Republic of Korea
| | - Hojin Choi
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Eun-Hye Lee
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea; Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Republic of Korea
| | - Hyun-Jeung Yu
- Department of Neurology, Bundang Jesaeng Hospital, Gyeonggi Province, Republic of Korea
| | - Kyu-Yong Lee
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Young Joo Lee
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea; Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Liu P, Zou LB, Wang LH, Jiao Q, Chi TY, Ji XF, Jin G. Xanthoceraside attenuates tau hyperphosphorylation and cognitive deficits in intracerebroventricular-streptozotocin injected rats. Psychopharmacology (Berl) 2014; 231:345-56. [PMID: 23958944 DOI: 10.1007/s00213-013-3240-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 08/05/2013] [Indexed: 12/26/2022]
Abstract
RATIONALE Xanthoceraside, a novel triterpenoid saponin extracted from the fruit husks of Xanthoceras sorbifolia Bunge, reverses cognitive deficits in intracerebroventricular injection of Aβ25-35 or Aβ1-42 mice. However, whether xanthoceraside has a positive effect on hyperphosphorylated tau protein remains unclear. OBJECTIVES We investigated the effects of xanthoceraside on behavioural impairments induced by intracerebroventricular injection of streptozotocin (STZ) in rats and its potential mechanisms. MATERIALS AND METHODS The rats were administered with xanthoceraside (0.06, 0.12 or 0.24 mg/kg) or vehicle once daily after STZ intracerebroventricular injections. The Y-maze test and novel object recognition test were performed 21 and 22 days after the second STZ injection, respectively. The levels of hyperphosphorylated tau, phosphatidylinositol-3-kinase (PI3K)/serine/threonine protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), protein phosphatase 1 (PP-1) and protein phosphatase 2A (PP-2A) were also tested by Western blot. RESULTS Xanthoceraside treatment significantly attenuated learning and memory impairments and reduced the level of STZ-induced hyperphosphorylated tau protein. Xanthoceraside also enhanced PP-2A and PP-1 expressions, increased PI3K (p85) and Akt (Ser473) phosphorylation and decreased GSK-3β (tyr216) phosphorylation. CONCLUSIONS Xanthoceraside has protective effect against learning and memory impairments and inhibits tau hyperphosphorylation in the hippocampus, possibly through the inhibition of the PI3K/Akt-dependent GSK-3β signalling pathway and an enhancement of phosphatases activity.
Collapse
|
19
|
Hoppe JB, Frozza RL, Pires ENS, Meneghetti AB, Salbego C. The curry spice curcumin attenuates beta-amyloid-induced toxicity through beta-catenin and PI3K signaling in rat organotypic hippocampal slice culture. Neurol Res 2013; 35:857-66. [DOI: 10.1179/1743132813y.0000000225] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Juliana Bender Hoppe
- Laboratory of Neuroprotection and Cell SignalingDepartment of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rudimar Luiz Frozza
- Laboratory of Neurodegenerative DiseasesInstitute of Medical Biochemestry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Elisa Nicoloso Simões Pires
- Laboratory of Neuroprotection and Cell SignalingDepartment of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Bevilacqua Meneghetti
- Laboratory of Neuroprotection and Cell SignalingDepartment of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Christianne Salbego
- Laboratory of Neuroprotection and Cell SignalingDepartment of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
20
|
Kim B, Backus C, Oh S, Feldman EL. Hyperglycemia-induced tau cleavage in vitro and in vivo: a possible link between diabetes and Alzheimer's disease. J Alzheimers Dis 2013; 34:727-39. [PMID: 23254634 DOI: 10.3233/jad-121669] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple lines of evidence link the incidence of diabetes to the development of Alzheimer's disease (AD). Patients with diabetes have a 50 to 75% increased risk of developing AD. In parallel, AD patients have a higher than normal tendency to develop type 2 diabetes or impaired fasting glucose. Tau is the major component of neurofibrillary tangles, one of the hallmarks of AD pathology. The current study examined the effect of hyperglycemia on tau modification. Glucose treatment of rat embryonic cortical neurons results in concentration-dependent apoptosis and caspase-3 activation. These changes are well correlated with glucose time- and concentration-dependent tau cleavage. Aβ treatment induces tau cleavage and when added together with glucose, there is an additive effect on caspase activation, apoptosis, and tau cleavage. Tau cleavage is partially blocked by the caspase inhibitor, ZVAD. Cleaved tau displays a punctate staining along the neurites and colocalizes with cleaved caspase-3 in the cytoplasm. Both type 1 and type 2 diabetic mice display increased tau phosphorylation in the brain. In agreement with the effects of glucose on tau modifications in vitro, there is increased tau cleavage in the brains of ob/ob mice; however, tau cleavage is not observed in type 1 diabetic mouse brains. Our study demonstrates that hyperglycemia is one of major factors that induce tau modification in both in vitro and in vivo models of diabetes. We speculate that tau cleavage in diabetic conditions (especially in type 2 diabetes) may be a key link for the increased incidence of AD in diabetic patients.
Collapse
Affiliation(s)
- Bhumsoo Kim
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| | | | | | | |
Collapse
|
21
|
Involvement of α7 nAChR signaling cascade in epigallocatechin gallate suppression of β-amyloid-induced apoptotic cortical neuronal insults. Mol Neurobiol 2013; 49:66-77. [PMID: 23807728 DOI: 10.1007/s12035-013-8491-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 06/13/2013] [Indexed: 01/20/2023]
Abstract
Excessive generation and accumulation of the β-amyloid (Aβ) peptide in selectively vulnerable brain regions is a key pathogenic event in the Alzheimer's disease (AD), while epigallocatechin gallate (EGCG) is a very promising chemical to suppress a variety of Aβ-induced neurodegenerative disorders. However, the precise molecular mechanism of EGCG responsible for protection against neurotoxicity still remains elusive. To validate and further investigate the possible mechanism involved, we explored whether EGCG neuroprotection against neurotoxicity of Aβ is mediated through the α7 nicotinic acetylcholine receptor (α7 nAChR) signaling cascade. It was shown in rat primary cortical neurons that short-term treatment with EGCG significantly attenuated the neurotoxicity of Aβ1-42, as demonstrated by increased cell viability, reduced number of apoptotic cells, decreased reactive oxygen species (ROS) generation, and downregulated caspase-3 levels after treatment with 25-μM Aβ1-42. In addition, EGCG markedly strengthened activation of α7nAChR as well as its downstream pathway signaling molecules phosphatidylinositol 3-kinase (PI3K) and Akt, subsequently leading to suppression of Bcl-2 downregulation in Aβ-treated neurons. Conversely, administration of α7nAChR antagonist methyllycaconitine (MLA; 20 μM) to neuronal cultures significantly attenuated the neuroprotection of EGCG against Aβ-induced neurototoxicity, thus presenting new evidence that the α7nAChR activity together with PI3K/Akt transduction signaling may contribute to the molecular mechanism underlying the neuroprotective effects of EGCG against Aβ-induced cell death.
Collapse
|
22
|
Choi H, Park HH, Lee KY, Choi NY, Yu HJ, Lee YJ, Park J, Huh YM, Lee SH, Koh SH. Coenzyme Q10 restores amyloid beta-inhibited proliferation of neural stem cells by activating the PI3K pathway. Stem Cells Dev 2013; 22:2112-20. [PMID: 23509892 DOI: 10.1089/scd.2012.0604] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Neurogenesis in the adult brain is important for memory and learning, and the alterations in neural stem cells (NSCs) may be an important part of Alzheimer's disease pathogenesis. The phosphatidylinositol 3-kinase (PI3K) pathway has been suggested to play an important role in neuronal cell survival and is highly involved in adult neurogenesis. Recently, coenzyme Q10 (CoQ10) was found to affect the PI3K pathway. We investigated whether CoQ10 could restore amyloid β (Aβ)25-35 oligomer-inhibited proliferation of NSCs by focusing on the PI3K pathway. To evaluate the effects of CoQ10 on Aβ25-35 oligomer-inhibited proliferation of NSCs, NSCs were treated with several concentrations of CoQ10 and/or Aβ25-35 oligomers. BrdU labeling, Colony Formation Assays, and immunoreactivity of Ki-67, a marker of proliferative activity, showed that NSC proliferation decreased with Aβ25-35 oligomer treatment, but combined treatment with CoQ10 restored it. Western blotting showed that CoQ10 treatment increased the expression levels of p85α PI3K, phosphorylated Akt (Ser473), phosphorylated glycogen synthase kinase-3β (Ser9), and heat shock transcription factor, which are proteins related to the PI3K pathway in Aβ25-35 oligomers-treated NSCs. To confirm a direct role for the PI3K pathway in CoQ10-induced restoration of proliferation of NSCs inhibited by Aβ25-35 oligomers, NSCs were pretreated with a PI3K inhibitor, LY294002; the effects of CoQ10 on the proliferation of NSCs inhibited by Aβ25-35 oligomers were almost completely blocked. Together, these results suggest that CoQ10 restores Aβ25-35 oligomer-inhibited proliferation of NSCs by activating the PI3K pathway.
Collapse
Affiliation(s)
- Hojin Choi
- Department of Neurology, Hanyang University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Role of the phosphatidylinositol 3-kinase and extracellular signal-regulated kinase pathways in the neuroprotective effects of cilnidipine against hypoxia in a primary culture of cortical neurons. Neurochem Int 2012; 61:1172-82. [DOI: 10.1016/j.neuint.2012.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 07/30/2012] [Accepted: 08/15/2012] [Indexed: 01/09/2023]
|
24
|
Yang H, Wu D, Zhang X, Wang X, Peng Y, Hu Z. Telencephalin protects PAJU cells from amyloid beta protein-induced apoptosis by activating the ezrin/radixin/moesin protein family/phosphatidylinositol-3-kinase/protein kinase B pathway. Neural Regen Res 2012; 7:2189-98. [PMID: 25538739 PMCID: PMC4268718 DOI: 10.3969/j.issn.1673-5374.2012.028.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 06/13/2012] [Indexed: 11/20/2022] Open
Abstract
Telencephalin is a neural glycoprotein that reduces apoptosis induced by amyloid beta protein in the human neural tumor cell line PAJU. In this study, we examined the role of the ezrin/radixin/moesin protein family/phosphatidylinositol-3-kinase/protein kinase B pathway in this process. Western blot analysis demonstrated that telencephalin, phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B were not expressed in PAJU cells transfected with empty plasmid, while they were expressed in PAJU cells transfected with a telencephalin expression plasmid. After treatment with 1.0 nM amyloid beta protein 42, expression of telencephalin and phosphorylated phosphatidylinositol-3-kinase/protein kinase B in the transfected cells gradually diminished, while levels of phosphorylated ezrin/radixin/moesin increased. In addition, the high levels of telencephalin, phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B expression in PAJU cells transfected with a telencephalin expression plasmid could be suppressed by the phosphatidylinositol-3-kinase inhibitor LY294002. These findings indicate that telencephalin activates the ezrin/radixin/moesin family/phosphatidylinositol-3-kinase/protein kinase B pathway and protects PAJU cells from amyloid beta protein-induced apoptosis.
Collapse
Affiliation(s)
- Heping Yang
- Department of Neurology, Shangrao No. 5 People's Hospital, the Second Affiliated Hospital of Nanchang University, Shangrao 334000, Jiangxi Province, China
- Department of Neurology, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medical University, Nanning 530011, Guangxi Zhuang Autonomous Region, China
- Department of Neurology, Xiangya Second Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Dapeng Wu
- Department of Neurology, Xiangya Second Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Xiaojie Zhang
- Department of Psychiatry, Xiangya Second Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Xiang Wang
- Department of Neurology, Xiangya Second Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Yi Peng
- Department of Neurology, Xiangya Second Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Zhiping Hu
- Department of Neurology, Xiangya Second Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
25
|
Loureiro SO, Heimfarth L, de Lima BO, Leite MC, Guerra MC, Gonçalves CA, Pessoa-Pureur R. Dual action of chronic ethanol treatment on LPS-induced response in C6 glioma cells. J Neuroimmunol 2012; 249:8-15. [DOI: 10.1016/j.jneuroim.2012.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 01/06/2023]
|
26
|
Yamamoto N, Matsubara T, Sobue K, Tanida M, Kasahara R, Naruse K, Taniura H, Sato T, Suzuki K. Brain insulin resistance accelerates Aβ fibrillogenesis by inducing GM1 ganglioside clustering in the presynaptic membranes. J Neurochem 2012; 121:619-28. [PMID: 22260232 DOI: 10.1111/j.1471-4159.2012.07668.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Type 2 diabetes mellitus is thought to be a significant risk factor for Alzheimer's disease. Insulin resistance also affects the central nervous system by regulating key processes, such as neuronal survival and longevity, learning and memory. However, the mechanisms underlying these effects remain uncertain. To investigate whether insulin resistance is associated with the assembly of amyloid β-protein (Aβ) at the cell surface of neurons, we inhibited insulin-signalling pathways of primary neurons. The treatments of insulin receptor (IR)-knockdown and a phosphatidylinositol 3-kinase inhibitor (LY294002), but not an extracellular signal-regulated kinase inhibitor, induced an increase in GM1 ganglioside (GM1) levels in detergent-resistant membrane microdomains of the neurons. The aged db/db mouse brain exhibited reduction in IR expression and phosphorylation of Akt, which later induced an increase in the high-density GM1-clusters on synaptosomes. Neurons treated with IR knockdown or LY294002, and synaptosomes of the aged db/db mouse brains markedly accelerated an assembly of Aβs. These results suggest that ageing and peripheral insulin resistance induce brain insulin resistance, which accelerates the assembly of Aβs by increasing and clustering of GM1 in detergent-resistant membrane microdomains of neuronal membranes.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Laboratory of Neurochemistry, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Choi H, Park HH, Koh SH, Choi NY, Yu HJ, Park J, Lee YJ, Lee KY. Coenzyme Q10 protects against amyloid beta-induced neuronal cell death by inhibiting oxidative stress and activating the P13K pathway. Neurotoxicology 2012; 33:85-90. [DOI: 10.1016/j.neuro.2011.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 12/02/2011] [Accepted: 12/06/2011] [Indexed: 01/24/2023]
|
28
|
Diazoxide preconditioning against seizure-induced oxidative injury is via the PI3K/Akt pathway in epileptic rat. Neurosci Lett 2011; 495:130-4. [DOI: 10.1016/j.neulet.2011.03.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 03/08/2011] [Accepted: 03/18/2011] [Indexed: 11/20/2022]
|
29
|
Zhao R, Zhang Z, Song Y, Wang D, Qi J, Wen S. Implication of phosphatidylinositol-3 kinase/Akt/glycogen synthase kinase-3β pathway in ginsenoside Rb1's attenuation of beta-amyloid-induced neurotoxicity and tau phosphorylation. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:1109-1116. [PMID: 21129477 DOI: 10.1016/j.jep.2010.11.054] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 11/08/2010] [Accepted: 11/21/2010] [Indexed: 05/30/2023]
Abstract
Ginseng has long been used to alleviate many ailments, particularly those associated with aging and memory deterioration. In the present study we aimed to investigate the neuroprotective effects of ginsenoside Rb1, against Aβ(1-42) toxicity in cultured cortical neurons and also the potential involvement of PI3K/Akt/GSK-3β signal pathway. Cortical neurons were pre-treated with ginsenoside Rb1 (20, 40, 100 μM) or LiCl (1, 5, 10 mM) for 24 h, and then were co-treated with 20 μM Aβ(1-42) for 12 h. In some experiments to evaluate the mechanism of Rb1 action, a PI3K inhibitor (LY294002 10 μM) was co-administered with Rb1 for the 24-h pretreatment. We revealed that Rb1 significantly attenuated Aβ(1-42)-induced neurotoxicity and tau hyperphosphorylation at multiple AD-related sites in a dose-dependent manner. Simultaneously, it increased the levels of phospho-Ser(473)-Akt and down-regulated GSK-3β activity by PI3K activation. The neuroprotective effects of Rb1 against Aβ(1-42)-induced neurotoxicity and tau hyperphosphorylation were blocked by LY294002 (10 μM), a PI3K inhibitor. In addition, Rb1 reversed the Aβ(1-42)-induced decrease in phosphorylation cyclic AMP response element binding (CREB) protein, which could also be blocked by the PI3K inhibitor. All these findings suggest that Rb1 may represent a potential treatment strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Ruiping Zhao
- Department of Pathology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | | | | | | | | | | |
Collapse
|
30
|
Zhang Z, Zhao R, Qi J, Wen S, Tang Y, Wang D. Inhibition of glycogen synthase kinase-3β by Angelica sinensis extract decreases β-amyloid-induced neurotoxicity and tau phosphorylation in cultured cortical neurons. J Neurosci Res 2010; 89:437-47. [DOI: 10.1002/jnr.22563] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/08/2010] [Accepted: 11/01/2010] [Indexed: 12/28/2022]
|
31
|
Liu T, Jin H, Sun QR, Xu JH, Hu HT. Neuroprotective effects of emodin in rat cortical neurons against beta-amyloid-induced neurotoxicity. Brain Res 2010; 1347:149-60. [PMID: 20573598 DOI: 10.1016/j.brainres.2010.05.079] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 12/21/2022]
Abstract
Accumulation of beta-amyloid protein (Abeta) in the brain plays an important role in the pathogenesis of Alzheimer's disease (AD). In this study, the neuroprotective effect of emodin extracted from the traditional Chinese medicinal herb Polygonum cuspidatum Sieb. et Zucc against Abeta(25-35)-induced cell death in cultured cortical neurons was investigated. We found that pre-treatment with emodin prevented the cultured cortical neurons from beta-amyloid-induced toxicity. The preventive effect of emodin was blocked by pre-treatment with a phosphatidylinositol-3-kinase (PI3K) pathway inhibitor LY294002 or an estrogen receptor (ER) specific antagonist ICI182780, but not by pre-treatment with an extracellular signal-related kinases (ERK) inhibitor U0126. Furthermore, we found that emodin exposure induced the activation of the Akt serine/threonine kinase and increased the level of Bcl-2 expression. Moreover, the application of emodin for 24h was able to induce the activation of Abeta(25-35)-suppressed Akt and decrease the activation of the Jun-N-terminal kinases (JNK), but not of ERK. Interestingly, the up-regulation of Akt and Bcl-2 did not occur in the presence of LY294002 or ICI182780, suggesting that emodin-up-regulated Bcl-2 is mediated via the ER and PI3K/Akt pathway. Taken together, our results suggest that emodin is an effective neuroprotective drug and is a viable candidate for treating AD.
Collapse
Affiliation(s)
- Tao Liu
- Department of Human Anatomy and Histology & Embryology, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | | | | | | | | |
Collapse
|
32
|
Li N, Sarojini H, An J, Wang E. Prosaposin in the secretome of marrow stroma-derived neural progenitor cells protects neural cells from apoptotic death. J Neurochem 2009; 112:1527-38. [PMID: 20050969 DOI: 10.1111/j.1471-4159.2009.06565.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Functionally, adult stem cells not only participate in replication and differentiation to various cell lineages, but also may be involved in rescuing cells from apoptosis. Identifying functional factors secreted by stem cells, as well as their target cells, may advance our understanding of stem cells' multifaceted physiologic functions. Here, we report that mouse bone marrow stromal cell-derived neuroprogenitor cells (mMSC-NPC) provide a protective function by secreting a key factor, prosaposin (PSAP), capable of rescuing mature neurons from apoptotic death. This factor is identified as the lead protein in the secretome of mMSC-NPC cultures by tandem mass spectroscopic profiling, and further validated by western blotting and immunocytochemistry. The secretome of MSC-NPC reduces toxin-induced cell death in cultures of rat pheochromocytoma neuronal cells, human ReNcell CX neurons, and rat cortical primary neurons; removal of PSAP by immunodepletion annuls this protective effect. This neuronal protection against toxin treatment was validated further by the recombinant PSAP peptide. Interestingly, the secretome of neuronal culture does not possess such a self-protective action. We suggest that upon injury, a subgroup of MSCs differentiates into neural/neuronal progenitor cells, and remains in this intermediate stem cell-like stage, defending injured neighboring mature neurons from apoptosis by secreting PSAP.
Collapse
Affiliation(s)
- Na Li
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Gheens Center on Aging, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
33
|
Lee YJ, Park KH, Park HH, Kim YJ, Lee KY, Kim SH, Koh SH. Cilnidipine mediates a neuroprotective effect by scavenging free radicals and activating the phosphatidylinositol 3-kinase pathway. J Neurochem 2009; 111:90-100. [DOI: 10.1111/j.1471-4159.2009.06297.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Chae CH, Kim HT. Forced, moderate-intensity treadmill exercise suppresses apoptosis by increasing the level of NGF and stimulating phosphatidylinositol 3-kinase signaling in the hippocampus of induced aging rats. Neurochem Int 2009; 55:208-13. [PMID: 19524110 DOI: 10.1016/j.neuint.2009.02.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 02/11/2009] [Accepted: 02/25/2009] [Indexed: 11/28/2022]
Abstract
While nerve growth factor (NGF) activates various signaling cascades, the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway plays a pivotal role in controlling the survival of neurons, although this activity declines during the aging process. We investigated the effect of forced moderate-intensity treadmill exercise on the level of NGF and the PI3-K/Akt signaling pathway in the hippocampus of induced aging rats. Forty-five male Sprague-Dawley rats were divided into the following three groups: (1) control group, in which aging was not induced (CON: n=15), (2) aging-control group, in which aging was induced but the rats were not subjected to exercise (ACON: n=15), and (3) the aging-exercise group, in which aging was induced and the rats were subjected to treadmill exercise (AEX: n=15). d-Galactose (50mg/kg) was injected into the abdominal cavity for 8 weeks to induce aging. Rats were subjected to treadmill exercise 5 days a week for 8 weeks, and the speed of the treadmill was gradually increased. The protein levels of NGF, P-PI3-K, and P-Akt were significantly high in the AEX group (p<0.01, p<0.01, and p<0.001, respectively). Tyrosine kinase A (Trk A) receptor level was significantly higher in the CON and AEX groups than in the ACON group (p<0.01). TUNEL assay showed a significant reduction in apoptosis in the AEX group (p<0.001). Caspase-3 activation was significantly decreased in the AEX and CON groups (p<0.05). These results show that forced moderate-intensity treadmill exercise increases the level of NGF and activates P-PI3-K to induce P-Akt in order to suppress apoptotic cell death in the hippocampus of induced aging rats.
Collapse
Affiliation(s)
- Chang-Hun Chae
- School of Sport Science, Sungkyunkwan University, Chunchun-dong, Jangan-gu, Suwon 440-746, South Korea
| | | |
Collapse
|
35
|
Role of calpain and caspase in β-amyloid-induced cell death in rat primary septal cultured neurons. Neuropharmacology 2008; 54:721-33. [DOI: 10.1016/j.neuropharm.2007.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 12/09/2007] [Accepted: 12/10/2007] [Indexed: 01/09/2023]
|