1
|
Intharuksa A, Arunotayanun W, Yooin W, Sirisa-ard P. A Comprehensive Review of Andrographis paniculata (Burm. f.) Nees and Its Constituents as Potential Lead Compounds for COVID-19 Drug Discovery. Molecules 2022; 27:molecules27144479. [PMID: 35889352 PMCID: PMC9316804 DOI: 10.3390/molecules27144479] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
The COVID-19 pandemic has intensively disrupted global health, economics, and well-being. Andrographis paniculata (Burm. f.) Nees has been used as a complementary treatment for COVID-19 in several Asian countries. This review aimed to summarize the information available regarding A. paniculata and its constituents, to provide critical points relating to its pharmacological properties, safety, and efficacy, revealing its potential to serve as a source of lead compounds for COVID-19 drug discovery. A. paniculata and its active compounds possess favorable antiviral, anti-inflammatory, immunomodulatory, and antipyretic activities that could be beneficial for COVID-19 treatment. Interestingly, recent in silico and in vitro studies have revealed that the active ingredients in A. paniculata showed promising activities against 3CLpro and its virus-specific target protein, human hACE2 protein; they also inhibit infectious virion production. Moreover, existing publications regarding randomized controlled trials demonstrated that the use of A. paniculata alone or in combination was superior to the placebo in reducing the severity of upper respiratory tract infection (URTI) manifestations, especially as part of early treatment, without serious side effects. Taken together, its chemical and biological properties, especially its antiviral activities against SARS-CoV-2, clinical trials on URTI, and the safety of A. paniculata, as discussed in this review, support the argument that A. paniculata is a promising natural source for drug discovery regarding COVID-19 post-infectious treatment, rather than prophylaxis.
Collapse
Affiliation(s)
- Aekkhaluck Intharuksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (W.Y.); (P.S.-a.)
| | - Warunya Arunotayanun
- Kanchanabhishek Institute of Medical and Public Health Technology, Praboromarajchanok Institute, Nonthaburi 11150, Thailand
- Correspondence:
| | - Wipawadee Yooin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (W.Y.); (P.S.-a.)
| | - Panee Sirisa-ard
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (W.Y.); (P.S.-a.)
| |
Collapse
|
2
|
Sundhani E, Lukitaningsih E, Nurrochmad A, Nugroho AE. Potential pharmacokinetic and pharmacodynamic herb-drug interactions of Andrographis paniculata (Burm. f.) and andrographolide: A systematic review. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction: Herb–drug interactions (HDIs) in pharmacokinetics and pharmacodynamics can occur when natural compounds are used in combination with drugs. This study aimed to review the potential interaction of Andrographis paniculata (Burm. f.) extract (APE) and its primary compound andrographolide (AND) with several drugs exhibiting various pharmacological activities.Methods: In this systematic review, articles were collected from international databases such as PubMed, Science Direct, Springer Link, and Scopus until August 2021. The following keywords were used: Andrographis paniculata, andrographolide, HDI, drug interaction, pharmacokinetics, and pharmacology. This review was written in accordance with the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA), SYRCLE’s risk of bias (RoB) tool for animal intervention studies, and Cochrane RoB 2 tool to analyze the RoB for qualitative assessment.Results: Twelve articles were included in accordance with the inclusion and exclusion criteria of this study. Five studies explored the potential of HDIs for combining APE with drugs and AND with theophylline, etoricoxib, nabumetone, naproxen, and tolbutamide. Five studies focused on AND in combination with aminophylline and doxofylline, meloxicam, glyburide, glimepiride, metformin, and warfarin. Two studies tested the combination of APE with gliclazide and midazolam. The HDI mechanism involving the inhibition or induction of cytochrome P450 enzyme expression was dominant in influencing the drug’s pharmacokinetic profile. Pharmacological studies on the combination of several drugs, particularly anti-inflammatory and antidiabetic drugs, showed a synergistic activity.Conclusion: APE and AND have potential pharmacokinetic and pharmacodynamic HDIs with various drugs. This study can be used as a therapeutic consideration in clinical aspects related to the possibility of HDIs of A. paniculata (Burm. f.).
Collapse
Affiliation(s)
- Elza Sundhani
- Doctoral Program in Pharmaceutical Science, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Purwokerto, Jl. KH. Ahmad Dahlan Dukuhwaluh, Purwokerto, Central Java 53182, Indonesia
| | - Endang Lukitaningsih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Arief Nurrochmad
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Agung Endro Nugroho
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| |
Collapse
|
3
|
Suriyo T, Chotirat S, Rangkadilok N, Pholphana N, Satayavivad J. Interactive effects of Andrographis paniculata extracts and cancer chemotherapeutic 5-Fluorouracil on cytochrome P450s expression in human hepatocellular carcinoma HepG2 cells. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Mangwani N, Singh PK, Kumar V. Medicinal plants: Adjunct treatment to tuberculosis chemotherapy to prevent hepatic damage. J Ayurveda Integr Med 2019; 11:522-528. [PMID: 31679802 PMCID: PMC7772497 DOI: 10.1016/j.jaim.2019.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/29/2018] [Accepted: 02/18/2019] [Indexed: 02/07/2023] Open
Abstract
The effectiveness of herbs for the management of chemically induced hepatotoxicity has been discussed by many researchers. However, there is a paucity of compressive literature on the significance of hepatoprotective plants for the management of anti-TB drug induced toxicity. Anti-TB drugs have been reported to causes hepatic damage, due to which, many patients across the globe discontinued the treatment. Medicinal plants have multiple therapeutic effects. The assessment of biological activity of plants against Mycobacterium and its use for hepatic recovery provides an effective treatment approach. Traditionally used medicinal plants are the rich source of phytochemicals and secondary metabolites. These compounds can restore normal function, enzymatic activity and structure of hepatic cells against anti-TB drug induced hepatotoxicity. The present review covers comprehensive details on different hepatoprotective and antimycobacterial plants studied during past few decades so that potential adjuvants can be studied for Tuberculosis chemotherapy.
Collapse
Affiliation(s)
- Neelam Mangwani
- Value Addition Research and Development-Human Health, National Innovation Foundation-India, Grambharti, Mahudi Road, Gandhinagar, 382650, Gujarat, India
| | - Pawan Kumar Singh
- Value Addition Research and Development-Human Health, National Innovation Foundation-India, Grambharti, Mahudi Road, Gandhinagar, 382650, Gujarat, India.
| | - Vipin Kumar
- Value Addition Research and Development-Human Health, National Innovation Foundation-India, Grambharti, Mahudi Road, Gandhinagar, 382650, Gujarat, India
| |
Collapse
|
5
|
Martínez-Pérez EF, Hernández-Terán F, Serrano-Gallardo LB. IN VIVO EFFECT OF RUTA CHALEPENSIS EXTRACT ON HEPATIC CYTOCHROME 3A1 IN RATS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2017. [PMID: 28638868 PMCID: PMC5471483 DOI: 10.21010/ajtcam.v14i4.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Since the time when drugs began to be used, it became evident that they could produce a therapeutic effect, but also a clinical condition of toxicity or no effect at all on humans, despite using the same doses in different patients. Such untoward effects were termed “drug idiosyncrasy” and also “idiosyncratic drug effects”, but the factors producing such diverse responses were never taken into account. Materials and Methods: Ruta chalepensis L. (fringed rue) is an herbaceous plant of the Rutaceae family used in traditional medicine due to its properties, such as its analgesic and antipyretic effects. This study used 25 male rats divided into five groups. Plant extract was administered to Groups 1 and 2 at doses of 100 and 30 mg/kg/day, respectively, for three days; Group 3 was administered 100 mg/kg/day of dexamethasone (DEX), as well as 100 mg/kg/day of Ruta chalepensis extract; Group 4 was administered 100 mg/kg/day of DEX and treated as positive control; Group 5 was treated as negative control and was administered a physiological solution. Twenty-four hours after the the last dose, the animals were sacrificed and their livers were extracted. Results: The aqueous extract of Ruta chalepensis, intraperitoneally administered, was able to induce cytochrome 3A1 in doses of 30 mg/kg/day, and a greater inducing effect occurs when the plant is co-administered in doses of 100 mg/kg/day with dexamethasone. Conclusion: This study suggests that aqueous extract of Ruta chalepensis can induce cytochrome 3a1. This study helps provide a better understanding of CYP3a regulation. Future in vitro work is needed to determine the compounds that produce the cytochrome modulation.
Collapse
Affiliation(s)
- Edith Fabiola Martínez-Pérez
- Centro de Investigación Biomédicas (CIBM), Universidad Autónoma de Coahuila, Facultad de Medicina, Torreón, Coahuila, México
| | | | - Luis Benjamín Serrano-Gallardo
- Centro de Investigación Biomédicas (CIBM), Universidad Autónoma de Coahuila, Facultad de Medicina, Torreón, Coahuila, México
| |
Collapse
|
6
|
Jarukamjorn K, Jearapong N, Pimson C, Chatuphonprasert W. A High-Fat, High-Fructose Diet Induces Antioxidant Imbalance and Increases the Risk and Progression of Nonalcoholic Fatty Liver Disease in Mice. SCIENTIFICA 2016; 2016:5029414. [PMID: 27019761 PMCID: PMC4785277 DOI: 10.1155/2016/5029414] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/02/2016] [Indexed: 05/04/2023]
Abstract
Excessive fat liver is an important manifestation of nonalcoholic fatty liver disease (NAFLD), associated with obesity, insulin resistance, and oxidative stress. In the present study, the effects of a high-fat, high-fructose diet (HFFD) on mRNA levels and activities of the antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), were determined in mouse livers and brains. The histomorphology of the livers was examined and the state of nonenzymatic reducing system was evaluated by measuring the glutathione system and the lipid peroxidation. Histopathology of the liver showed that fat accumulation and inflammation depended on the period of the HFFD-consumption. The levels of mRNA and enzymatic activities of SOD, CAT, and GPx were raised, followed by the increases in malondialdehyde levels in livers and brains of the HFFD mice. The oxidized GSSG content was increased while the total GSH and the reduced GSH were decreased, resulting in the increase in the GSH/GSSG ratio in both livers and brains of the HFFD mice. These observations suggested that liver damage and oxidative stress in the significant organs were generated by continuous HFFD-consumption. Imbalance of antioxidant condition induced by long-term HFFD-consumption might increase the risk and progression of NAFLD.
Collapse
Affiliation(s)
- Kanokwan Jarukamjorn
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- *Kanokwan Jarukamjorn:
| | - Nattharat Jearapong
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Charinya Pimson
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | | |
Collapse
|
7
|
Effect of tetrahydrocurcumin on the profiles of drug-metabolizing enzymes induced by a high fat and high fructose diet in mice. Chem Biol Interact 2015; 239:67-75. [DOI: 10.1016/j.cbi.2015.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/12/2015] [Accepted: 06/18/2015] [Indexed: 12/26/2022]
|
8
|
Andrographis paniculata Extract and Andrographolide Modulate the Hepatic Drug Metabolism System and Plasma Tolbutamide Concentrations in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:982689. [PMID: 23997806 PMCID: PMC3753754 DOI: 10.1155/2013/982689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/28/2013] [Accepted: 07/10/2013] [Indexed: 01/16/2023]
Abstract
Andrographolide is the most abundant terpenoid of A. paniculata which is used in the treatment of diabetes. In this study, we investigated the effects of A. paniculata extract (APE) and andrographolide on the expression of drug-metabolizing enzymes in rat liver and determined whether modulation of these enzymes changed the pharmacokinetics of tolbutamide. Rats were intragastrically dosed with 2 g/kg/day APE or 50 mg/kg/day andrographolide for 5 days before a dose of 20 mg/kg tolbutamide was given. APE and andrographolide reduced the AUC0–12 h of tolbutamide by 37% and 18%, respectively, compared with that in controls. The protein and mRNA levels and enzyme activities of CYP2C6/11, CYP1A1/2, and CYP3A1/2 were increased by APE and andrographolide. To evaluate whether APE or andrographolide affected the hypoglycemic action of tolbutamide, high-fat diet-induced obese mice were used and treated in the same manner as the rats. APE and andrographolide increased CYP2C6/11 expression and decreased plasma tolbutamide levels. In a glucose tolerance test, however, the hypoglycemic effect of tolbutamide was not changed by APE or andrographolide. These results suggest that APE and andrographolide accelerate the metabolism rate of tolbutamide through increased expression and activity of drug-metabolizing enzymes. APE and andrographolide, however, do not impair the hypoglycemic effect of tolbutamide.
Collapse
|
9
|
Chatuphonprasert W, Udomsuk L, Monthakantirat O, Churikhit Y, Putalun W, Jarukamjorn K. Effects of Pueraria mirifica and miroestrol on the antioxidation-related enzymes in ovariectomized mice. ACTA ACUST UNITED AC 2012; 65:447-56. [PMID: 23356854 DOI: 10.1111/jphp.12003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/16/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The influences of Pueraria candollei var. mirifica (PM), a Thai medicinal plant with long tradition of medicinal consumption among menopausal women for rejuvenation and estrogen hormone replacement, on oxidative status in ovariectomized (OVX) mice were determined. METHODS The crude extract of PM and its active phytoestrogen, miroestrol (MR), were given to OVX mice. The effect of them on antioxidation enzymes and glutathione (GSH) levels in livers and uteri were examined in OVX mice and compared with the synthetic estradiol hormone. KEY FINDINGS Ovariectomy significantly decreased total GSH content, reduced GSH content, and the ratio of GSH to oxidized glutathione (GSSG) in both the livers and the uteri of mice. Moreover, an ovariectomy reduced the activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). The crude extract of PM as well as MR significantly increased levels of GSH, levels of reduced GSH, and the ratio of GSH/GSSG in both the livers and the uteri, while estradiol did not. In addition, the potential of PM and MR to return the activities of GPx, SOD, and CAT to normal levels was noted. CONCLUSIONS These observations support using PM and MR as promising alternative medicine candidates for hormone replacement therapy of estradiol because of their ability to improve GSH levels and the activities of antioxidative enzymes, especially in OVX mice.
Collapse
Affiliation(s)
- Waranya Chatuphonprasert
- Research Group for Pharmaceutical Activities of Natural Products using Pharmaceutical Biotechnology (PANPB), Mahasarakham University, Mahasarakham, Thailand
| | | | | | | | | | | |
Collapse
|
10
|
Lao-ong T, Chatuphonprasert W, Nemoto N, Jarukamjorn K. Alteration of hepatic glutathione peroxidase and superoxide dismutase expression in streptozotocin-induced diabetic mice by berberine. PHARMACEUTICAL BIOLOGY 2012; 50:1007-12. [PMID: 22775417 DOI: 10.3109/13880209.2012.655377] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
CONTEXT Diabetes mellitus (DM), a chronic disease, has been increasing and subsequently devastates the quality of life and economic status of the patients. Oxidative stress participates in development and progression of diabetes, in which levels of glutathione peroxidase (GPx) and superoxide dismutase (SOD) were changed in diabetic mice. Berberine has been widely used as an alternative medicine and proved to be effective for treatment of DM and dyslipidemia. OBJECTIVE Impacts of berberine on regulation of GPx and SOD messenger RNAs (mRNAs), and glutathione (GSH) content were examined in diabetic mice to clarify its antioxidative stress potential. MATERIALS AND METHODS Noninsulin-dependent diabetes was induced in mice by a single intraperitoneal streptozotocin injection. Diabetic mice were daily treated with metformin (100 mg/kg/d) or berberine (200 mg/kg/d) for 2 weeks. The fasting blood glucose and GSH content were monitored. GPx and SOD mRNA expression were semi-quantified by reverse transcription-polymerase chain reaction. RESULTS Berberine showed the same hypoglycemic potential as metformin, a hypoglycemic drug. Interestingly, berberine did not change levels of GPx, copper-zinc SOD (CuZn-SOD), and manganese SOD (Mn-SOD) mRNA in the normal mice but significantly recovered these levels in the diabetic mice to nearly the same levels as the normal. The GSH contents, including total GSH and reduced/oxidized GSH contents, were restored to the normal level by berberine, corresponded to GPx levels. DISCUSSION AND CONCLUSION Berberine conveyed antioxidative effect via down- and up-regulation of GPx and CuZn-SOD expression, respectively. Therefore, use of berberine as a hypoglycemic compound for alternative treatment of DM could bring extra-beneficent consequence according to its antioxidative stress.
Collapse
Affiliation(s)
- Thinnakorn Lao-ong
- Academic Office for Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, National Research University-Khon Kaen University, Khon Kaen, Thailand
| | | | | | | |
Collapse
|
11
|
Chao WW, Lin BF. Hepatoprotective Diterpenoids Isolated from <i>Andrographis paniculata</i>. Chin Med 2012. [DOI: 10.4236/cm.2012.33022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Protective effect of andrographolide against concanavalin A-induced liver injury. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:69-79. [DOI: 10.1007/s00210-011-0685-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 08/17/2011] [Indexed: 10/17/2022]
|