1
|
De Bock M, De Smet MA, Verwaerde S, Tahiri H, Schumacher S, Van Haver V, Witschas K, Steinhäuser C, Rouach N, Vandenbroucke RE, Leybaert L. Targeting gliovascular connexins prevents inflammatory blood-brain barrier leakage and astrogliosis. JCI Insight 2022; 7:135263. [PMID: 35881483 PMCID: PMC9462469 DOI: 10.1172/jci.insight.135263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
The blood-brain barrier is formed by capillary endothelial cells expressing Cx37, Cx40 and Cx43, and is joined by closely apposed astrocytes expressing Cx43 and Cx30. We investigated whether connexin-targeting peptides could limit barrier leakage triggered by LPS-induced systemic inflammation in mice. Intraperitoneal LPS increased endothelial and astrocytic Cx43 expression, elevated TNFα, IL1β, IFNγ and IL6 in plasma and IL6 in the brain, and induced barrier leakage recorded over 24h. Barrier leakage was largely prevented by global Cx43 knockdown and Cx43/Cx30 double-knockout in astrocytes, slightly diminished by endothelial Cx43 knockout and not protected by global Cx30 knockout. Intravenous administration of Gap27 or Tat-Gap19 just before LPS also prevented barrier leakage, and intravenous BAPTA-AM to chelate intracellular calcium was equally effective. Patch-clamp experiments demonstrated LPS-induced Cx43 hemichannel opening in endothelial cells, which was suppressed by Gap27, Gap19 and BAPTA. LPS additionally triggered astrogliosis that was prevented by intravenous Tat-Gap19 or BAPTA-AM. Cortically applied Tat-Gap19 or BAPTA-AM to primarily target astrocytes, also strongly diminished barrier leakage. In vivo dye uptake and in vitro patch-clamp showed Cx43 hemichannel opening in astrocytes that was induced by IL6 in a calcium-dependent manner. We conclude that targeting endothelial and astrocytic connexins is a powerful approach to limit barrier failure and astrogliosis.
Collapse
Affiliation(s)
- Marijke De Bock
- Department of Basic & Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Maarten Aj De Smet
- Department of Basic & Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Stijn Verwaerde
- Department of Basic & Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Hanane Tahiri
- Department of Basic & Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Steffi Schumacher
- Department of Basic & Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Valérie Van Haver
- Department of Basic & Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Katja Witschas
- Department of Basic & Applied Medical Sciences, Ghent University, Ghent, Belgium
| | | | - Nathalie Rouach
- Center for Interdisiplinary Research in Biology (CIRB), College de France, Paris, France
| | | | - Luc Leybaert
- Department of Basic & Applied Medical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Wang YF, Parpura V. Astroglial Modulation of Hydromineral Balance and Cerebral Edema. Front Mol Neurosci 2018; 11:204. [PMID: 29946238 PMCID: PMC6007284 DOI: 10.3389/fnmol.2018.00204] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Maintenance of hydromineral balance (HB) is an essential condition for life activity at cellular, tissue, organ and system levels. This activity has been considered as a function of the osmotic regulatory system that focuses on hypothalamic vasopressin (VP) neurons, which can reflexively release VP into the brain and blood to meet the demand of HB. Recently, astrocytes have emerged as an essential component of the osmotic regulatory system in addition to functioning as a regulator of the HB at cellular and tissue levels. Astrocytes express all the components of osmoreceptors, including aquaporins, molecules of the extracellular matrix, integrins and transient receptor potential channels, with an operational dynamic range allowing them to detect and respond to osmotic changes, perhaps more efficiently than neurons. The resultant responses, i.e., astroglial morphological and functional plasticity in the supraoptic and paraventricular nuclei, can be conveyed, physically and chemically, to adjacent VP neurons, thereby influencing HB at the system level. In addition, astrocytes, particularly those in the circumventricular organs, are involved not only in VP-mediated osmotic regulation, but also in regulation of other osmolality-modulating hormones, including natriuretic peptides and angiotensin. Thus, astrocytes play a role in local/brain and systemic HB. The adaptive astrocytic reactions to osmotic challenges are associated with signaling events related to the expression of glial fibrillary acidic protein and aquaporin 4 to promote cell survival and repair. However, prolonged osmotic stress can initiate inflammatory and apoptotic signaling processes, leading to glial dysfunction and a variety of brain diseases. Among many diseases of brain injury and hydromineral disorders, cytotoxic and osmotic cerebral edemas are the most common pathological manifestation. Hyponatremia is the most common cause of osmotic cerebral edema. Overly fast correction of hyponatremia could lead to central pontine myelinolysis. Ischemic stroke exemplifies cytotoxic cerebral edema. In this review, we summarize and analyze the osmosensory functions of astrocytes and their implications in cerebral edema.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
Santofimia-Castaño P, Izquierdo-Alvarez A, Plaza-Davila M, Martinez-Ruiz A, Fernandez-Bermejo M, Mateos-Rodriguez JM, Salido GM, Gonzalez A. Ebselen impairs cellular oxidative state and induces endoplasmic reticulum stress and activation of crucial mitogen-activated protein kinases in pancreatic tumour AR42J cells. J Cell Biochem 2018; 119:1122-1133. [PMID: 28703940 DOI: 10.1002/jcb.26280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022]
Abstract
Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is an organoselenium radical scavenger compound, which has strong antioxidant and anti-inflammatory effects. However, evidence suggests that this compound could exert deleterious actions on cell physiology. In this study, we have analyzed the effect of ebselen on rat pancreatic AR42J cells. Cytosolic free-Ca2+ concentration ([Ca2+ ]c ), cellular oxidative status, setting of endoplasmic reticulum stress, and phosphorylation of major mitogen-activated protein kinases were analyzed. Our results show that ebselen evoked a concentration-dependent increase in [Ca2+ ]c . The compound induced an increase in the generation of reactive oxygen species in the mitochondria. We also observed an increase in global cysteine oxidation in the presence of ebselen. In the presence of ebselen an impairment of cholecystokinin-evoked amylase release was noted. Moreover, involvement of the unfolded protein response markers, ER chaperone and signaling regulator GRP78/BiP, eukaryotic translation initiation factor 2α and X-box binding protein 1 was detected. Finally, increases in the phosphorylation of SAPK/JNK, p38 MAPK, and p44/42 MAPK in the presence of ebselen were also observed. Our results provide evidences for an impairment of cellular oxidative state and enzyme secretion, the induction of endoplasmic reticulum stress and the activation of crucial mitogen-activated protein kinases in the presence of ebselen. As a consequence ebselen exerts a potential toxic effect on AR42J cells.
Collapse
Affiliation(s)
| | - Alicia Izquierdo-Alvarez
- Servicio de Inmunologia, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - María Plaza-Davila
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Caceres, Spain
| | - Antonio Martinez-Ruiz
- Servicio de Inmunologia, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Miguel Fernandez-Bermejo
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Caceres, Spain
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | | | - Gines M Salido
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Caceres, Spain
| |
Collapse
|
4
|
Santofimia-Castaño P, Izquierdo-Alvarez A, de la Casa-Resino I, Martinez-Ruiz A, Perez-Lopez M, Portilla JC, Salido GM, Gonzalez A. Ebselen alters cellular oxidative status and induces endoplasmic reticulum stress in rat hippocampal astrocytes. Toxicology 2016; 357-358:74-84. [PMID: 27282967 DOI: 10.1016/j.tox.2016.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/01/2016] [Accepted: 06/05/2016] [Indexed: 01/08/2023]
Abstract
Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is an organoselenium radical scavenger compound, which has strong antioxidant and anti-inflammatory effects. Because of its properties, it may be protective against injury to the nervous tissue. However, evidence suggests that its glutathione peroxidase activity could underlie certain deleterious actions on cell physiology. In this study we have analyzed the effect of ebselen on rat hippocampal astrocytes in culture. Cellular oxidative status, cytosolic free-Ca(2+) concentration ([Ca(2+)]c), setting of endoplasmic reticulum stress and phosphorylation of glial fibrillary acidic protein and major mitogen-activated protein kinases were analyzed. Our results show that ebselen induced a concentration-dependent increase in the generation of reactive oxygen species in the mitochondria. We observed a concentration-dependent increase in global cysteine oxidation and in the level of malondialdehyde in the presence of ebselen. We also detected increases in catalase, glutathione S-transferase and glutathione reductase activity. Ebselen also evoked a concentration-dependent increase in [Ca(2+)]c. Moreover, we observed a concentration-dependent increase in the phosphorylation of the unfolded protein response markers, eukaryotic translation initiation factor 2α and X-box binding protein 1. Finally, ebselen also induced an increase in the phosphorylation of glial fibrillary acidic protein, SAPK/JNK, p38 MAPK and p44/42 MAPK. Our results provide strong evidence that implicate endoplasmic reticulum stress and activation of crucial mitogen-activated protein kinases in an oxidative damage of cells in the presence of ebselen. The compound thus might exert deleterious actions on astrocyte physiology that could compromise their function.
Collapse
Affiliation(s)
| | - Alicia Izquierdo-Alvarez
- Servicio de Inmunologia, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28006 Madrid, Spain
| | | | - Antonio Martinez-Ruiz
- Servicio de Inmunologia, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28006 Madrid, Spain
| | | | - Juan C Portilla
- Neurology Unit, San Pedro de Alcantara Hospital, 10003 Caceres, Spain
| | - Gines M Salido
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003 Caceres, Spain
| | - Antonio Gonzalez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003 Caceres, Spain.
| |
Collapse
|
5
|
Hu JR, Huang YH, Wang GX, Wu YX, Xian JA, Wang AL, Cao JM. Deficient and excess dietary selenium levels affect growth performance, blood cells apoptosis and liver HSP70 expression in juvenile yellow catfish Pelteobagrus fulvidraco. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:249-261. [PMID: 26394863 DOI: 10.1007/s10695-015-0133-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
We investigated the effects of deficient and excess dietary selenium (Se) on growth, blood cells apoptosis and liver heat shock protein 70 (HSP70) expression in juvenile yellow catfish (Pelteobagrus fulvidraco). After 8 weeks, yellow catfish (initial weight: 2.12 ± 0.01 g) fed isonitrogenous and isolipid diets containing <0.05 (deficient dietary Se) or 6.5 (excess dietary Se) mg Se/kg displayed a significantly lower weight gain ratio (WGR) than those fed a diet containing 0.23 (normal dietary Se) mg Se/kg. As dietary Se levels increased, liver Se concentration, glutathione peroxidase activity and the hepatosomatic index increased significantly. Plasma glucose concentration was highest in the normal treatment compared with the excess dietary Se treatment. Both deficient and excess dietary Se lead to increased reactive oxygen species (ROS) production and apoptosis ratio in blood cells, whereas only excess dietary Se increased their cytoplasmic free-Ca(2+) (CF-Ca(2+)) concentration. Excess dietary Se also resulted in the highest level of HSP70 expression, thereby possibly providing a protective mechanism against oxidative stress. These results indicate that both deficient and excess dietary Se restrained the growth of juvenile yellow catfish and caused oxidative stress. The overproduction of ROS may act as a signal molecule mediate apoptosis when dietary Se deficiency. Both ROS and CF-Ca(2+) were recorded when dietary Se excess, suggesting that Ca(2+) may be activated by Se and play a major role during Se-induced oxidative stress and cell apoptosis.
Collapse
Affiliation(s)
- Jun-Ru Hu
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yan-Hua Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Guo-Xia Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Ying-Xia Wu
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Jian-An Xian
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - An-Li Wang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Jun-Ming Cao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
6
|
Cellot G, Lagonegro P, Tarabella G, Scaini D, Fabbri F, Iannotta S, Prato M, Salviati G, Ballerini L. PEDOT:PSS Interfaces Support the Development of Neuronal Synaptic Networks with Reduced Neuroglia Response In vitro. Front Neurosci 2016; 9:521. [PMID: 26834546 PMCID: PMC4712304 DOI: 10.3389/fnins.2015.00521] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/24/2015] [Indexed: 01/29/2023] Open
Abstract
The design of electrodes based on conductive polymers in brain-machine interface technology offers the opportunity to exploit variably manufactured materials to reduce gliosis, indeed the most common brain response to chronically implanted neural electrodes. In fact, the use of conductive polymers, finely tailored in their physical-chemical properties, might result in electrodes with improved adaptability to the brain tissue and increased charge-transfer efficiency. Here we interfaced poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) ( PEDOT PSS) doped with different amounts of ethylene glycol (EG) with rat hippocampal primary cultures grown for 3 weeks on these synthetic substrates. We used immunofluorescence and scanning electron microscopy (SEM) combined to single cell electrophysiology to assess the biocompatibility of PEDOT PSS in terms of neuronal growth and synapse formation. We investigated neuronal morphology, density and electrical activity. We reported the novel observation that opposite to neurons, glial cell density was progressively reduced, hinting at the ability of this material to down regulate glial reaction. Thus, PEDOT PSS is an attractive candidate for the design of new implantable electrodes, controlling the extent of glial reactivity without affecting neuronal viability and function.
Collapse
Affiliation(s)
- Giada Cellot
- Department of Neuroscience, International School for Advanced StudiesTrieste, Italy
| | | | | | - Denis Scaini
- ELETTRA Synchrotron Light SourceTrieste, Italy
- Department of Life Science, University of TriesteTrieste, Italy
| | | | | | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of TriesteTrieste, Italy
| | | | - Laura Ballerini
- Department of Neuroscience, International School for Advanced StudiesTrieste, Italy
- Department of Life Science, University of TriesteTrieste, Italy
| |
Collapse
|
7
|
Jimenez-Blasco D, Santofimia-Castaño P, Gonzalez A, Almeida A, Bolaños JP. Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5-Nrf2 pathway. Cell Death Differ 2015; 22:1877-1889. [PMID: 25909891 PMCID: PMC4648333 DOI: 10.1038/cdd.2015.49] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 03/07/2015] [Accepted: 03/23/2015] [Indexed: 12/16/2022] Open
Abstract
Neurotransmission unavoidably increases mitochondrial reactive oxygen species. However, the intrinsic antioxidant defense of neurons is weak and hence the mechanism whereby these cells are physiologically protected against oxidative damage is unknown. Here we found that the antioxidant defense of neurons is repressed owing to the continuous protein destabilization of the master antioxidant transcriptional activator, nuclear factor-erythroid 2-related factor-2 (Nrf2). By contrast, Nrf2 is highly stable in neighbor astrocytes explaining their robust antioxidant defense and resistance against oxidative stress. We also show that subtle and persistent stimulation of N-methyl-d-aspartate receptors (NMDAR) in astrocytes, through a mechanism not requiring extracellular Ca²⁺ influx, upregulates a signal transduction pathway involving phospholipase C-mediated endoplasmic reticulum release of Ca²⁺ and protein kinase Cδ activation. Active protein kinase Cδ promotes, by phosphorylation, the stabilization of p35, a cyclin-dependent kinase-5 (Cdk5) cofactor. Active p35/Cdk5 complex in the cytosol phosphorylates Nrf2 at Thr(395), Ser(433) and Thr(439) that is sufficient to promote Nrf2 translocation to the nucleus and induce the expression of antioxidant genes. Furthermore, this Cdk5-Nrf2 transduction pathway boosts glutathione metabolism in astrocytes efficiently protecting closely spaced neurons against oxidative damage. Thus, intercellular communication through NMDAR couples neurotransmission with neuronal survival.
Collapse
Affiliation(s)
- D Jimenez-Blasco
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca-CSIC, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain
| | - P Santofimia-Castaño
- Department of Physiology, Faculty of Veterinary, University of Extremadura, 10003 Caceres, Spain
| | - A Gonzalez
- Department of Physiology, Faculty of Veterinary, University of Extremadura, 10003 Caceres, Spain
| | - A Almeida
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca-CSIC, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain
| | - J P Bolaños
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca-CSIC, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
8
|
Bulcke F, Santofimia-Castaño P, Gonzalez-Mateos A, Dringen R. Modulation of copper accumulation and copper-induced toxicity by antioxidants and copper chelators in cultured primary brain astrocytes. J Trace Elem Med Biol 2015; 32:168-176. [PMID: 26302925 DOI: 10.1016/j.jtemb.2015.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 12/22/2022]
Abstract
Copper is essential for several important cellular processes, but an excess of copper can also lead to oxidative damage. In brain, astrocytes are considered to play a pivotal role in the copper homeostasis and antioxidative defence. To investigate whether antioxidants and copper chelators can modulate the uptake and the toxicity of copper ions in brain astrocytes, we used primary astrocytes as cell culture model. These cells accumulated substantial amounts of copper during exposure to copper chloride. Copper accumulation was accompanied by a time- and concentration-dependent loss in cell viability, as demonstrated by a lowering in cellular MTT reduction capacity and by an increase in membrane permeability for propidium iodide. During incubations in the presence of the antioxidants ascorbate, trolox or ebselen, the specific cellular copper content and the toxicity in copper chloride-treated astrocyte cultures were strongly increased. In contrast, the presence of the copper chelators bathocuproine disulfonate or tetrathiomolybdate lowered the cellular copper accumulation and the copper-induced as well as the ascorbate-accelerated copper toxicity was fully prevented. These data suggest that predominantly the cellular content of copper determines copper-induced toxicity in brain astrocytes.
Collapse
Affiliation(s)
- Felix Bulcke
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany; Center for Environmental Research and Sustainable Technology, Leobener Strasse, D-28359 Bremen, Germany
| | - Patricia Santofimia-Castaño
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, E-10003 Caceres, Spain
| | - Antonio Gonzalez-Mateos
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, E-10003 Caceres, Spain
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany; Center for Environmental Research and Sustainable Technology, Leobener Strasse, D-28359 Bremen, Germany.
| |
Collapse
|
9
|
Tan SM, Deliyanti D, Figgett WA, Talia DM, de Haan JB, Wilkinson-Berka JL. Ebselen by modulating oxidative stress improves hypoxia-induced macroglial Müller cell and vascular injury in the retina. Exp Eye Res 2015; 136:1-8. [PMID: 25912997 DOI: 10.1016/j.exer.2015.04.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/31/2015] [Accepted: 04/22/2015] [Indexed: 01/08/2023]
Abstract
Oxidative stress is an important contributor to glial and vascular cell damage in ischemic retinopathies. We hypothesized that ebselen via its ability to reduce reactive oxygen species (ROS) and augment nuclear factor-like 2 (Nrf2) anti-oxidants would attenuate hypoxia-induced damage to macroglial Müller cells and also lessen retinal vasculopathy. Primary cultures of rat Müller cells were exposed to normoxia (21% O2), hypoxia (0.5% O2) and ebselen (2.5 μM) for up to 72 h. Oxygen-induced retinopathy (OIR) was induced in C57BL/6J mice while control mice were housed in room air. Mice received vehicle (saline, 5% dimethyl sulfoxide) or ebselen (10 mg/kg) each day between postnatal days 6-18. In cultured Müller cells, flow cytometry for dihydroethidium revealed that ebselen reduced the hypoxia-induced increase in ROS levels, whilst increasing the expression of Nrf2-regulated anti-oxidant genes, heme oxygenase 1, glutathione peroxidase-1, NAD(P)H dehydrogenase quinone oxidoreductase 1 and glutamate-cysteine ligase. Moreover, in Müller cells, ebselen reduced the hypoxia-induced increase in protein levels of pro-angiogenic and pro-inflammatory factors including vascular endothelial growth factor, interleukin-6, monocyte chemoattractant-protein 1 and intercellular adhesion molecule-1, and the mRNA levels of glial fibrillary acidic protein (GFAP), a marker of Müller cell injury. Ebselen improved OIR by attenuating capillary vaso-obliteration and neovascularization and a concomitant reduction in Müller cell gliosis and GFAP. We conclude that ebselen protects against hypoxia-induced injury of retinal Müller cells and the microvasculature, which is linked to its ability to reduce oxidative stress, vascular damaging factors and inflammation. Agents such as ebselen may be potential treatments for retinopathies that feature oxidative stress-mediated damage to glia and the microvasculature.
Collapse
Affiliation(s)
- Sih Min Tan
- Oxidative Stress Laboratory, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Devy Deliyanti
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - William A Figgett
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Dean M Talia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Judy B de Haan
- Oxidative Stress Laboratory, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Jennifer L Wilkinson-Berka
- Oxidative Stress Laboratory, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Santofimia-Castaño P, Garcia-Sanchez L, Ruy DC, Fernandez-Bermejo M, Salido GM, Gonzalez A. The seleno-organic compound ebselen impairs mitochondrial physiology and induces cell death in AR42J cells. Toxicol Lett 2014; 229:465-473. [PMID: 25068500 DOI: 10.1016/j.toxlet.2014.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 11/20/2022]
Abstract
Ebselen is a seleno-organic compound that causes cell death in several cancer cell types. The mechanisms underlying its deleterious effects have not been fully elucidated. In this study, the effects of ebselen (1 μM-40 μM) on AR42J tumor cells have been examined. Cell viability was studied using AlamarBlue(®) test. Cell cycle phase determination was carried out by flow cytometry. Changes in intracellular free Ca(2+) concentration were followed by fluorimetry analysis of fura-2-loaded cells. Distribution of mitochondria, mitochondrial Ca(2+) concentration and mitochondrial membrane potential were monitored by confocal microscopy of cells loaded with Mitotracker Green™ FM, rhod-2 or TMRM respectively. Caspase-3 activity was calculated following the luorogenic substrate ACDEVD-AMC signal with a spectrofluorimeter. Results show that cell viability decreased in the presence of ebselen. An increase in the number of cells in the S-phase of the cell cycle was observed. Ebselen induced a concentration-dependent mobilization of Ca(2+) from agonist- and thapsigargin-sensitive Ca(2+) pools. Ebselen induced also a transient increase in mitochondrial Ca(2+) concentration, a progressive decrease of the mitochondrial membrane potential and a disruption of the mitochondrial network. Finally, a concentration-dependent increase in caspase-3 activity was detected. We conclude that ebselen exerts deleterious actions on the cells that involve the impairment of mitochondrial physiology and the activation of caspase-3-mediated apoptotic pathway.
Collapse
Affiliation(s)
- Patricia Santofimia-Castaño
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Avenida Universidad s/n, Caceres E-10003, Spain
| | - Lourdes Garcia-Sanchez
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Avenida Universidad s/n, Caceres E-10003, Spain
| | - Deborah Clea Ruy
- Facultade de Agronomia & Medicina Veterinaria, Universidade de Brasilia, 70900-100, Brasilia DF, Brazil
| | | | - Gines M Salido
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Avenida Universidad s/n, Caceres E-10003, Spain
| | - Antonio Gonzalez
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Avenida Universidad s/n, Caceres E-10003, Spain.
| |
Collapse
|
11
|
Ultrafine carbon black induces glutamate and ATP release by activating connexin and pannexin hemichannels in cultured astrocytes. Toxicology 2014; 323:32-41. [PMID: 24932759 DOI: 10.1016/j.tox.2014.06.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/21/2014] [Accepted: 06/11/2014] [Indexed: 12/22/2022]
Abstract
Ultrafine particles could enter central nervous system and were associated with brain damage. The underlying mechanisms have not been fully elucidated. Glutamate and ATP are important signaling molecules in brain physiology and pathology. We investigated whether ultrafine carbon black (ufCB) could regulate the release of glutamate and ATP from cultured cortical astrocytes and the involvement of hemichannels in the release mechanism. Our results showed that ufCB dose-dependently increased glutamate and ATP release and activated hemichannels in astrocytes. ufCB-activated hemichannels were attributed to the activation of both connexin 43 (Cx43) and pannexin1 (Panx1) hemichannels, which was based on the finding of increased protein expression and distribution on cell surface of Cx43 and Panx1, and the inhibiting effects of hemichannel inhibitor carbenoxolone, Cx43 hemichannel inhibitor (43)Gap27 and Panx1 hemichannel inhibitor (10)Panx1 on hemichannel activation. Furthermore, ufCB-induced glutamate and ATP release were dependent on Cx43 and Panx1 hemichannels, because carbenoxolone and (43)Gap27 inhibited ufCB-induced glutamate and ATP release, and (10)Panx1 inhibited ufCB-induced ATP release. Taken together, we demonstrated, for the first time, that ufCB could induce glutamate and ATP release by activating Cx43 and Panx1 hemchannels in astrocytes. Our findings suggest a novel mechanism for neurotoxicity caused by ultrafine particles.
Collapse
|
12
|
Azad GK, Tomar RS. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways. Mol Biol Rep 2014; 41:4865-79. [DOI: 10.1007/s11033-014-3417-x] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Nazıroğlu M, Çiğ B, Özgül C. Modulation of oxidative stress and Ca(2+) mobilization through TRPM2 channels in rat dorsal root ganglion neuron by Hypericum perforatum. Neuroscience 2014; 263:27-35. [PMID: 24434769 DOI: 10.1016/j.neuroscience.2014.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/03/2014] [Accepted: 01/05/2014] [Indexed: 11/24/2022]
Abstract
A main component of St. John's Wort (Hypericum perforatum, HP) is hyperforin which has antioxidant properties in dorsal root ganglion (DRG) neurons, due to its ability to modulate NADPH oxidase and protein kinase C. Recent reports indicate that oxidative stress through NADPH oxidase activates TRPM2 channels. HP may be a useful treatment for Ca(2+) entry and oxidative stress through modulation of TRPM2 channels in the DRG. We aimed to investigate the protective role of HP on Ca(2+) entry and oxidative stress through TRPM2 channels in DRG neurons of rats. The native rat DRG neurons were used in whole-cell patch-clamp, Fura-2 and antioxidant experiments. Appropriate, nontoxic concentrations and incubation times for HP were determined in the DRG neurons by assessing cell viability. The H2O2-induced TRPM2 currents were inhibited by 2-aminoethyl diphenylborinate (2-APB) and N-(p-amylcinnamoyl)anthranilic acid (ACA). TRPM2 current densities and cytosolic free Ca(2+) concentration in the neurons were also reduced by HP (2 and 24h). In Fura-2 experiments, cytosolic Ca(2+) mobilization was reduced by voltage-gated calcium channel blockers (verapamil+diltiazem, V+D) and HP. Glutathione peroxidase activity and GSH values in the DRG were high in HP, 2-APB and V+D groups although lipid peroxidation level was low in the groups. In conclusion, we observed a protective role for HP on Ca(2+) entry through a TRPM2 channel in the DRG neurons. Since over-production of oxidative stress and Ca(2+) entry are implicated in the pathophysiology of neuropathic pain and neuronal inflammation, our findings may be relevant to the etiology and treatment of neuropathology in DRG neurons.
Collapse
Affiliation(s)
- M Nazıroğlu
- Neuroscience Research Center, Süleyman Demirel University, Isparta, Turkey; Department of Biophysics, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey.
| | - B Çiğ
- Department of Biophysics, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - C Özgül
- Restorative and Regenerative Medicine Research Center, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
14
|
Nazıroğlu M, Özgül C. Vitamin E modulates oxidative stress and protein kinase C activator (PMA)-induced TRPM2 channel gate in dorsal root ganglion of rats. J Bioenerg Biomembr 2013; 45:541-9. [PMID: 23943124 DOI: 10.1007/s10863-013-9524-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/30/2013] [Indexed: 01/07/2023]
Abstract
It is well known that Ca(2+) influx through cation channels induces peripheral pain in dorsal root ganglion (DRG) neurons. Melastatin-like transient receptor potential 2 (TRPM2) channel is a oxidative redox sensitive Ca(2+)-permeable cation channel. There is scarce report on block of the channels. Since the mechanisms that lead to TRPM2 inhibition in response to oxidative stress and protein kinase C (PKC) activation are not understood, we investigated effects of the antioxidants on the inhibition of TRPM2 channel currents in the DRG neurons of rats. The DRG peripheral neurons were freshly isolated from rats and the neurons were incubated by phorbol 12-myristate 13-acetate (PMA) which leads to activation of PKC and cause oxidative stress. In whole-cell patch clamp experiments, TRPM2 currents in the DRG incubated with PMA were stimulated by H2O2. In addition, the PMA-induced activation of TRPM2 channels were blocked by nonspecific TRPM2 channels inhibitors [2-aminoethyl diphenylborinate (2-APB) and N-(p-amylcinnamoyl)anthranilic acid (ACA)]. The currents in the neurons are also totally blocked by vitamin E incubation. However, administration of catalase and vitamin C with/without the vitamin E incubation did not block the currents. In conclusion, we indicated that vitamin E modulated oxidative stress-induced TRPM2 channel activation in the DRG neurons. The results may be useful modulation of oxidative stress-induced peripheral pain in sensory neurons.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Neuroscience Research Center, University of Suleyman Demirel, Isparta, Turkey,
| | | |
Collapse
|
15
|
Santofimia-Castaño P, Salido GM, González A. Ebselen alters mitochondrial physiology and reduces viability of rat hippocampal astrocytes. DNA Cell Biol 2013; 32:147-155. [PMID: 23496767 PMCID: PMC3624633 DOI: 10.1089/dna.2012.1939] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/06/2013] [Accepted: 02/12/2013] [Indexed: 01/27/2023] Open
Abstract
The seleno-organic compound and radical scavenger ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) have been extensively employed as an anti-inflammatory and neuroprotective compound. However, its glutathione peroxidase activity at the expense of cellular thiols groups could underlie certain deleterious actions of the compound on cell physiology. In this study, we have analyzed the effect of ebselen on rat hippocampal astrocytes in culture. Cellular viability, the intracellular free-Ca(2+) concentration ([Ca(2+)]c), the mitochondrial free-Ca(2+) concentration ([Ca(2+)]m), and mitochondrial membrane potential (ψm) were analyzed. The caspase-3 activity was also assayed. Our results show that cell viability was reduced by treatment of cells with ebselen, depending on the concentration employed. In the presence of ebselen, we observed an initial transient increase in [Ca(2+)]c that was then followed by a progressive increase to an elevated plateau. We also observed a transient increase in [Ca(2+)]m in the presence of ebselen that returned toward a value over the prestimulation level. The compound induced depolarization of ψm and altered the permeability of the mitochondrial membrane. Additionally, a disruption of the mitochondrial network was observed. Finally, we did not detect changes in caspase-3 activation in response to ebselen treatment. Collectively, these data support the likelihood of ebselen, depending on the concentration employed, reduces viability of rat hippocampal astrocytes via its action on the mitochondrial activity. These may be early effects that do not involve caspase-3 activation. We conclude that, depending on the concentration used, ebselen might exert deleterious actions on astrocyte physiology that could compromise cell function.
Collapse
|
16
|
Ledesma JC, Font L, Aragon CMG. The H2O2 scavenger ebselen decreases ethanol-induced locomotor stimulation in mice. Drug Alcohol Depend 2012; 124:42-9. [PMID: 22261181 DOI: 10.1016/j.drugalcdep.2011.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 10/28/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND In the brain, the enzyme catalase by reacting with H(2)O(2) forms Compound I (catalase-H(2)O(2) system), which is the main system of central ethanol metabolism to acetaldehyde. Previous research has demonstrated that acetaldehyde derived from central-ethanol metabolism mediates some of the psychopharmacological effects produced by ethanol. Manipulations that modulate central catalase activity or sequester acetaldehyde after ethanol administration modify the stimulant effects induced by ethanol in mice. However, the role of H(2)O(2) in the behavioral effects caused by ethanol has not been clearly addressed. The present study investigated the effects of ebselen, an H(2)O(2) scavenger, on ethanol-induced locomotion. METHODS Swiss RjOrl mice were pre-treated with ebselen (0-50mg/kg) intraperitoneally (IP) prior to administration of ethanol (0-3.75g/kg; IP). In another experiment, animals were pre-treated with ebselen (0 or 25mg/kg; IP) before caffeine (15mg/kg; IP), amphetamine (2mg/kg; IP) or cocaine (10mg/kg; IP) administration. Following these treatments, animals were placed in an open field to measure their locomotor activity. Additionally, we evaluated the effect of ebselen on the H(2)O(2)-mediated inactivation of brain catalase activity by 3-amino-1,2,4-triazole (AT). RESULTS Ebselen selectively prevented ethanol-induced locomotor stimulation without altering the baseline activity or the locomotor stimulating effects caused by caffeine, amphetamine and cocaine. Ebselen reduced the ability of AT to inhibit brain catalase activity. CONCLUSIONS Taken together, these data suggest that a decline in H(2)O(2) levels might result in a reduction of the ethanol locomotor-stimulating effects, indicating a possible role for H(2)O(2) in some of the psychopharmacological effects produced by ethanol.
Collapse
Affiliation(s)
- Juan Carlos Ledesma
- Àrea de Psicobiologia, Universitat Jaume I, Avda Sos Baynat, 12071 Castellón, Spain
| | | | | |
Collapse
|
17
|
Nazıroğlu M, ÇIğ B, Doğan S, Uğuz AC, Dilek S, Faouzi D. 2.45-Gz wireless devices induce oxidative stress and proliferation through cytosolic Ca2+influx in human leukemia cancer cells. Int J Radiat Biol 2012; 88:449-56. [DOI: 10.3109/09553002.2012.682192] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Garcia-Sanchez L, Santofimia-Castaño P, Miro-Moran A, Tapia JA, Salido GM, Gonzalez A. Resveratrol mobilizes Ca2+ from intracellular stores and induces c-Jun N-terminal kinase activation in tumoral AR42J cells. Mol Cell Biochem 2012; 362:15-23. [PMID: 22012614 DOI: 10.1007/s11010-011-1123-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/12/2011] [Indexed: 10/16/2022]
Abstract
Resveratrol (3,4',5-trihydroxy-trans-stilbene), a phytoalexin naturally found in grapes and red wine, is a redox-active compound endowed with significant positive activities. In this study, the effects of resveratrol on intracellular free Ca(2+) concentration ([Ca(2+)](c)) and on cell viability in tumoral AR42J pancreatic cells are examined. The results show that resveratrol (100 μM and 1 mM) induced changes in [Ca(2+)](c), that consisted of single or short lasting spikes followed by a slow reduction toward a value close to the resting level. Lower concentrations of resveratrol (1 and 10 μM) did not show detectable effects on [Ca(2+)](c). Depletion of intracellular Ca(2+) stores by stimulation of cells with 1 nM CCK-8, 20 pM CCK-8 or 1 μM thapsigargin, blocked Ca(2+) responses evoked by resveratrol. Conversely, prior stimulation of cells with resveratrol inhibited Ca(2+) mobilization in response to a secondary application of CCK-8 or thapsigargin. In addition, resveratrol inhibited oscillations in [Ca(2+)](c) evoked by a physiological concentration of CCK-8 (20 pM). On the other hand, incubation of cells in the presence of resveratrol induced a reduction of cell viability. Finally, incubation of AR42J cells in the presence of resveratrol led to activation of c-Jun N-terminal kinase (JNK), a mitogen-activated protein kinase responsive to stress stimuli. Activation of JNK was reduced in the absence of extracellular Ca(2+). In summary, the results show that resveratrol releases Ca(2+) from intracellular stores, most probably from the endoplasmic reticulum, and reduces AR42J cells viability. Reorganization of cell's survival/death processes in the presence of resveratrol may involve Ca(2+)-mediated JNK activation.
Collapse
|
19
|
Glutathione Modulates Ca2+ Influx and Oxidative Toxicity Through TRPM2 Channel in Rat Dorsal Root Ganglion Neurons. J Membr Biol 2011; 242:109-18. [DOI: 10.1007/s00232-011-9382-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 06/17/2011] [Indexed: 01/25/2023]
|
20
|
Neuron-glia signaling: Implications for astrocyte differentiation and synapse formation. Life Sci 2011; 89:524-31. [PMID: 21569780 DOI: 10.1016/j.lfs.2011.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/10/2011] [Accepted: 04/09/2011] [Indexed: 11/22/2022]
Abstract
Glial cells are currently viewed as active partners of neurons in synapse formation. The close proximity of astrocytes to the synaptic cleft implicates that they strongly influence synapse function as well as suggests that these cells might be potential targets for neuronal-released molecules. In this review, we discuss the signaling pathways of astrocyte generation and the role of astrocyte-derived molecules in synapse formation in the central nervous system. Further, we discuss the role of the excitatory neurotransmitter, glutamate and transforming growth factor beta 1 (TGF-β1) pathway in astrocyte generation and differentiation. We provide evidence that astrocytes surrounding synapses are target of neuronal activity and shed light into the role of astroglial cells into neurological disorders associated with glutamate neurotoxicity.
Collapse
|
21
|
Aminoethoxydiphenyl borate and flufenamic acid inhibit Ca2+ influx through TRPM2 channels in rat dorsal root ganglion neurons activated by ADP-ribose and rotenone. J Membr Biol 2011; 241:69-75. [PMID: 21509529 DOI: 10.1007/s00232-011-9363-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 03/21/2011] [Indexed: 12/21/2022]
Abstract
Exposure to oxidative stress causes health problems, including sensory neuron neuropathy and pain. Rotenone is a toxin used to generate intracellular oxidative stress in neurons. However, the mechanism of toxicity in dorsal root ganglion (DRG) neurons has not been characterized. Melastatin-like transient receptor potential 2 (TRPM2) channel activation and inhibition in response to oxidative stress, ADP-ribose (ADPR), flufenamic acid (FFA) and 2-aminoethoxydiphenyl borate (2-APB) in DRG neurons are also not clear. We tested the effects of FFA and 2-APB on ADPR and rotenone-induced TRPM2 cation channel activation in DRG neurons of rats. DRG neurons were freshly isolated from rats and studied with the conventional whole-cell patch-clamp technique. Rotenone, FFA and 2-APB were extracellularly added through the patch chamber, and ADPR was applied intracellularly through the patch pipette. TRPM2 cation currents were consistently induced by ADPR and rotenone. Current densities of the neurons were higher in the ADPR and rotenone groups than in control. The time courses (gating times) in the neurons were longer in the rotenone than in the ADPR group. ADPR and rotenone-induced TRPM2 currents were totally blocked by 2-APB and partially blocked by FFA. In conclusion, TRPM2 channels were constitutively activated by ADPR and rotenone, and 2-APB and FFA induced an inhibitory effect on TRPM2 cation channel currents in rat DRG neurons. Since oxidative stress is a common feature of neuropathic pain and diseases of sensory neurons, the present findings have broad application to the etiology of neuropathic pain and diseases of DRG neurons.
Collapse
|