1
|
Katami H, Suzuki S, Fujii T, Ueno M, Tanaka A, Ohta KI, Miki T, Shimono R. Genetic and histopathological analysis of spermatogenesis after short-term testicular torsion in rats. Pediatr Res 2023; 94:1650-1658. [PMID: 37225778 DOI: 10.1038/s41390-023-02638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/23/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Patients with testicular torsion (TT) may exhibit impaired spermatogenesis from reperfusion injury after detorsion surgery. Alteration in the expressions of spermatogenesis-related genes induced by TT have not been fully elucidated. METHODS Eight-week-old Sprague-Dawley rats were grouped as follows: group 1 (sham-operated), group 2 (TT without reperfusion) and group 3 (TT with reperfusion). TT was induced by rotating the left testis 720° for 1 h. Testicular reperfusion proceeded for 24 h. Histopathological examination, oxidative stress biomarker measurements, RNA sequencing and RT-PCR were performed. RESULTS Testicular ischemia/reperfusion injury induced marked histopathological changes. Germ cell apoptosis was significantly increased in group 3 compared with group 1 and 2 (mean apoptotic index: 26.22 vs. 0.64 and 0.56; p = 0.024, and p = 0.024, respectively). Johnsen score in group 3 was smaller than that in group 1 and 2 (mean: 8.81 vs 9.45 and 9.47 points/tubule; p = 0.001, p < 0.001, respectively). Testicular ischemia/reperfusion injury significantly upregulated the expression of genes associated with apoptosis and antioxidant enzymes and significantly downregulated the expression of genes associated with spermatogenesis. CONCLUSION One hour of TT followed by reperfusion injury caused histopathological testicular damage. The relatively high Johnsen score indicated spermatogenesis was maintained. Genes associated with spermatogenesis were downregulated in the TT rat model. IMPACT How ischemia/reperfusion injury in testicular torsion (TT) affects the expressions of genes associated with spermatogenesis has not been fully elucidated. This is the first study to report comprehensive gene expression profiles using next generation sequencing for an animal model of TT. Our results revealed that ischemia/reperfusion injury downregulated the expression of genes associated with spermatogenesis and sperm function in addition to histopathological damage, even though the duration of ischemia was short.
Collapse
Affiliation(s)
- Hiroto Katami
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Takayuki Fujii
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Aya Tanaka
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Ken-Ichi Ohta
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan
| | - Ryuichi Shimono
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa Prefecture, Japan.
| |
Collapse
|
2
|
Barrett ES, Sharghi S, Thurston SW, Sobolewski Terry M, Loftus CT, Karr CJ, Nguyen RH, Swan SH, Sathyanarayana S. Associations of Exposure to Air Pollution during the Male Programming Window and Mini-Puberty with Anogenital Distance and Penile Width at Birth and at 1 Year of Age in the Multicenter U.S. TIDES Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:117001. [PMID: 37966231 PMCID: PMC10648757 DOI: 10.1289/ehp12627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Ambient air pollution may be a developmental endocrine disruptor. In animal models, gestational and perinatal exposure to diesel exhaust and concentrated particulate matter alters anogenital distance (AGD), a marker of prenatal androgen activity, in both sexes. Little is known in humans. OBJECTIVES We examined exposure to fine particulate matter (PM 2.5 ) and nitrogen dioxide (NO 2 ) in relation to human AGD at birth and at 1 year of age, focusing on exposures during critical windows of reproductive development: the male programming window (MPW; gestational weeks 8-14) and mini-puberty (postnatal months 1-3). METHODS The Infant Development and Environment Study (TIDES) recruited first trimester pregnant women (n = 687 ) at four U.S. sites (Minneapolis, Minnesota; Rochester, New York; San Francisco, California; and Seattle, Washington) from 2010 to 2012. We measured anus to clitoris (AGD-AC) and anus to fourchette (AGD-AF) in female infants at birth; in males, we measured anus to penis (AGD-AP), anus to scrotum (AGD-AS), and penile width at birth and at 1 year of age. Using advanced spatiotemporal models, we estimated maternal exposure to PM 2.5 and NO 2 in the MPW and mini-puberty. Covariate-adjusted, sex-stratified linear regression models examined associations between PM 2.5 and NO 2 and AGD. RESULTS In males, a 1 - μ g / m 3 increase in PM 2.5 exposure during the MPW was associated with shorter AGD at birth, but a longer AGD at 1 year of age (e.g., birth AGD-AP: β = - 0.35 mm ; 95% CI: - 0.62 , - 0.07 ; AGD-AS: β = 0.37 mm ; 95% CI: 0.02, 0.73). Mini-pubertal PM 2.5 exposure was also associated with shorter male AGD-AP (β = - 0.50 mm ; 95% CI: - 0.89 , - 0.11 ) at 1 year of age. Although not associated with male AGD measures, 1 -ppb increases in NO 2 exposure during the MPW (β = - 0.07 mm ; 95% CI: - 0.02 , - 0.12 ) and mini-puberty (β = - 0.04 mm ; 95% CI: - 0.08 , 0.01) were both associated with smaller penile width at 1 year of age. Results were similar in multipollutant models, where we also observed that in females AGD-AC was inversely associated with PM 2.5 exposure, but positively associated with NO 2 exposure. DISCUSSION PM 2.5 and NO 2 exposures during critical pre- and postnatal windows may disrupt reproductive development. More work is needed to confirm these novel results and clarify mechanisms. https://doi.org/10.1289/EHP12627.
Collapse
Affiliation(s)
- Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Sima Sharghi
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sally W. Thurston
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Marissa Sobolewski Terry
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Christine T. Loftus
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Catherine J. Karr
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Ruby H.N. Nguyen
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shanna H. Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Costa-Beber LC, Goettems-Fiorin PB, Dos Santos JB, Friske PT, Heck TG, Hirsch GE, Ludwig MS. Ovariectomy reduces the cardiac cytoprotection in rats exposed to particulate air pollutant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23395-23404. [PMID: 33443732 DOI: 10.1007/s11356-021-12350-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Fine particulate matter (PM2.5) has been considered a risk factor for cardiovascular diseases by inducing an oxidative and inflammatory phenotype. Besides, the reduction of 17β-estradiol (E2) levels during menopause is a natural risk for cardiovascular outcomes. During the E2 downfall, there is a high requirement of the 70-kDa heat shock proteins (HSP70), which present essential antioxidant, anti-inflammatory, and anti-senescence roles. We investigated if the ovariectomy, an animal model for menopause, could induce additional effects in cardiac health by impairing oxidative and heat shock response parameters of female rats chronically exposed to residual oil fly ash (ROFA; an inorganic fraction of PM2.5). Thus, ROFA was obtained from São Paulo (Brazil) and solubilized it in saline. Further, female Wistar rats were exposed to 50 μL of saline (control group) or ROFA solution (250 μg) (polluted) by intranasal instillation, 5 days/week, 12 weeks. At the 12th week, animals were subdivided into four groups (n = 6 p/group): control, OVX, polluted, and polluted + OVX. Control and polluted were submitted to false surgery, while OVX and polluted + OVX were ovariectomized. ROFA or saline exposure continued for 12 weeks. Ovariectomy reduced the cardiac catalase activity and iHSP70 expression in female rats exposed to ROFA. Neither plasma eHSP72 levels nor H-index (eHSP72 to cardiac iHSP70 ratio) was affected. In conclusion, ovariectomy reduces the cardiac cytoprotection and antioxidant defense, and enhances the susceptibility to premature cellular senescence in rats exposed to ROFA.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil.
| | - Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Atmospheric Pollution Laboratory, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite 245, Porto Alegre, RS, Brazil
| | - Jaíne Borges Dos Santos
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Paula Taís Friske
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
- Medicine Course, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Ijuí, RS, Brazil
| | - Gabriela Elisa Hirsch
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
- Medicine Course, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Ijuí, RS, Brazil
| |
Collapse
|
4
|
Costa-Beber LC, Goettems-Fiorin PB, Dos Santos JB, Friske PT, Frizzo MN, Heck TG, Hirsch GE, Ludwig MS. Ovariectomy enhances female rats' susceptibility to metabolic, oxidative, and heat shock response effects induced by a high-fat diet and fine particulate matter. Exp Gerontol 2020; 145:111215. [PMID: 33340683 DOI: 10.1016/j.exger.2020.111215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/20/2020] [Accepted: 12/12/2020] [Indexed: 01/21/2023]
Abstract
Obesity and exposure to fine particulate matter (air pollutant PM2.5) are important risk factors for metabolic and cardiovascular diseases. They are also related to early menopause. The reduction of 17β-estradiol (E2) levels during female climacteric, marked by menopause, is of significant concern because of its imminent influence on metabolism, redox and inflammatory status. This complex homeostasis-threatening scenario may induce a heat shock response (HSR) in cells, enhancing the expression of the 70 kDa heat shock protein (HSP70). A failure in this mechanism could predispose women to cardiovascular diseases. In this study, we evaluated if the climacteric could represent an additional risk among obese rats exposed to PM2.5 by worsening lipid, oxidative, and inflammatory parameters and HSP70 in cardiac tissue. We induced obesity in female Wistar rats using a high-fat diet (HFD) (58.3% as fats) and exposed them to 50 μL of saline 0.9% (control, n = 15) or 250 μg residual oil fly ash (ROFA, the inorganic portion of PM2.5) (polluted, n = 15) by intranasal instillation, 5 days/w for 12 weeks. At the 12th week, we subdivided these animals into four groups: control (n = 6), OVX (n = 9), polluted (n = 6) and polluted + OVX (n = 9). OVX and polluted + OVX were submitted to a bilateral ovariectomy (OVX), a surgical model for menopause, while control and polluted received a false surgery (sham). ROFA exposure and HFD consumption were continued for 12 additional weeks, after which the animals were euthanized. ROFA enhanced the susceptibility to ovariectomy-induced dyslipidemia, while ovariectomy predisposed female rats to the ROFA-induced decrease of cardiac iHSP70 expression. Ovariectomy also decreased the IL-6 levels and IL-6/IL-10 in obese animals, reinforcing a metabolic impairment and a failure to respond to unfavorable conditions. Our results support the hypothesis that obese ovariectomized animals are predisposed to a metabolic worsening under polluted conditions and are at higher risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil.
| | - Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Atmospheric Pollution Laboratory, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 Porto Alegre, RS, Brazil
| | - Jaíne Borges Dos Santos
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil
| | - Paula Taís Friske
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Atmospheric Pollution Laboratory, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 Porto Alegre, RS, Brazil; Medicine Course, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Ijuí, RS, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil; Medicine Course, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Ijuí, RS, Brazil
| | - Gabriela Elisa Hirsch
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil; Medicine Course, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Ijuí, RS, Brazil
| |
Collapse
|
5
|
Plunk EC, Richards SM. Endocrine-Disrupting Air Pollutants and Their Effects on the Hypothalamus-Pituitary-Gonadal Axis. Int J Mol Sci 2020; 21:ijms21239191. [PMID: 33276521 PMCID: PMC7731392 DOI: 10.3390/ijms21239191] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Anthropogenic endocrine-disrupting chemicals (EDCs) can contaminate air, soil, and water. Human exposures to EDCs occur through inhalation, absorption, and ingestion. EDCs act by disrupting various pathways in the endocrine system. When the hypothalamic–pituitary–gonadal (HPG) axis is disrupted by EDCs, there can be effects on fertility in both men and women. Not only can fertility be indirectly affected by EDC disruptions of the HPG axis, but EDCs can also directly affect the menstrual cycle and sperm morphology. In this review, we will discuss the current findings on EDCs that can be inhaled. This review examines effects of exposure to prominent EDCs: brominated and organophosphate flame retardants, diesel exhaust, polycyclic aromatic hydrocarbons, cadmium and lead, TCDD, and polychlorinated biphenyls on fertility through alterations that disrupt the HPG axis and fertility through inhalation. Although the studies included herein include multiple exposure routes, all the studies indicate receptor interactions that can occur from inhalation and the associated effects of all compounds on the HPG axis and subsequent fertility.
Collapse
Affiliation(s)
- Elizabeth C. Plunk
- Department of Environmental Medicine, University of Rochester Medical School, Rochester, NY 14642, USA
- Correspondence:
| | - Sean M. Richards
- Department of Biological, Geological and Environmental Sciences, University of Tennessee-Chattanooga, Chattanooga, TN 37403, USA;
- Department of Obstetrics and Gynecology, College of Medicine, University of Tennessee Health Science Center, Chattanooga, TN 37403, USA
| |
Collapse
|
6
|
Skovmand A, Jensen ACØ, Maurice C, Marchetti F, Lauvås AJ, Koponen IK, Jensen KA, Goericke-Pesch S, Vogel U, Hougaard KS. Effects of maternal inhalation of carbon black nanoparticles on reproductive and fertility parameters in a four-generation study of male mice. Part Fibre Toxicol 2019; 16:13. [PMID: 30879468 PMCID: PMC6421671 DOI: 10.1186/s12989-019-0295-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/21/2019] [Indexed: 03/06/2023] Open
Abstract
Background Previous findings indicate that in utero exposure to nanoparticles may affect the reproductive system in male offspring. Effects such as decreased sperm counts and testicular structural changes in F1 males have been reported following maternal airway exposure to carbon black during gestation. In addition, a previous study in our laboratory suggested that the effects of in utero exposure of nanoparticles may span further than the first generation, as sperm content per gram of testis was significantly lowered in F2 males. In the present study we assessed male fertility parameters following in utero inhalation exposure to carbon black in four generations of mice. Results Filter measurements demonstrated that the time-mated females were exposed to a mean total suspended particle mass concentration of 4.79 ± 1.86 or 33.87 ± 14.77 mg/m3 for the low and high exposure, respectively. The control exposure was below the detection limit (LOD 0.08 mg/m3). Exposure did not affect gestation and litter parameters in any generation. No significant changes were observed in body and reproductive organ weights, epididymal sperm parameters, daily sperm production, plasma testosterone or fertility. Conclusion In utero exposure to carbon black nanoparticles, at occupationally relevant exposure levels, via maternal whole body inhalation did not affect male-specific reproductive, fertility and litter parameters in four generations of mice.
Collapse
Affiliation(s)
- Astrid Skovmand
- The National Research Centre for the Working Environment, Copenhagen Ø, Denmark.,Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Clotilde Maurice
- Environmental Health Science Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Francesco Marchetti
- Environmental Health Science Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Anna J Lauvås
- Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ismo K Koponen
- The National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Keld A Jensen
- The National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Sandra Goericke-Pesch
- Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg C, Denmark.,Reproductive Unit of the Clinics - Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen Ø, Denmark.,Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Karin S Hougaard
- The National Research Centre for the Working Environment, Copenhagen Ø, Denmark. .,Institute of Public Health, University of Copenhagen, Copenhagen K, Denmark.
| |
Collapse
|
7
|
Meng P, Tang X, Jiang X, Tang Q, Bai L, Xia Y, Zou Z, Qin X, Cao X, Chen C, Cheng S. Maternal exposure to traffic pollutant causes impairment of spermatogenesis and alterations of genome-wide mRNA and microRNA expression in F2 male mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:1-10. [PMID: 30265862 DOI: 10.1016/j.etap.2018.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Male spermatogenesis dysfunctions are associated with environmental pollutants, but the detailed mechanisms remain poorly understood. In this study, healthy C57BL/6 J mice were used to establish an animal model of maternal exposure to traffic pollutant during pregnancy, and the toxic effects on the reproductive system of F2 male mice were analysed using mRNA and miRNA microarray. Our results showed that 54 miRNAs and 1927 mRNAs were significantly altered in the exposed group. Gene Ontology (GO) analysis revealed that the most significant GO terms for biological process, molecular function and cellular component were myeloid cell differentiation, growth factor binding and main axon. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that the biosynthesis of amino acids was the most significant pathway and that the cytokine-cytokine receptor interaction was the most abundant pathway (37 genes). Protein-protein interaction (PPI) and the miRNA-mRNA network were constructed with Cytoscape. The hub genes, Tnf, Il10 and Gapdh, were closely related to immuno-regulation and their miRNA regulators were reversely changed. Together, our results indicate that maternal exposure to traffic pollutant can cause spermatogenesis damage in F2 male mice possibly through the destroyed immunoprivileged environment in testis mediated by the aberrant expression of miRNA and mRNA.
Collapse
Affiliation(s)
- Pan Meng
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xu Tang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China; Department of Public Surveillance, Chenghua District Center for Control and Prevention, Sichuan, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People's Republic of China; Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qianghu Tang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - LuLu Bai
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xianqing Cao
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China; Post-doctoral Research Stations of Nursing Science, School of Nursing, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
8
|
Bara N, Eshwarmoorthy M, Subaharan K, Kaul G. Mesoporous silica nanoparticle is comparatively safer than zinc oxide nanoparticle which can cause profound steroidogenic effects on pregnant mice and male offspring exposed in utero. Toxicol Ind Health 2018; 34:507-524. [DOI: 10.1177/0748233718757641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The increasing use of nanomaterials has naturally caused heightened concerns about their potential risks to human and animal health. We investigated the effect of zinc oxide nanoparticles (ZnO NPs) and mesoporous silica nanoparticles (MSN) on steroidogenesis in the corpus luteum (CL) of pregnant mice and testis of male offspring. Pregnant albino mice were exposed to ZnO NPs and MSN for 2 days on alternate days, gestation days 15–19. Hepatic injury marker enzymes increased in the higher concentration of NM-exposed mother mice, but histological examination revealed no changes in the placenta of pregnant mice, whereas testis of male offspring showed gross pathological changes. The expression pattern of progesterone biosynthesis-related genes was also altered in the CL of NP-exposed pregnant mice. In utero exposure of ZnO NPs increased the relative expression of StAR in 100 mg/kg body weight (BW) ZnO NP-treated and bulk ZnO-treated groups and P450 side-chain cleavage enzyme (P450scc) in 50 mg/kg BW ZnO NP-treated and 100 mg/kg of bulk ZnO-treated male offspring. Serum testosterone concentration significantly increased in the 100 mg/kg of bulk ZnO-treated group and decreased in the 250 mg/kg of MSN-treated group and a single dose of 300 mg/Kg BW of ZnO NPs caused miscarriages and adversely affected the developing foetus in mice.
Collapse
Affiliation(s)
- Nisha Bara
- Animal Biochemistry Division, N.T. Lab-I, National Dairy Research Institute & Deemed University (Government of India), Karnal, India
| | - M Eshwarmoorthy
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Kesavan Subaharan
- Division of Insect Ecology, National Bureau of Agricultural Insect Resources, Bangalore, India
| | - Gautam Kaul
- Animal Biochemistry Division, N.T. Lab-I, National Dairy Research Institute & Deemed University (Government of India), Karnal, India
| |
Collapse
|
9
|
Fennell TR, Mortensen NP, Black SR, Snyder RW, Levine KE, Poitras E, Harrington JM, Wingard CJ, Holland NA, Pathmasiri W, Sumner SCJ. Disposition of intravenously or orally administered silver nanoparticles in pregnant rats and the effect on the biochemical profile in urine. J Appl Toxicol 2016; 37:530-544. [PMID: 27696470 DOI: 10.1002/jat.3387] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 11/08/2022]
Abstract
Few investigations have been conducted on the disposition and fate of silver nanoparticles (AgNP) in pregnancy. The distribution of a single dose of polyvinylpyrrolidone (PVP)-stabilized AgNP was investigated in pregnant rats. Two sizes of AgNP, 20 and 110 nm, and silver acetate (AgAc) were used to investigate the role of AgNP diameter and particle dissolution in tissue distribution, internal dose and persistence. Dams were administered AgNP or AgAc intravenously (i.v.) (1 mg kg-1 ) or by gavage (p.o.) (10 mg kg-1 ), or vehicle alone, on gestation day 18 and euthanized at 24 or 48 h post-exposure. The silver concentration in tissues was measured using inductively-coupled plasma mass spectrometry. The distribution of silver in dams was influenced by route of administration and AgNP size. The highest concentration of silver (μg Ag g-1 tissue) at 48 h was found in the spleen for i.v. administered AgNP, and in the lungs for AgAc. At 48 h after p.o. administration of AgNP, the highest concentration was measured in the cecum and large intestine, and for AgAc in the placenta. Silver was detected in placenta and fetuses for all groups. Markers of cardiovascular injury, oxidative stress marker, cytokines and chemokines were not significantly elevated in exposed dams compared to vehicle-dosed control. NMR metabolomics analysis of urine indicated that AgNP and AgAc exposure impact the carbohydrate, and amino acid metabolism. This study demonstrates that silver crosses the placenta and is transferred to the fetus regardless of the form of silver. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Timothy R Fennell
- Discovery - Science - Technology, RTI International, Research Triangle Park, NC, 27709, USA
| | - Ninell P Mortensen
- Discovery - Science - Technology, RTI International, Research Triangle Park, NC, 27709, USA
| | - Sherry R Black
- Discovery - Science - Technology, RTI International, Research Triangle Park, NC, 27709, USA
| | - Rodney W Snyder
- Discovery - Science - Technology, RTI International, Research Triangle Park, NC, 27709, USA
| | - Keith E Levine
- Discovery - Science - Technology, RTI International, Research Triangle Park, NC, 27709, USA
| | - Eric Poitras
- Discovery - Science - Technology, RTI International, Research Triangle Park, NC, 27709, USA
| | - James M Harrington
- Discovery - Science - Technology, RTI International, Research Triangle Park, NC, 27709, USA
| | - Christopher J Wingard
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Nathan A Holland
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Wimal Pathmasiri
- Discovery - Science - Technology, RTI International, Research Triangle Park, NC, 27709, USA
| | - Susan C J Sumner
- Discovery - Science - Technology, RTI International, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
10
|
Yang L, Ma S, Wan Y, Duan S, Ye S, Du S, Ruan X, Sheng X, Weng Q, Taya K, Xu M. In vitro effect of 4-pentylphenol and 3-methyl-4-nitrophenol on murine splenic lymphocyte populations and cytokine/granzyme production. J Immunotoxicol 2016; 13:548-56. [DOI: 10.3109/1547691x.2016.1140853] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lubing Yang
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, PR China
| | - Sihui Ma
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, PR China
| | - Yifang Wan
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
| | - Shuqi Duan
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
| | - Siyan Ye
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
| | - Shengjie Du
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
| | - Xinwei Ruan
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
| | - Xia Sheng
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
| | - Qiang Weng
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, PR China
| | - Kazuyoshi Taya
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Meiyu Xu
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing, PR China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, PR China
| |
Collapse
|
11
|
Shin HS, Seo JH, Jeong SH, Park SW, Park YI, Son SW, Kang HG, Kim JS. Effect on the H19 gene methylation of sperm and organs of offspring after chlorpyrifos-methyl exposure during organogenesis period. ENVIRONMENTAL TOXICOLOGY 2015; 30:1355-1363. [PMID: 25782373 DOI: 10.1002/tox.21923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/30/2013] [Accepted: 11/03/2013] [Indexed: 06/04/2023]
Abstract
To elucidate the effect on the H19 gene methylation of sperm and organs in offspring by chlorpyrifos-methyl (CPM) exposure during organogenesis period, CPM was administered at doses of 4 (CPM4), 20 (CPM20), and 100 (CPM100) mg/kg bw/day from 7 days post coitum (d.p.c.) to 17 d.p.c. after mating CAST/Ei (♂) and B6 (♀). Anogenital distance (AGD) was measured at postnatal day (PND) 21. Clinical signs, body weights, feed and water consumption, organs weights, serum hormone values, and H19 methylation level of organ and sperm were measured at PND63. Body weights were significantly lower than control until PND6. AGD was significantly decreased in the CPM100 group in males and increased in the CPM20 group in females. The absolute weights of the thymus and epididymis were significantly increased for males in all of CPM treatment groups. In the CPM20 group, absolute weights of liver, kidney, heart, lung, spleen, prostate gland, and testes were significantly increased. Testosterone concentrations in serum were significantly increased by CPM treatment in males. H19 methylation level of liver and thymus showed decreased pattern in a dose-dependent manner in males. The levels of H19 methylation in sperm were 73.76 ± 7.16% (Control), 57.84 ± 12.94% (CPM4), 64.24 ± 3.79% (CPM20), and 64.24 ± 3.79% (CPM100). Conclusively, CPM exposure during organogenesis period can disrupt H19 methylation in sperm, liver, and thymus and disturb the early development of offspring.
Collapse
Affiliation(s)
- Hyo-Sook Shin
- Toxicology & Residue Chemistry Division, Animal, Plant and Fisheries Quarantine and Inspection Agency, 175 Anyangro, Manan-gu, Anyang-si, Gyeonggi-do 430-757, Republic of Korea
| | - Jong-Hun Seo
- Toxicology & Residue Chemistry Division, Animal, Plant and Fisheries Quarantine and Inspection Agency, 175 Anyangro, Manan-gu, Anyang-si, Gyeonggi-do 430-757, Republic of Korea
| | - Sang-Hee Jeong
- GLP Research Center, College of Natural Science, Hoseo University, 79 Hoseoro, Baebangup, Asan-si, Chungnam, 336-795, Republic of Korea
| | - Sung-Won Park
- Toxicology & Residue Chemistry Division, Animal, Plant and Fisheries Quarantine and Inspection Agency, 175 Anyangro, Manan-gu, Anyang-si, Gyeonggi-do 430-757, Republic of Korea
| | - Young-Il Park
- Toxicology & Residue Chemistry Division, Animal, Plant and Fisheries Quarantine and Inspection Agency, 175 Anyangro, Manan-gu, Anyang-si, Gyeonggi-do 430-757, Republic of Korea
| | - Seong-Wan Son
- Toxicology & Residue Chemistry Division, Animal, Plant and Fisheries Quarantine and Inspection Agency, 175 Anyangro, Manan-gu, Anyang-si, Gyeonggi-do 430-757, Republic of Korea
| | - Hwan-Goo Kang
- Toxicology & Residue Chemistry Division, Animal, Plant and Fisheries Quarantine and Inspection Agency, 175 Anyangro, Manan-gu, Anyang-si, Gyeonggi-do 430-757, Republic of Korea
| | - Jin Suk Kim
- Pharmacology & Toxicology Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdongro, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| |
Collapse
|
12
|
Ema M, Hougaard KS, Kishimoto A, Honda K. Reproductive and developmental toxicity of carbon-based nanomaterials: A literature review. Nanotoxicology 2015; 10:391-412. [DOI: 10.3109/17435390.2015.1073811] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Snyder RW, Fennell TR, Wingard CJ, Mortensen NP, Holland NA, Shannahan JH, Pathmasiri W, Lewin AH, Sumner SCJ. Distribution and biomarker of carbon-14 labeled fullerene C60 ([(14) C(U)]C60 ) in pregnant and lactating rats and their offspring after maternal intravenous exposure. J Appl Toxicol 2015; 35:1438-51. [PMID: 26081520 DOI: 10.1002/jat.3177] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/11/2015] [Accepted: 04/21/2015] [Indexed: 11/09/2022]
Abstract
A comprehensive distribution study was conducted in pregnant and lactating rats exposed to a suspension of uniformly carbon-14 labeled C60 ([(14) C(U)]C60 ). Rats were administered [(14) C(U)]C60 (~0.2 mg [(14) C(U)]C60 kg(-1) body weight) or 5% polyvinylpyrrolidone (PVP)-saline vehicle via a single tail vein injection. Pregnant rats were injected on gestation day (GD) 11 (terminated with fetuses after either 24 h or 8 days), GD15 (terminated after 24 h or 4 days), or GD18 (terminated after 24 h). Lactating rats were injected on postnatal day 8 and terminated after 24 h, 3 or 11 days. The distribution of radioactivity in pregnant dams was influenced by both the state of pregnancy and time of termination after exposure. The percentage of recovered radioactivity in pregnant and lactating rats was highest in the liver and lungs. Radioactivity was quantitated in over 20 tissues. Radioactivity was found in the placenta and in fetuses of pregnant dams, and in the milk of lactating rats and in pups. Elimination of radioactivity was < 2% in urine and feces at each time point. Radioactivity remained in blood circulation up to 11 days after [(14) C(U)]C60 exposure. Biomarkers of inflammation, cardiovascular injury and oxidative stress were measured to study the biological impacts of [(14) C(U)]C60 exposure. Oxidative stress was elevated in female pups of exposed dams. Metabolomics analysis of urine showed that [(14) C(U)]C60 exposure to pregnant rats impacted the pathways of vitamin B, regulation of lipid and sugar metabolism and aminoacyl-tRNA biosynthesis. This study demonstrated that [(14) C(U)]C60 crosses the placenta at all stages of pregnancy examined, and is transferred to pups via milk.
Collapse
Affiliation(s)
- Rodney W Snyder
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| | - Timothy R Fennell
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| | - Christopher J Wingard
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Ninell P Mortensen
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| | - Nathan A Holland
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Jonathan H Shannahan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Wimal Pathmasiri
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| | - Anita H Lewin
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| | - Susan C J Sumner
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
14
|
A perspective on the developmental toxicity of inhaled nanoparticles. Reprod Toxicol 2015; 56:118-40. [PMID: 26050605 DOI: 10.1016/j.reprotox.2015.05.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 12/25/2022]
Abstract
This paper aimed to clarify whether maternal inhalation of engineered nanoparticles (NP) may constitute a hazard to pregnancy and fetal development, primarily based on experimental animal studies of NP and air pollution particles. Overall, it is plausible that NP may translocate from the respiratory tract to the placenta and fetus, but also that adverse effects may occur secondarily to maternal inflammatory responses. The limited database describes several organ systems in the offspring to be potentially sensitive to maternal inhalation of particles, but large uncertainties exist about the implications for embryo-fetal development and health later in life. Clearly, the potential for hazard remains to be characterized. Considering the increased production and application of nanomaterials and related consumer products a testing strategy for NP should be established. Due to large gaps in data, significant amounts of groundwork are warranted for a testing strategy to be established on a sound scientific basis.
Collapse
|
15
|
Kyjovska ZO, Jacobsen NR, Saber AT, Bengtson S, Jackson P, Wallin H, Vogel U. DNA strand breaks, acute phase response and inflammation following pulmonary exposure by instillation to the diesel exhaust particle NIST1650b in mice. Mutagenesis 2015; 30:499-507. [DOI: 10.1093/mutage/gev009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
16
|
Rengaraj D, Kwon WS, Pang MG. Effects of motor vehicle exhaust on male reproductive function and associated proteins. J Proteome Res 2014; 14:22-37. [PMID: 25329744 DOI: 10.1021/pr500939c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Air pollution is consistently associated with various diseases and subsequent death among children, adult, and elderly people worldwide. Motor vehicle exhaust contributes to a large proportion of the air pollution present. The motor vehicle exhaust systems emit a variety of toxic components, including carbon monoxide, nitrogen oxides, volatile organic compounds, ozone, particulate matter, and polycyclic aromatic hydrocarbons. Several epidemiological studies and laboratory studies have demonstrated that these components are potentially mutagenic, carcinogenic, and endocrine disrupting agents. However, their impact on male reproductive function and associated proteins is not very clear. Therefore, a comprehensive review on the effects of motor vehicle exhaust on male reproductive function and associated proteins is needed to better understand the risks of exhaust exposure for men. We found that motor vehicle exhaust can cause harmful effects on male reproductive functions by altering organ weights, reducing the spermatozoa qualities, and inducing oxidative stress. Remarkably, motor vehicle exhaust exposure causes significant changes in the expression patterns of proteins that are key components involved in spermatogenesis and testosterone synthesis. In conclusion, this review helps to describe the risks of vehicle exhaust exposure and its relationship to potential adverse effects on the male reproduction system.
Collapse
Affiliation(s)
- Deivendran Rengaraj
- Department of Animal Science & Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | | | | |
Collapse
|
17
|
|
18
|
Ema M, Naya M, Horimoto M, Kato H. Developmental toxicity of diesel exhaust: A review of studies in experimental animals. Reprod Toxicol 2013; 42:1-17. [DOI: 10.1016/j.reprotox.2013.06.074] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 05/22/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
|
19
|
Sun J, Zhang Q, Wang Z, Yan B. Effects of nanotoxicity on female reproductivity and fetal development in animal models. Int J Mol Sci 2013; 14:9319-37. [PMID: 23629667 PMCID: PMC3676785 DOI: 10.3390/ijms14059319] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 01/13/2023] Open
Abstract
The extensive application of nanomaterials in industry, medicine and consumer products has raised concerns about their potential toxicity. The female population is particularly vulnerable and deserves special attention because toxicity in this group may impact both female reproductivity and fetal development. Mouse and zebrafish models each have their own unique features and studies using these models to examine the potential toxicity of various nanoparticles are compared and summarized in this review. Several nanoparticles exhibit detrimental effects on female reproductivity as well as fetal development, and these adverse effects are related to nanoparticle composition, surface modification, dose, exposure route and animal species. Limited studies on the mechanisms of nanotoxicity are also documented and reviewed herein.
Collapse
Affiliation(s)
- Jianling Sun
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China; E-Mails: (J.S.); (Q.Z.)
| | - Qiu Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China; E-Mails: (J.S.); (Q.Z.)
| | - Zhiping Wang
- School of Public Health, Shandong University, Jinan 250100, China; E-Mail:
| | - Bing Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China; E-Mails: (J.S.); (Q.Z.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-0531-8838-0019; Fax: +86-0531-8838-0029
| |
Collapse
|
20
|
Kyjovska ZO, Boisen AMZ, Jackson P, Wallin H, Vogel U, Hougaard KS. Daily sperm production: application in studies of prenatal exposure to nanoparticles in mice. Reprod Toxicol 2013; 36:88-97. [PMID: 23295323 DOI: 10.1016/j.reprotox.2012.12.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/23/2012] [Accepted: 12/15/2012] [Indexed: 01/10/2023]
Abstract
We investigated the influence of maternal airway exposure to nanoparticulate titanium dioxide (TiO₂, UV-Titan) and carbon black (CB, Printex90), on male reproductive function in the two following generations. Time-mated C57BL/6J mice were exposed by inhalation to UV-Titan, or by intratracheal instillation with Printex90. Body and testicle weight, sperm content per g testicular parenchyma and daily sperm production (DSP) were assessed. The protocol for assessment of DSP was optimized for application in mice (C57BL/6J) and the influence of different parameters was studied. Maternal particulate exposure did not affect DSP statistically significantly in the F1 generation, although TiO₂ tended to reduce sperm counts. Overall, time-to-first F2 litter increased with decreasing sperm production. There was no effect on sperm production in the F2 generation originating after TiO₂ exposure. F2 offspring, whose fathers were prenatally exposed to Printex90, showed lowered sperm production. Furthermore, we report statistically significant differences in sperm production between mouse strains.
Collapse
Affiliation(s)
- Zdenka Orabi Kyjovska
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark.
| | | | | | | | | | | |
Collapse
|
21
|
Jackson P, Vogel U, Wallin H, Hougaard KS. Prenatal Exposure to Carbon Black (Printex 90): Effects on Sexual Development and Neurofunction. Basic Clin Pharmacol Toxicol 2011; 109:434-7. [DOI: 10.1111/j.1742-7843.2011.00745.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Pires A, de Melo EN, Mauad T, Nascimento Saldiva PH, de Siqueira Bueno HM. Pre- and postnatal exposure to ambient levels of urban particulate matter (PM2.5) affects mice spermatogenesis. Inhal Toxicol 2011; 23:237-45. [DOI: 10.3109/08958378.2011.563508] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|