1
|
Okano H, Ojiro R, Zou X, Tang Q, Ozawa S, Koyanagi M, Maronpot RR, Yoshida T, Shibutani M. Exploring the effects of embryonic and neonatal exposure to lipopolysaccharides on oligodendrocyte differentiation in the rat hippocampus and the protective effect of alpha-glycosyl isoquercitrin. J Chem Neuroanat 2023; 133:102336. [PMID: 37678702 DOI: 10.1016/j.jchemneu.2023.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
This study compared the effects of embryonic and neonatal lipopolysaccharides (LPS) exposure (E-LPS and N-LPS) on oligodendrocyte (OL) differentiation in the hippocampus of male rats and explored the protective effect of the antioxidant alpha-glycosyl isoquercitrin (AGIQ). Using SD rats, LPS exposure occurred either intraperitoneally in dams between gestational days 15 and 16 (50 µg/kg body weight/time) or in male pups on postnatal day (PND) 3 (1 mg/kg body weight). Under both regimens, AGIQ at 0.5% (w/w) was supplemented, to dams from the gestation period (before LPS exposure) until weaning on PND 21 and to male offspring from weaning until PND 77 (adulthood). Compared with a control treatment, E-LPS treatment resulted in fewer NG2+ OL progenitor cells (OPCs) and an upregulation of Tcf4 at PND 6; by PND 21, low NG2+ OPC number persisted, but OLIG2+ OL lineage cells increased, while CNPase+ mature OLs counts were unchanged. By contrast, N-LPS treatment resulted in fewer OLIG2+ cells and an upregulation of Bmp4 at PND 6; by PND 21, NG2+ OPCs decreased, while GFAP+ astrocytes increased at both PND 6 and 21. After N-LPS treatment, Kl and Yy1 were downregulated and there were fewer Klotho+ and CNPase+ cells at PND 21. Results suggest that E-LPS treatment facilitates OPC differentiation into pre- and immature OLs until weaning, while N-LPS treatment suppresses OPC differentiation into mature OLs but facilitates astrocyte generation; however, these changes spontaneously recovered by adulthood under both regimens. AGIQ treatment ameliorated the effects of LPS treatment of both regimens, suggesting that LPS-induced disruption of OPC/OL differentiation occurs via neuroinflammation.
Collapse
Affiliation(s)
- Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I. Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| | - Robert R Maronpot
- Maronpot Consulting, LLC, 1612 Medfield Road, Raleigh, NC 27607, USA
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
2
|
Maronpot R, Ramot Y, Nyska A, Sproul C, Moore R, Bolon B, Hayashi SM. Oral chronic toxicity and carcinogenicity study of alpha-glycosyl isoquercitrin (AGIQ) in Sprague Dawley rats. Regul Toxicol Pharmacol 2023; 140:105343. [PMID: 36773715 DOI: 10.1016/j.yrtph.2023.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/12/2023]
Abstract
alpha-Glycosyl isoquercitrin (AGIQ) is a flavonoid that possesses antioxidant and tumor suppressive capabilities and is marketed as a food additive in Japan. The aim of this study was to assess the potential for oral chronic toxicity and carcinogenicity of AGIQ in male and female Sprague Dawley rats following up to 5.0% dietary exposure. In the chronic toxicity study, rats were exposed to AGIQ or vehicle for one year with a 6-month interim termination point; for the carcinogenicity study, rats were treated for 24 months. No signs of AGIQ-related toxicity clinically or histologically were observed for up to one year except for yellow discoloration of bone. In the carcinogenicity study, a statistically significant increase in the incidence of malignant glioma of the brain or spinal cord was observed in female rats exposed to 5.0% AGIQ compared to those exposed to control feed. A Scientific Advisory Panel of experienced neuropathologists reviewed the gliomas (routine stains and glial cell markers) and concluded that the gliomas were a rare, spontaneous, rat-specific neoplasm: malignant microglial tumor. The lesions could not definitively be attributed to AGIQ exposure and have limited implications with respect to predicting human cancer risk.
Collapse
Affiliation(s)
- Robert Maronpot
- Maronpot Consulting, LLC, 1612 Medfield Road, Raleigh, NC, 27607, USA.
| | - Yuval Ramot
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Department of Dermatology, Hadassah Medical Center, Jerusalem, Israel.
| | - Abraham Nyska
- Consultant in Toxicologic Pathology, Tel Aviv and Tel Aviv University, Israel.
| | - Christopher Sproul
- Integrated Laboratory Systems, LLC, 601 Keystone Park Drive, Morrisville, NC, 27560, USA
| | - Rebecca Moore
- Integrated Laboratory Systems, LLC, 601 Keystone Park Drive, Morrisville, NC, 27560, USA
| | | | - Shim-Mo Hayashi
- National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
3
|
Tang Q, Takashima K, Zeng W, Okano H, Zou X, Takahashi Y, Ojiro R, Ozawa S, Koyanagi M, Maronpot RR, Yoshida T, Shibutani M. Amelioration of lipopolysaccharides-induced impairment of fear memory acquisition by alpha-glycosyl isoquercitrin through suppression of neuroinflammation in rats. J Toxicol Sci 2023; 48:121-137. [PMID: 36858638 DOI: 10.2131/jts.48.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
This study investigated the role of neuroinflammation in a lipopolysaccharides (LPS)-induced cognitive dysfunction model in rats using an antioxidant, α-glycosyl isoquercitrin (AGIQ). Six-week-old rats were dietary treated with 0.5% (w/w) AGIQ for 38 days, and LPS at 1 mg/kg body weight was administered intraperitoneally once daily on Days 8 and 10. On Day 11, LPS alone increased or tended to increase interleukin-1β and tumor necrosis factor-α in the hippocampus and cerebral cortex. Immunohistochemically, LPS alone increased the number of Iba1+ and CD68+ microglia, and GFAP+ astrocytes in the hilus of the hippocampal dentate gyrus (DG). AGIQ treatment decreased or tended to decrease brain proinflammatory cytokine levels and the number of CD68+ microglia in the DG hilus. In the contextual fear conditioning test during Day 34 and Day 38, LPS alone impaired fear memory acquisition, and AGIQ tended to recover this impairment. On Day 38, LPS alone decreased the number of DCX+ cells in the neurogenic niche, and AGIQ increased the numbers of PCNA+ cells in the subgranular zone and CALB2+ hilar interneurons. Additionally, LPS alone decreased or tended to decrease the number of synaptic plasticity-related FOS+ and COX2+ granule cells and AGIQ recovered them. The results suggest that LPS administration induced acute neuroinflammation and subsequent impairment of fear memory acquisition caused by suppressed synaptic plasticity of newborn granule cells following disruptive neurogenesis. In contrast, AGIQ exhibited anti-inflammatory effects and ameliorated LPS-induced adverse effects. These results suggest that neuroinflammation is a key factor in the development of LPS-induced impairment of fear memory acquisition.
Collapse
Affiliation(s)
- Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Wen Zeng
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc
| | | | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology
| |
Collapse
|
4
|
Okano H, Takashima K, Takahashi Y, Ojiro R, Tang Q, Ozawa S, Zou X, Koyanagi M, Maronpot RR, Yoshida T, Shibutani M. Progressive disruption of neurodevelopment by mid-gestation exposure to lipopolysaccharides and the ameliorating effect of continuous alpha-glycosyl isoquercitrin treatment. ENVIRONMENTAL TOXICOLOGY 2023; 38:49-69. [PMID: 36125228 DOI: 10.1002/tox.23661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
We investigated the effect of lipopolysaccharide (LPS)-induced maternal immune activation used as a model for producing neurodevelopmental disorders on hippocampal neurogenesis and behaviors in rat offspring by exploring the antioxidant effects of alpha-glycosyl isoquercitrin (AGIQ). Pregnant Sprague-Dawley rats were intraperitoneally injected with LPS (50 μg/kg body weight) at gestational days 15 and 16. AGIQ was administered in the diet to dams at 0.5% (w/w) from gestational day 10 until weaning at postnatal day 21 and then to offspring until adulthood at postnatal day 77. During postnatal life, offspring of LPS-injected animals did not show neuroinflammation or oxidative stress in the brain. At weaning, LPS decreased the numbers of type-2b neural progenitor cells (NPCs) and PCNA+ proliferating cells in the subgranular zone, FOS-expressing granule cells, and GAD67+ hilar interneurons in the dentate gyrus. In adulthood, LPS decreased type-1 neural stem cells, type-2a NPCs, and GAD67+ hilar interneurons, and downregulated Dpysl3, Sst, Fos, Mapk1, Mapk3, Grin2a, Grin2b, Bdnf, and Ntrk2. In adults, LPS suppressed locomotor activity in the open field test and suppressed fear memory acquisition and fear extinction learning in the contextual fear conditioning test. These results indicate that mid-gestation LPS injections disrupt programming of normal neurodevelopment resulting in progressive suppression of hippocampal neurogenesis and synaptic plasticity of newborn granule cells by suppressing GABAergic and glutamatergic neurotransmitter signals and BDNF/TrkB signaling to result in adult-stage behavioral deficits. AGIQ ameliorated most aberrations in hippocampal neurogenesis and synaptic plasticity, as well as behavioral deficits. Effective amelioration by continuous AGIQ treatment starting before LPS injections may reflect both anti-inflammatory and anti-oxidative stress effects during gestation and neuroprotective effects of continuous exposure through adulthood.
Collapse
Affiliation(s)
- Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I. Inc., Osaka, Japan
| | | | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
5
|
Continuous Exposure to Alpha-Glycosyl Isoquercitrin from Gestation Ameliorates Disrupted Hippocampal Neurogenesis in Rats Induced by Gestational Injection of Valproic Acid. Neurotox Res 2022; 40:2278-2296. [PMID: 36094739 DOI: 10.1007/s12640-022-00574-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 01/04/2023]
Abstract
This study examined the ameliorating effect of alpha-glycosyl isoquercitrin (AGIQ), an antioxidant, on disrupted hippocampal neurogenesis in the dentate gyrus (DG) in a rat model of autism spectrum disorder induced by prenatal valproic acid (VPA) exposure. Dams were intraperitoneally injected with 500 mg/kg VPA on gestational day 12. AGIQ was administered in the diet at 0.25 or 0.5% to dams from gestational day 13 until weaning at postnatal day (PND) 21 and then to pups until PND 63. At PND 21, VPA-exposed offspring showed decreased numbers of type-2a and type-3 neural progenitor cells (NPCs) among granule cell lineage subpopulations. AGIQ treatment at both doses rescued the reduction in type-3 NPCs. AGIQ upregulated Reln and Vldlr transcript levels in the DG at 0.5% and ≥ 0.25%, respectively, and increased the number of reelin+ interneurons in the DG hilus at 0.5%. AGIQ at 0.25% and/or 0.5% also upregulated Ntrk2, Cntf, Igf1, and Chrnb2. At PND 63, there were no changes in the granule cell lineage subpopulations in response to VPA or AGIQ. AGIQ at 0.25% increased the number of FOS+ granule cells, accompanied by Gria2 and Gria3 upregulation and increasing trend in the number of FOS+ granule cells at 0.5%. There was no definitive evidence of VPA-induced oxidative stress in the hippocampus throughout postnatal life. These results indicate that AGIQ ameliorates the VPA-induced disruption of hippocampal neurogenesis at weaning involving reelin, BDNF-TrkB, CNTF, and IGF1 signaling, and enhances FOS-mediated synaptic plasticity in adulthood, potentially through AMPA-receptor upregulation. The ameliorating effects of AGIQ may involve direct interactions with neural signaling cascades rather than antioxidant capacity.
Collapse
|
6
|
Owczarek-Januszkiewicz A, Magiera A, Olszewska MA. Enzymatically Modified Isoquercitrin: Production, Metabolism, Bioavailability, Toxicity, Pharmacology, and Related Molecular Mechanisms. Int J Mol Sci 2022; 23:14784. [PMID: 36499113 PMCID: PMC9738368 DOI: 10.3390/ijms232314784] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Quercetin and its glycosides, such as isoquercitrin or rutin, are among the most ubiquitous flavonoids present in plants. They possess numerous health-promoting properties, whose applicability is, however, limited by poor water solubility and absorption issues. Enzymatically modified isoquercitrin (EMIQ) is an isoquercitrin derivative obtained from rutin via enzymatic transformations that greatly enhance its bioavailability. Due to advantageous reports on its safety and bioactivity, EMIQ is currently gaining importance as a food additive and a constituent of dietary supplements. This review summarizes the thus-far-conducted investigations into the metabolism, toxicity, biological properties, and molecular mechanisms of EMIQ and presents a comprehensive characterization of this valuable substance, which might represent the future of flavonoid supplementation.
Collapse
Affiliation(s)
| | | | - Monika Anna Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland
| |
Collapse
|
7
|
Singh J, Gautam DNS, Sourav S, Sharma R. Role of
Moringa oleifera
Lam. in cancer: Phytochemistry and pharmacological insights. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jyoti Singh
- Department of Rasa Shastra & Bhaishajya Kalpana Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University Varanasi India
| | - Dev Nath Singh Gautam
- Department of Rasa Shastra & Bhaishajya Kalpana Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University Varanasi India
| | - Simant Sourav
- Department of Sharira Kriya, Government Ayurvedic College and Hospital Patna India
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University Varanasi India
| |
Collapse
|
8
|
Okano H, Takashima K, Takahashi Y, Ojiro R, Tang Q, Ozawa S, Ogawa B, Koyanagi M, Maronpot RR, Yoshida T, Shibutani M. Ameliorating effect of continuous alpha-glycosyl isoquercitrin treatment starting from late gestation in a rat autism model induced by postnatal injection of lipopolysaccharides. Chem Biol Interact 2022; 351:109767. [PMID: 34863679 DOI: 10.1016/j.cbi.2021.109767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/14/2021] [Accepted: 11/26/2021] [Indexed: 01/08/2023]
Abstract
The present study investigated the role of neuroinflammation and brain oxidative stress induced by neonatal treatment with lipopolysaccharides (LPS) on the development of autism spectrum disorder (ASD)-like behaviors and disruptive hippocampal neurogenesis in rats by exploring the chemopreventive effects of alpha-glycosyl isoquercitrin (AGIQ) as an antioxidant. AGIQ was dietary administered to dams at 0.25% or 0.5% (w/w) from gestational day 18 until postnatal day (PND) 21 on weaning and then to pups until the adult stage on PND 77. The pups were intraperitoneally injected with LPS (1 mg/kg body weight) on PND 3. At PND 6, LPS alone increased Iba1+ and CD68+ cell numbers without changing the CD163+ cell number and strongly upregulated pro-inflammatory cytokine gene expression (Il1a, Il1b, Il6, Nfkb1, and Tnf) in the hippocampus, and increased brain malondialdehyde levels. At PND 10, pups decreased ultrasonic vocalization (USV), suggesting the induction of pro-inflammatory responses and oxidative stress to trigger communicative deficits. By contrast, LPS alone upregulated Nfe2l2 expression at PND 6, increased Iba1+, CD68+, and CD163+ cell numbers, and upregulated Tgfb1 at PND 21, suggesting anti-inflammatory responses until the weaning period. However, LPS alone disrupted hippocampal neurogenesis at weaning and suppressed social interaction parameters and rate of freezing time at fear acquisition and extinction during the adolescent stage. On PND 77, neuroinflammatory responses had mostly disappeared; however, disruptive neurogenesis and fear memory deficits were sustained. AGIQ ameliorated most changes on acute pro-inflammatory responses and oxidative stress at PND 6, and the effects on USVs at PND 10 and neurogenesis and behavioral parameters throughout the adult stage. These results suggested that neonatal LPS treatment induced acute but transient neuroinflammation, triggering the progressive disruption of hippocampal neurogenesis leading to abnormal behaviors in later life. AGIQ treatment was effective for ameliorating LPS-induced progressive changes by critically suppressing initial pro-inflammatory responses and oxidative stress.
Collapse
Affiliation(s)
- Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Bunichiro Ogawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka, 561-8588, Japan.
| | - Robert R Maronpot
- Maronpot Consulting, LLC, 1612 Medfield Road, Raleigh, NC, 27607, USA.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
9
|
Kapoor MP, Moriwaki M, Timm D, Yamagata H, Maruyama G, Nisihara Y, Nakazawa T, Takata S, Nakamura D. 13-Weeks subchronic toxicity of isoquercitrin-γ-cyclodextrin (IQC-γCD) molecular inclusion complex in Sprague-Dawley rats. Food Chem Toxicol 2021; 152:112217. [PMID: 33865935 DOI: 10.1016/j.fct.2021.112217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 12/22/2022]
Abstract
Flavonoids such as quercetin and its glycoside Isoquercitrin and are abundantly present in the diet and have various pharmacological effects. However, limited data about its potential toxicity is available. In this study, we aim to evaluate the subchronic toxicity of the isoquercitrin-γ-cyclodextrin (IQC-γCD) molecular inclusion complex (SunActive® QCD/EN) in Sprague-Dawley (SD) rats. The IQC-γCD was administrated orally to 40 male and 40 female SD rats at dietary doses up to 5.0 % for 13 consecutive weeks. During the experiment periods, the general clinical signs, mortality, hematological, urinalysis values, biochemical, and histopathological parameters were examined. All animals survived until the scheduled necropsy, and no statistically significant or clinical sign of toxicologically relevant differences including pathology parameters, and histopathological endpoints were observed in any of the IQC-γCD treatment groups, compared with the control group. However, certain observations were noted in the male rats treated with the highest concentration (5.0 %), but these were not seen in female rats. A slight inhibition of weight gain was observed, probably linked to a fall in red blood cells, and hematocrit index in female rats. Statistically significant changes were noted in some clinical measures, such as plasma bilirubin level, alkaline phosphatase total bile acid without evidence of systemic clinical toxicity. The results support no observed adverse effect level (NOAEL) of IQC-γCD of 5.0 % in the diet for males (3338.55 mg/kg/day), and 3.0 % in the diet for females (2177.33 mg/kg/day) SD rats. Therefore, in this 13 weeks repeated-dose SD rat study there were no treatment-related adverse clinical or pathological findings for IQC-γCD of 5.0 % in the diet for males, and 3.0 % in the diet for females SD rats. The results of the present study support the safe use of IQC-γCD as a functional food, food additive, and natural ingredient.
Collapse
Affiliation(s)
- Mahendra P Kapoor
- Taiyo Kagaku Co. Ltd., Nutrition Division, 1-3 Takaramachi, Yokkaichi, Mie, 510-0844, Japan.
| | - Masamitsu Moriwaki
- Taiyo Kagaku Co. Ltd., Nutrition Division, 1-3 Takaramachi, Yokkaichi, Mie, 510-0844, Japan
| | - Derek Timm
- Taiyo International Inc., 5960 Golden Hills Dr., Minneapolis, MN, 55416, USA
| | - Hiroshi Yamagata
- Gotemba Laboratory, BoZo Research Center Inc., 1284, Kamado, Gotemba-shi, Shizuoka, 412-0039, Japan
| | - Go Maruyama
- Gotemba Laboratory, BoZo Research Center Inc., 1284, Kamado, Gotemba-shi, Shizuoka, 412-0039, Japan
| | - Yoshito Nisihara
- Gotemba Laboratory, BoZo Research Center Inc., 1284, Kamado, Gotemba-shi, Shizuoka, 412-0039, Japan
| | - Tomomi Nakazawa
- Gotemba Laboratory, BoZo Research Center Inc., 1284, Kamado, Gotemba-shi, Shizuoka, 412-0039, Japan
| | - Shinro Takata
- Gotemba Laboratory, BoZo Research Center Inc., 1284, Kamado, Gotemba-shi, Shizuoka, 412-0039, Japan
| | - Daichi Nakamura
- Tsukuba Institute, BoZo Research Center Inc., 8 Okubo, Tsukuba-shi, Ibaraki, 300-2611, Japan
| |
Collapse
|
10
|
Masubuchi Y, Nakahara J, Kikuchi S, Okano H, Takahashi Y, Takashima K, Koyanagi M, Maronpot RR, Yoshida T, Hayashi SM, Shibutani M. Continuous exposure to α-glycosyl isoquercitrin from developmental stages to adulthood is necessary for facilitating fear extinction learning in rats. J Toxicol Pathol 2020; 33:247-263. [PMID: 33239843 PMCID: PMC7677619 DOI: 10.1293/tox.2020-0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023] Open
Abstract
We previously reported that exposure to α-glycosyl isoquercitrin (AGIQ) from the fetal
stage to adulthood facilitated fear extinction learning in rats. The present study
investigated the specific AGIQ exposure period sufficient for inducing this behavioral
effect. Rats were dietarily exposed to 0.5% AGIQ from the postweaning stage to adulthood
(PW-AGIQ), the fetal stage to postweaning stage (DEV-AGIQ), or the fetal stage to
adulthood (WP-AGIQ). Fear memory, anxiety-like behavior, and object recognition memory
were assessed during adulthood. Fear extinction learning was exclusively facilitated in
the WP-AGIQ rats. Synaptic plasticity-related genes showed a similar pattern of
constitutive expression changes in the hippocampal dentate gyrus and prelimbic medial
prefrontal cortex (mPFC) between the DEV-AGIQ and WP-AGIQ rats. However, WP-AGIQ rats
revealed more genes constitutively upregulated in the infralimbic mPFC and amygdala than
DEV-AGIQ rats, as well as FOS-immunoreactive(+) neurons constitutively
increased in the infralimbic cortex. Ninety minutes after the last fear extinction trial,
many synaptic plasticity-related genes (encoding Ephs/Ephrins, glutamate
receptors/transporters, and immediate-early gene proteins and their regulator,
extracellular signal-regulated kinase 2 [ERK2]) were upregulated in the dentate gyrus and
amygdala in WP-AGIQ rats. Additionally, WP-AGIQ rats exhibited increased phosphorylated
ERK1/2+ neurons in both the prelimbic and infralimbic cortices. These results
suggest that AGIQ exposure from the fetal stage to adulthood is necessary for facilitating
fear extinction learning. Furthermore, constitutive and learning-dependent upregulation of
synaptic plasticity-related genes/molecules may be differentially involved in brain
regions that regulate fear memory. Thus, new learning-related neural circuits for
facilitating fear extinction can be established in the mPFC.
Collapse
Affiliation(s)
- Yasunori Masubuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Junta Nakahara
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Satomi Kikuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka-shi, Osaka 561-8588, Japan
| | - Robert R Maronpot
- Maronpot Consulting, LLC, 1612 Medfield Road, Raleigh, North Carolina 27607, USA
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Shim-Mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka-shi, Osaka 561-8588, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|
11
|
Mo'men YS, Hussein RM, Kandeil MA. A novel chemoprotective effect of tiopronin against diethylnitrosamine-induced hepatocellular carcinoma in rats: Role of ASK1/P38 MAPK-P53 signalling cascade. Clin Exp Pharmacol Physiol 2019; 47:322-332. [PMID: 31663622 DOI: 10.1111/1440-1681.13204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. Oxidative stress contributes significantly to HCC pathogenesis. In this study, we investigated the possible chemoprotective effect of the thiol group-containing compound, tiopronin, against HCC induced chemically by diethylnitrosamine (DENA) in rats. In addition, we elucidated the possible underlying molecular mechanism. Adult male Wistar rats were divided into: Control group, DENA-treated group and tiopronin + DENA-treated group. Liver function tests (ALT, AST, ALP, albumin, total and direct bilirubin) as well as alpha fetoprotein (AFP) concentration were measured in the sera of samples. Oxidative stress biomarkers such as malondialdehyde, nitric oxide, catalase and glutathione peroxidase were measured in the liver tissue homogenates. Determination of the phosphorylated apoptosis signal-regulating kinase 1 (phospho-ASK1), phospho-P38 and phospho-P53 proteins by western blotting, caspase 3 by immunofluorescence in addition to histopathological examination of the liver tissues were performed. Our results showed that tiopronin prevented the DENA-induced elevation of the liver function enzymes and AFP. It also preserved the activities of antioxidant enzymes as well as providing protection from the appearance of HCC histopathological features. Interestingly, tiopronin significantly decreased the expression level of phospho-ASK1, phospho-P38 and phospho-P53, caspase 3 in the liver tissues. These novel findings suggested that tiopronin is an antioxidant drug with a chemoprotective effect against DENA-induced HCC through maintaining the normal activity of ASK1/ P38 MAPK/ P53 signalling pathway.
Collapse
Affiliation(s)
- Yomna S Mo'men
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha M Hussein
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
12
|
Maronpot RR, Ramot Y, Koyanagi M, Dias N, Cameron D, Eniola S, Nyska A, Hayashi SM. Ten-day and four-week toxicity and toxicokinetics studies of alpha-glycosyl isoquercitrin in juvenile Göttingen minipigs. TOXICOLOGY RESEARCH AND APPLICATION 2019. [DOI: 10.1177/2397847319855087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Yuval Ramot
- Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., Osaka, Japan
| | - Nicola Dias
- Envigo CRS Ltd., Huntingdon, Cambridgeshire, UK
| | | | | | - Abraham Nyska
- Consultant in Toxicologic Pathology, Timrat, Israel
- Tel Aviv University, Tel Aviv, Israel
| | - Shim-mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., Osaka, Japan
| |
Collapse
|
13
|
Masubuchi Y, Tanaka T, Okada R, Ito Y, Nakahara J, Kikuchi S, Watanabe Y, Yoshida T, Maronpot RR, Koyanagi M, Hayashi SM, Shibutani M. Lack of preventive effect of maternal exposure to α-glycosyl isoquercitrin and α-lipoic acid on developmental hypothyroidism-induced aberrations of hippocampal neurogenesis in rat offspring. J Toxicol Pathol 2019; 32:165-180. [PMID: 31404398 PMCID: PMC6682556 DOI: 10.1293/tox.2019-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/11/2019] [Indexed: 11/19/2022] Open
Abstract
Hypothyroidism during the developmental stage induces disruption of hippocampal neurogenesis in later life, as well as inducing oxidative stress in the brain. The present study investigated the preventive effect of co-exposure to an antioxidant on disruptive neurogenesis induced by developmental exposure to anti-thyroid agent in rats. For this purpose, we used two antioxidants, α-glycosyl isoquercitrin (AGIQ) and α-lipoic acid (ALA). Mated female Sprague Dawley rats were either untreated (control) or treated with 12 ppm 6-propyl-2-thiouracil (PTU), an anti-thyroid agent, in drinking water from gestational day 6 to postnatal day (PND) 21, the latter group being subjected to feeding basal diet alone or diet containing AGIQ at 5,000 ppm or ALA at 2,000 ppm during PTU exposure. On PND 21, PTU-exposed offspring showed reductions in a broad range of granule cell lineage subpopulations and a change in the number of GABAergic interneuron subpopulations. Co-exposure of AGIQ or ALA with PTU altered the transcript levels of many genes across multiple functions, suggestive of enhancement of synaptic plasticity and neurogenesis. Nevertheless, immunohistochemical results did not support these changes. PTU exposure and co-exposure of AGIQ or ALA with PTU did not alter the hippocampal lipid peroxidation level. The obtained results suggest a possibility that thyroid hormone depletion itself primarily disrupts neurogenesis and that oxidative stress may not be involved in the disruption during development. Transcript expression changes of many genes caused by antioxidants may be the result of neuroprotective actions of antioxidants rather than their antioxidant activity. However, no preventive effect on neurogenesis suggested impairment of protein synthesis via an effect on mRNA translation due to hypothyroidism.
Collapse
Affiliation(s)
- Yasunori Masubuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Takaharu Tanaka
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Rena Okada
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Yuko Ito
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Junta Nakahara
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Satomi Kikuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Yousuke Watanabe
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Robert R Maronpot
- Maronpot Consulting, LLC, 1612 Medfield Road, Raleigh, North Carolina 27607, USA
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka-shi, Osaka 561-8588, Japan
| | - Shim-Mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka-shi, Osaka 561-8588, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|
14
|
Continuous exposure to α-glycosyl isoquercitrin from developmental stage facilitates fear extinction learning in rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
15
|
Murayama H, Eguchi A, Nakamura M, Kawashima M, Nagahara R, Mizukami S, Kimura M, Makino E, Takahashi N, Ohtsuka R, Koyanagi M, Hayashi SM, Maronpot RR, Shibutani M, Yoshida T. Spironolactone in Combination with α-glycosyl Isoquercitrin Prevents Steatosis-related Early Hepatocarcinogenesis in Rats through the Observed NADPH Oxidase Modulation. Toxicol Pathol 2018; 46:530-539. [PMID: 29843569 DOI: 10.1177/0192623318778508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Administration of the diuretic, spironolactone (SR), can inhibit chronic liver diseases. We determined the effects of SR alone or in combination with the antioxidant α-glycosyl isoquercitrin (AGIQ) on hyperlipidemia- and steatosis-related precancerous lesions in high-fat diet (HFD)-fed rats subjected to a two-stage hepatocarcinogenesis model. Rats were fed with control basal diet or HFD, which was administered with SR alone or in combination with an antioxidant AGIQ in drinking water. An HFD increased body weight, intra-abdominal fat (adipose) tissue weight, and plasma lipids, which were reduced by coadministration of SR and AGIQ. SR and AGIQ coadministration also reduced hepatic steatosis and preneoplastic glutathione S-transferase placental form-positive foci, in association with decrease in NADPH oxidase (NOX) subunit p22phox-positive cells and an increase in active-caspase-3-positive cells in the foci. Hepatic gene expression analysis revealed that the coadministration of SR and AGIQ altered mRNA levels of lipogenic enzymes ( Scd1 and Fasn), antioxidant-related enzymes ( Catalase), NOX component ( P67phox), and anti-inflammatory transcriptional factor ( Pparg). Our results indicated that SR in combination with AGIQ had the potential of suppressing hyperlipidemia- and steatosis-related early hepatocarcinogenesis through the reduced expression of NOX subunits.
Collapse
Affiliation(s)
- Hirotada Murayama
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Ayumi Eguchi
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Misato Nakamura
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Masahi Kawashima
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Rei Nagahara
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Sayaka Mizukami
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,2 Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Masayuki Kimura
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,2 Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Emi Makino
- 3 Institute of Environmental Toxicology, Joso-shi, Ibaraki, Japan
| | | | - Ryoichi Ohtsuka
- 3 Institute of Environmental Toxicology, Joso-shi, Ibaraki, Japan
| | - Mihoko Koyanagi
- 4 Global Scientific and Regulatory Affairs, San-Ei Gen F. F. I., Inc., Toyonaka, Osaka, Japan
| | - Shim-Mo Hayashi
- 4 Global Scientific and Regulatory Affairs, San-Ei Gen F. F. I., Inc., Toyonaka, Osaka, Japan
| | | | - Makoto Shibutani
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Toshinori Yoshida
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| |
Collapse
|
16
|
Hobbs CA, Koyanagi M, Swartz C, Davis J, Kasamoto S, Maronpot R, Recio L, Hayashi SM. Comprehensive evaluation of the flavonol anti-oxidants, alpha-glycosyl isoquercitrin and isoquercitrin, for genotoxic potential. Food Chem Toxicol 2018; 113:218-227. [PMID: 29317330 DOI: 10.1016/j.fct.2017.12.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/13/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022]
Abstract
Quercetin and its glycosides possess potential benefits to human health. Several flavonols are available to consumers as dietary supplements, promoted as anti-oxidants; however, incorporation of natural quercetin glycosides into food and beverage products has been limited by poor miscibility in water. Enzymatic conjugation of multiple glucose moieties to isoquercitrin to produce alpha-glycosyl isoquercitrin (AGIQ) enhances solubility and bioavailability. AGIQ is used in Japan as a food additive and has been granted generally recognized as safe (GRAS) status. However, although substantial genotoxicity data exist for quercetin, there is very little available data for AGIQ and isoquercitrin. To support expanded global marketing of food products containing AGIQ, comprehensive testing of genotoxic potential of AGIQ and isoquercitrin was conducted according to current regulatory test guidelines. Both chemicals tested positive in bacterial reverse mutation assays, and exposure to isoquercitrin resulted in chromosomal aberrations in CHO-WBL cells. All other in vitro mammalian micronucleus and chromosomal aberration assays, micronucleus and comet assays in male and female B6C3F1 mice and Sprague Dawley rats, and Muta™ Mouse mutation assays evaluating multiple potential target tissues, were negative for both chemicals. These results supplement existing toxicity data to further support the safe use of AGIQ in food and beverage products.
Collapse
Affiliation(s)
- Cheryl A Hobbs
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA.
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| | - Carol Swartz
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Jeffrey Davis
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Sawako Kasamoto
- Public Interest Incorporated Foundation Biosafety Research Center (BSRC), 582-2, Shioshinden, Iwata-shi, Shizuoka 437-1213, Japan
| | - Robert Maronpot
- Maronpot Consulting LLC, 1612 Medfield Road, Raleigh, NC 27607, USA
| | - Leslie Recio
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Shim-Mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| |
Collapse
|
17
|
The Stoichiometry of Isoquercitrin Complex with Iron or Copper Is Highly Dependent on Experimental Conditions. Nutrients 2017; 9:nu9111193. [PMID: 29084179 PMCID: PMC5707665 DOI: 10.3390/nu9111193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/25/2017] [Accepted: 10/26/2017] [Indexed: 12/23/2022] Open
Abstract
Interaction of flavonoids with transition metals can be partially responsible for their impact on humans. Stoichiometry of the iron/copper complex with a flavonoid glycoside isoquercitrin, a frequent component of food supplements, was assessed using competitive and non-competitive methods in four (patho)physiologically-relevant pH values (4.5. 5.5, 6.8, and 7.5). Isoquercitrin chelated all tested ions (Fe2+, Fe3+, Cu2+, and Cu+) but its affinity for Cu+ ions proved to be very low. In general, the chelation potency dropped with pH lowering. Metal complexes of 1:1 stoichiometry were mostly formed, however, they were not stable and the stoichiometry changed depending on conditions. Isoquercitrin was able to reduce both Cu2+ and Fe3+ ions at low ratios, but its reducing potential was diminished at higher ratios (isoquercitrin to metal) due to the metal chelation. In conclusion, this study emphasizes the need of using multiple different methods for the assessment of chelation potential in moderately-active metal chelators, like flavonoids.
Collapse
|
18
|
Kangawa Y, Yoshida T, Maruyama K, Okamoto M, Kihara T, Nakamura M, Ochiai M, Hippo Y, Hayashi SM, Shibutani M. Cilostazol and enzymatically modified isoquercitrin attenuate experimental colitis and colon cancer in mice by inhibiting cell proliferation and inflammation. Food Chem Toxicol 2017; 100:103-114. [DOI: 10.1016/j.fct.2016.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/04/2016] [Accepted: 12/14/2016] [Indexed: 12/26/2022]
|
19
|
Ninety-day toxicity and single-dose toxicokinetics study of alpha-glycosyl isoquercitrin in Sprague-Dawley rats. Food Chem Toxicol 2016; 97:354-366. [DOI: 10.1016/j.fct.2016.09.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 01/09/2023]
|
20
|
Gasparotto Junior A, dos Reis Piornedo R, Assreuy J, Da Silva-Santos JE. Nitric oxide and K ir 6.1 potassium channel mediate isoquercitrin-induced endothelium-dependent and independent vasodilation in the mesenteric arterial bed of rats. Eur J Pharmacol 2016; 788:328-334. [DOI: 10.1016/j.ejphar.2016.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/30/2016] [Accepted: 08/03/2016] [Indexed: 01/05/2023]
|
21
|
Orfali GDC, Duarte AC, Bonadio V, Martinez NP, de Araújo MEMB, Priviero FBM, Carvalho PO, Priolli DG. Review of anticancer mechanisms of isoquercitin. World J Clin Oncol 2016; 7:189-199. [PMID: 27081641 PMCID: PMC4826964 DOI: 10.5306/wjco.v7.i2.189] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/19/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
This review was based on a literature search of PubMed and Scielo databases using the keywords “quercetin, rutin, isoquercitrin, isoquercitin (IQ), quercetin-3-glucoside, bioavailability, flavonols and favonoids, and cancer” and combinations of all the words. We collected relevant scientific publications from 1990 to 2015 about the absorption, bioavailability, chemoprevention activity, and treatment effects as well as the underlying anticancer mechanisms of isoquercitin. Flavonoids are a group of polyphenolic compounds widely distributed throughout the plant kingdom. The subclass of flavonols receives special attention owing to their health benefits. The main components of this class are quercetin, rutin, and IQ, which is a flavonoid and although mostly found as a glycoside, is an aglycone (lacks a glycoside side chain). This compound presents similar therapeutic profiles to quercetin but with superior bioavailability, resulting in increased efficacy compared to the aglycone form. IQ has therapeutic applications owing to its wide range of pharmacological effects including antioxidant, antiproliferative, anti-inflammatory, anti-hypertensive, and anti-diabetic. The protective effects of IQ in cancer may be due to actions on lipid peroxidation. In addition, the antitumor effect of IQ and its underlying mechanism are related to interactions with Wnt signaling pathway, mixed-lineage protein kinase 3, mitogen-activated protein kinase, apoptotic pathways, as well proinflammatory protein signaling. This review contributed to clarifying the mechanisms of absorption, metabolism, and actions of IQ and isoquercitrin in cancer.
Collapse
|
22
|
Chen Q, Li P, Li P, Xu Y, Li Y, Tang B. Isoquercitrin inhibits the progression of pancreatic cancer in vivo and in vitro by regulating opioid receptors and the mitogen-activated protein kinase signalling pathway. Oncol Rep 2015; 33:840-8. [PMID: 25434366 DOI: 10.3892/or.2014.3626] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a common malignant tumour that affects individuals worldwide. In recent years, the incidence and mortality rates of pancreatic cancer have continuously increased. Currently, the primary clinical treatment methods for pancreatic cancer include surgical resection, chemotherapy and radiotherapy. However, these treatment methods rarely produce satisfactory therapeutic outcomes. Extensive research has also proven that the effective components of several traditional Chinese medicines, particularly flavonoids extracted from plants, have significant antitumour effects. Isoquercitrin, which is one of the flavonoids found in Bidens pilosa extracts, has a significant antitumour effect. However, the antitumour effect of isoquercitrin and its mechanism of action remain unclear. The objective of the present study was to investigate the effect of isoquercitrin on the progression of pancreatic cancer and to further understand the biological characteristics of the participation of isoquercitrin in the progression of pancreatic cancer. In vitro, we found that a therapeutic dose of isoquercitrin significantly inhibited proliferation, promoted apoptosis and induced cell cycle arrest within the G1 phase in pancreatic cancer cells. Isoquercitrin activated caspase-3, -8 and -9 and reduced the mitochondrial membrane potential. In addition, isoquercitrin inhibited the expression level of the δ opioid receptor; however, isoquercitrin had no effect on the κ and µ opioid receptors. Furthermore, isoquercitrin inhibited extracellular signal-regulated kinase (ERK) phosphorylation and promoted c-Jun N-terminal kinase (JNK) phosphorylation. In vivo, we found that a therapeutic dose of isoquercitrin significantly inhibited xenograft growth in nude mice. In summary, the present study demonstrated that isoquercitrin inhibits human pancreatic cancer progression in vivo and in vitro and that its molecular mechanism may be closely related to opioid receptors and to the activation of the mitogen-activated protein kinase (MAPK) signalling pathway.
Collapse
Affiliation(s)
- Quan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Ping Li
- Department of Oncology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Ping Li
- Department of Anesthesiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yong Xu
- Department of Anesthesiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yang Li
- Department of Hepatobiliary Surgery and Medical Oncology, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - Bo Tang
- Department of Hepatobiliary Surgery and Medical Oncology, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| |
Collapse
|
23
|
Park SH, Kim HJ, Yim SH, Kim AR, Tyagi N, Shen H, Kim KK, Shin BA, Jung DW, Williams DR. Delineation of the role of glycosylation in the cytotoxic properties of quercetin using novel assays in living vertebrates. JOURNAL OF NATURAL PRODUCTS 2014; 77:2389-2396. [PMID: 25397870 DOI: 10.1021/np500231g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Quercetin is a plant-derived flavonoid and its cytotoxic properties have been widely reported. However, in nature, quercetin predominantly occurs as various glycosides. Thus far the cytotoxic activity of these glycosides has not been investigated to the same extent as quercetin, especially in animal models. In this study, the cytotoxic properties of quercetin (1), hyperoside (quercetin 3-O-galactoside, 2), isoquercitrin (quercetin 3-O-glucoside, 3), quercitrin (quercetin 3-O-rhamnoside, 4), and spiraeoside (quercetin 4'-O-glucoside, 5) were directly compared in vitro using assays of cancer cell viability. To further characterize the influence of glycosylation in vivo, a novel zebrafish-based assay was developed that allows the rapid and experimentally convenient visualization of glycoside cleavage in the digestive tract. This assay was correlated with a novel human tumor xenograft assay in the same animal model. The results showed that 3 is as effective as 1 at inhibiting cancer cell proliferation in vivo. Moreover, it was observed that 3 can be effectively deglycosylated in the digestive tract. Collectively, these results indicate that 3 is a very promising drug candidate for cancer therapy, because glycosylation confers advantageous pharmacological changes compared with the aglycone, 1. Importantly, the development of a novel and convenient fluorescence-based assay for monitoring deglycosylation in living vertebrates provides a valuable platform for determining the metabolic fate of naturally occurring glycosides.
Collapse
Affiliation(s)
- Si-Hwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology , Gwangju 500-712, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abe H, Ogawa T, Wang L, Kimura M, Tanaka T, Morita R, Yoshida T, Shibutani M. Promoter-region hypermethylation and expression downregulation of Yy1 (Yin yang 1) in preneoplastic liver lesions in a thioacetamide rat hepatocarcinogenesis model. Toxicol Appl Pharmacol 2014; 280:467-74. [DOI: 10.1016/j.taap.2014.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 07/16/2014] [Accepted: 08/12/2014] [Indexed: 01/01/2023]
|
25
|
Tumor suppression effects of bilberry extracts and enzymatically modified isoquercitrin in early preneoplastic liver cell lesions induced by piperonyl butoxide promotion in a two-stage rat hepatocarcinogenesis model. ACTA ACUST UNITED AC 2014; 66:225-34. [DOI: 10.1016/j.etp.2014.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/05/2014] [Accepted: 02/24/2014] [Indexed: 02/06/2023]
|
26
|
Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem Toxicol 2014; 68:267-82. [DOI: 10.1016/j.fct.2014.03.018] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 01/10/2023]
|
27
|
Zhu Y, Liu Y, Zhan Y, Liu L, Xu Y, Xu T, Liu T. Preparative isolation and purification of five flavonoid glycosides and one benzophenone galloyl glycoside from Psidium guajava by high-speed counter-current chromatography (HSCCC). Molecules 2013; 18:15648-61. [PMID: 24352020 PMCID: PMC6270387 DOI: 10.3390/molecules181215648] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 01/24/2023] Open
Abstract
Psidium guajava leaves have a diverse phytochemical composition including flavonoids, phenolics, meroterpenoids and triterpenes, responsible for the biological activities of the medicinal parts. In particular, flavonol glycosides show beneficial effects on type II diabetes mellitus. A simple and efficient HSCCC method has been developed for the preparative separation of five flavonoid glycosides and one diphenylmethane glycoside from P. guajava. A solvent system composed of n-hexane-ethyl acetate-methanol-water (0.7:4:0.8:4, v/v/v/v) was optimized for the separation. The upper phase was used as the stationary phase, and the lower phase was used as the mobile phase. Under the optimized conditions, hyperoside (15.3 mg), isoquercitrin (21.1 mg), reynoutrin (65.2 mg), quercetin-3-O-β-D-arabinopyranoside (71.7 mg), quercetin-3-O-α-L-arabinofuranoside (105.6 mg) and 2,4,6-trihydroxy-3,5-dimethylbenzophenone 4-O-(6''-O-galloyl)-β-D-glucopyranoside (98.4 mg) were separated from crude sample (19.8 g). The structures of all the isolates were identified by ESI-MS, 1H- and 13C-NMR analyses and their purities (>95%) were determined using HPLC.
Collapse
Affiliation(s)
- Yindi Zhu
- Department of Traditional Chinese Medicine Chemistry, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuan South Road, Chaoyang District, Beijing 100102, China; E-Mails: (Y.Z.); (Y.Z.); (L.L.)
- Health-cultivation Laboratory of the Ministry Education, Beijing University of Chinese Medicine, 11 North Third Ring Road East, Chaoyang District, Beijing 100029, China; E-Mail:
| | - Yue Liu
- Chemistry of Chinese Medicine, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China; E-Mails: (Y.L.); (Y.X.)
| | - Ying Zhan
- Department of Traditional Chinese Medicine Chemistry, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuan South Road, Chaoyang District, Beijing 100102, China; E-Mails: (Y.Z.); (Y.Z.); (L.L.)
- Health-cultivation Laboratory of the Ministry Education, Beijing University of Chinese Medicine, 11 North Third Ring Road East, Chaoyang District, Beijing 100029, China; E-Mail:
| | - Lin Liu
- Department of Traditional Chinese Medicine Chemistry, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuan South Road, Chaoyang District, Beijing 100102, China; E-Mails: (Y.Z.); (Y.Z.); (L.L.)
- Health-cultivation Laboratory of the Ministry Education, Beijing University of Chinese Medicine, 11 North Third Ring Road East, Chaoyang District, Beijing 100029, China; E-Mail:
| | - Yajuan Xu
- Chemistry of Chinese Medicine, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China; E-Mails: (Y.L.); (Y.X.)
| | - Tunhai Xu
- Department of Traditional Chinese Medicine Chemistry, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuan South Road, Chaoyang District, Beijing 100102, China; E-Mails: (Y.Z.); (Y.Z.); (L.L.)
- Health-cultivation Laboratory of the Ministry Education, Beijing University of Chinese Medicine, 11 North Third Ring Road East, Chaoyang District, Beijing 100029, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-10-6428-6935
| | - Tonghua Liu
- Health-cultivation Laboratory of the Ministry Education, Beijing University of Chinese Medicine, 11 North Third Ring Road East, Chaoyang District, Beijing 100029, China; E-Mail:
| |
Collapse
|