1
|
Jafari A, Nazari E, Ghaderpoori M, Rashidipour M, Nazari A, Chehelcheraghi F, Kamarehie B, Rezaee R. Loaded paraquaton polymeric nanocapsules and evaluation for cardiotoxicity in Wistar rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1284-1298. [PMID: 36800924 DOI: 10.1080/09603123.2023.2181317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Present work was conducted to prepare and evaluate, loaded paraquat nano-hydrogels using chitosan, sodium polytriphosphate, and xanthan via ionic gelification method. The fabricated L-PQ formulations were analyzed for surface morphology and functional groups using SEM and FTIR, respectively. The stability of the synthesized nanoparticle was, also, analyzed in terms of diameter size, zeta potential, dispersion index, and pH. Furthermore, the cardiotoxicity effects of the synthesized nanogels were investigated on Wistar rats in terms of enzymatic activity, echocardiographic, and histological analysis. The proper stability of the prepared formulation was also confirmed by diameter size, zeta potential, dispersion index, and pH. The efficiency of encapsulation was about 90±3.2% and the release of PQ in the loaded nanogel was about 90±2.3%. A decrease in ST (shortening time) segment by formulated PQ, either in peritoneal or gavage exposure pathway, indicates the effectiveness of the capsule layer against the penetration of toxin into the body.
Collapse
Affiliation(s)
- Ali Jafari
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Efat Nazari
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mansour Ghaderpoori
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Marzieh Rashidipour
- Razi Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Afshin Nazari
- Department of Physiology and Pharmacology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Farzaneh Chehelcheraghi
- Department of Anatomical Sciences, School of Medicine Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Bahram Kamarehie
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Reza Rezaee
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
2
|
Yen TH, Chang CW, Tsai HR, Fu JF, Yen HC. Immunosuppressive therapies attenuate paraquat-induced renal dysfunction by suppressing inflammatory responses and lipid peroxidation. Free Radic Biol Med 2022; 191:249-260. [PMID: 36031164 DOI: 10.1016/j.freeradbiomed.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/18/2022]
Abstract
Although paraquat (PQ) induces oxidative damage and inflammatory responses in the lungs, the mechanism underlying PQ-induced acute kidney injury in patients is unclear. Immunosuppressive therapy with glucocorticoids and the immunosuppressant cyclophosphamide (CP) has been employed to treat patients with PQ poisoning. This study examined whether PQ could concurrently cause renal injury, inflammatory responses, and oxidative damage in the kidneys, and whether CP and dexamethasone (DEX) could suppress PQ-induced alterations. Mice were assigned to eight groups: Control, PQ, DEX, PQ plus DEX, CP, PQ plus CP, DEX plus CP, and PQ plus DEX with CP. DEX, CP, and DEX plus CP reversed PQ-induced renal injury, as indicated by urinary albumin-to-creatinine ratios and urea nitrogen levels in serum. The treatments also attenuated PQ-induced renal infiltration of leukocytes and macrophages and induction of the Il6, Tnf, Icam, Cxcl2, Tlr4, and Tlr9 genes encoding the inflammatory mediators in the kidneys. However, DEX only partially suppressed the macrophage infiltration, whereas DEX plus CP provided stronger protection than DEX or CP alone for the induction of Il6 and Cxcl2. Moreover, through the detection of F2-isoprostanes (F2-IsoPs) and isofurans in the kidneys and lungs and F2-IsoPs in the plasma and urine, the therapies were found to suppress PQ-induced lipid peroxidation, although DEX was less effective. Finally, PQ decreased ubiquinol-9:ubiquinone-9 ratios in the kidneys. This effect of PQ was not found under CP treatment, but the ratio was lower than that of the control group. Our findings suggest that the suppression of PQ-induced inflammatory responses by DEX and CP in the kidneys can mitigate oxidative damage and acute kidney injury.
Collapse
Affiliation(s)
- Tzung-Hai Yen
- Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Clinical Poison Center, Kidney Research Center, And Center for Tissue Engineering, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Wei Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Huei-Ru Tsai
- Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Clinical Poison Center, Kidney Research Center, And Center for Tissue Engineering, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jen-Fen Fu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medical Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsiu-Chuan Yen
- Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Dai Y, Liu X, Gao Y. Aberrant miR-219-5p is correlated with TLR4 and serves as a novel biomarker in patients with multiple organ dysfunction syndrome caused by acute paraquat poisoning. Int J Immunopathol Pharmacol 2021; 34:2058738420974888. [PMID: 33233960 PMCID: PMC7691899 DOI: 10.1177/2058738420974888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This study aimed to investigate the clinical significance of serum
microRNA-219-5p (miR-219-5p) in patients with multiple organ dysfunction
syndrome (MODS) caused by acute paraquat (PQ) poisoning, and its correlation
with Toll-like Receptor 4 (TLR4). Luciferase reporter assay was used to
investigate in vitro the correlation of miR-219-5p with TLR4. Serum miR-219-5p
levels were evaluated by quantitative real-time polymerase chain reaction. Serum
levels of TLR4, IL-1β, and TNF-α were measured by Enzyme-linked immune sorbent
assay (ELISA). ROC analysis was performed to assess the diagnostic significance,
Kaplan-Meier survival curves and Cox regression analysis were used to evaluate
the prognostic value of miR-219-5p in MODS patients. TLR4 was a target gene of
miR-219-5p and was increased in MODS patients. Serum miR-219-5p level was
decreased and negatively correlated with TLR4 level in MODS patients
(r = −0.660, P < 0.001), which had
important diagnostic value and negatively correlated with APACHE II score in
MODS patients. The miR-219-5p expression was markedly associated with the WBC,
ALT, AST, PaCO2, Lac, and APACHE II score. Non-survivals had more
patients with low miR-219-5p expression. Patients with low miR-219-5p expression
had shorter survival time. MiR-219-5p and APACHE II score were two independently
prognostic factors for 28-day survival. MiR-219-5p was negatively correlated
with, while TLR4 was positively correlated with the levels of IL-1β and TNF-α.
The serum miR-219-5p level may be a potential biomarker for acute PQ-induced
MODS diagnosis and prognosis. Furthermore, miR-219-5p may be associated with the
progression of MODS by regulating TLR4-related inflammatory response.
Collapse
Affiliation(s)
- Yunxiang Dai
- Emergency Department, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong, China
| | - Xia Liu
- Radiology Department, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong, China
| | - Yuming Gao
- Emergency Department, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong, China
| |
Collapse
|
4
|
Zhang D, Liu Z, Liu Q, Lan H, Peng J, Liu X, Liu W. Tenascin-C Participates Pulmonary Injury Induced by Paraquat Through Regulating TLR4 and TGF-β Signaling Pathways. Inflammation 2021; 45:222-233. [PMID: 34463846 DOI: 10.1007/s10753-021-01540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
This study was conducted to investigate the role of Tenascin-C (TNC) in paraquat (PQ)-induced lung injury in vivo and in vitro and explore its related mechanism during this process. Six- to eight-week-old male C57BL/6 mice were injected with 30 mg/kg PQ by intraperitoneal injection and sacrificed on 2 days, 7 days, 14 days, and 28 days after PQ administration. In vivo, we detected the expression of TNC at all time points of lung tissues in mice by reverse transcription-quantitative-polymerase chain reaction, western blotting, and immunohistochemistry. Expression of TLR4, NF-κB p65, TGF-β1, and α-SMA in lung tissues have also been tested. In vitro, siRNA was used to knock down TNC expression in A549 cells and TLR4, NF-κB p65, and TGF-β1 expressions were examined after PQ exposure. TNC expression increased in both lung tissues of mice model and A549 cells after PQ administration. In vivo, TNC mostly located at the extracellular matrix of thickened alveolar septum, especially at sites of injury, together with the increasing of TLR4, NF-κB p65, TGF-β1, and α-SMA. In vitro, PQ exposure also increased the expressions of TLR4, NF-κB p65, and TGF-β1 in A549 cells, but knocking down TNC gene expression obviously down-regulated the expressions of TLR4, NF-κB p65, NF-κB Pp65, and TGF-β1. The results of this study demonstrate, for the first time, that TNC participates in the development of lung injury induced by PQ poisoning. The role of TNC in this process is closely related to TLR4 and TGF-β signaling pathways.
Collapse
Affiliation(s)
- Di Zhang
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Zhi Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Qianqian Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Honghai Lan
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Jinjin Peng
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Xiaowei Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Wei Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, China. .,Emergency Department, First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Chen J, Su Y, Lin F, Iqbal M, Mehmood K, Zhang H, Shi D. Effect of paraquat on cytotoxicity involved in oxidative stress and inflammatory reaction: A review of mechanisms and ecological implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112711. [PMID: 34455184 DOI: 10.1016/j.ecoenv.2021.112711] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/07/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Paraquat (PQ) is a cheap and an effective herbicide, which is widely being used worldwide to remove weeds in cultivated crop fields. However, it can cause soil and water pollution, and pose serious harm to the environment and organisms. Several countries have started to limit or prohibit the use of PQ because of the increasing number of human deaths. Its toxicity can damage the organisms with a multi-target mechanism, which has not been fully understood yet. That is why it is hard to treat as well. The current research on PQ focuses on its targeted organ, the lungs, in which PQ mostly trigger pulmonary fibrosis. While there is a lack of systematic research, there are few studies published discussing its toxic effects at systematic level. This review summarizes the major damages caused by PQ in different organisms and partial mechanisms by which it causes these damages. For this purpose, we consulted several research articles that studied the toxicity of PQ in various tissues. We also listed some drugs that can be used to alleviate the toxicity of PQ. However, at present, the effectiveness of these drugs is still being explored in animal experiments and the study of their mechanism will also help in understanding the poisoning mechanism of PQ, which will ultimately lead to effective treatment in future.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yalin Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Fei Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Mujahid Iqbal
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Dayou Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Li Y, Wang N, Ma Z, Wang Y, Yuan Y, Zhong Z, Hong Y, Zhao M. Lipoxin A4 protects against paraquat‑induced acute lung injury by inhibiting the TLR4/MyD88‑mediated activation of the NF‑κB and PI3K/AKT pathways. Int J Mol Med 2021; 47:86. [PMID: 33760150 PMCID: PMC7992923 DOI: 10.3892/ijmm.2021.4919] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
Paraquat (PQ) causes serious oxidative stress and inflammatory responses, particularly to the lungs. Since lipoxin A4 (LXA4) functions as an anti‑inflammatory mediator, the present study aimed to explore its effects on PQ‑induced acute lung injury (ALI) and to elucidate the possible underlying mechanisms. PQ was administered to male SD rats and RAW264.7 cells to establish a model of poisoning, and LXA4 was used as an intervention drug. LXA4 treatment attenuated PQ‑induced lung injury, and this was accompanied by decreased tumor necrosis factor (TNF)‑α and interleukin (IL)‑1β secretion levels, and reduced oxidative stress damage. Additionally, LXA4 treatment inhibited the activation of the inflammation‑related signaling molecules, Toll‑like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), nuclear factor (NF)‑κB p65, p‑phosphoinositide 3‑kinase (PI3K) and p‑AKT. Furthermore, the in vitro experiments further confirmed that the beneficial effects of LXA4 on PQ‑induced damage were TLR4‑dependent. Hence, the present study demonstrated that LXA4 attenuated PQ‑induced toxicity in lung tissue and RAW264.7 macrophages, and that this protective effect may be closely related to the mitigation of inflammatory responses, oxidative stress damage and the TLR4/MyD88‑mediated activation of the PI3K/AKT/NF‑κB pathway.
Collapse
Affiliation(s)
- Yuhua Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Na Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
- Occupational Disease and Occupational Health Prevention and Control Institute, Liaoning Center for Disease Control and Prevention, Shenyang, Liaoning 110004, P.R. China
| | - Zhongliang Ma
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yunwen Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yuan Yuan
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhitao Zhong
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yi Hong
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Min Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
7
|
Lin CC, Hsu KH, Shih CP, Chang GJ. Hemodynamic and electromechanical effects of paraquat in rat heart. PLoS One 2021; 16:e0234591. [PMID: 33793552 PMCID: PMC8016255 DOI: 10.1371/journal.pone.0234591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 03/18/2021] [Indexed: 01/04/2023] Open
Abstract
Paraquat (PQ) is a highly lethal herbicide. Ingestion of large quantities of PQ usually results in cardiovascular collapse and eventual mortality. Recent pieces of evidence indicate possible involvement of oxidative stress- and inflammation-related factors in PQ-induced cardiac toxicity. However, little information exists on the relationship between hemodynamic and cardiac electromechanical effects involved in acute PQ poisoning. The present study investigated the effects of acute PQ exposure on hemodynamics and electrocardiogram (ECG) in vivo, left ventricular (LV) pressure in isolated hearts, as well as contractile and intracellular Ca2+ properties and ionic currents in ventricular myocytes in a rat model. In anesthetized rats, intravenous PQ administration (100 or 180 mg/kg) induced dose-dependent decreases in heart rate, blood pressure, and cardiac contractility (LV +dP/dtmax). Furthermore, PQ administration prolonged the PR, QRS, QT, and rate-corrected QT (QTc) intervals. In Langendorff-perfused isolated hearts, PQ (33 or 60 μM) decreased LV pressure and contractility (LV +dP/dtmax). PQ (10-60 μM) reduced the amplitudes of Ca2+ transients and fractional cell shortening in a concentration-dependent manner in isolated ventricular myocytes. Moreover, whole-cell patch-clamp experiments demonstrated that PQ decreased the current amplitude and availability of the transient outward K+ channel (Ito) and altered its gating kinetics. These results suggest that PQ-induced cardiotoxicity results mainly from diminished Ca2+ transients and inhibited K+ channels in cardiomyocytes, which lead to LV contractile force suppression and QTc interval prolongation. These findings should provide novel cues to understand PQ-induced cardiac suppression and electrical disturbances and may aid in the development of new treatment modalities.
Collapse
Affiliation(s)
- Chih-Chuan Lin
- Department of Emergency Medicine, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Kuang-Hung Hsu
- Laboratory for Epidemiology, Department of Health Care Management, and Healthy Aging Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Chia-Pang Shih
- Department of Nursing, Yuanpei University of Medical Technology, Hsin-Chu, Taiwan
| | - Gwo-Jyh Chang
- Graduate Institute of Clinical Medicinal Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Cardiovascular Division of Medicine, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| |
Collapse
|
8
|
Song YX, Fan SL, Peng A, Shen S, Cheng JF, Chen GQ, Li CB, Jiang C, Li XH, Liu JY. A retrospective analysis reveals a predictor of survival for the patient with paraquat intoxication. Clin Chim Acta 2020; 511:269-277. [PMID: 33148529 DOI: 10.1016/j.cca.2020.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/17/2022]
Abstract
Feasible and accurate predictors are urgently needed to evaluate the survival for patients with paraquat poisoning since the high mortality of paraquat poisoning always resulted in the loss of both life and money. Multiple predictors have been developed to predict prognosis of the patients with PQ poisoning, which however heavily depend on the time of admission to hospitals. Here we reported a feasible and accurate prognosis predictor for patients with paraquat poisoning that is independent of the time of admission to hospitals. Patients with paraquat poisoning were enrolled in this study according to the inclusion and exclusion criteria, which were grouped into survivors and non-survivors based on the 90-days follow-up investigation. The concentration of paraquat in serum and urine, and the baseline clinical parameters associated with the injuries of the liver, kidney, and lung were evaluated to predict the survival of these patients by using receiver operating characteristic curve (ROC) analysis, univariate and multivariate cox regression analyses. A total of 114 patients was included in this study with a survival rate of 54.4%. The median survival days of non-survivors were 6.0 (95%Cl: 4.0-7.8). A new predictor, namely paraquat concentration-associated multiorgan injury index (PCAMII), was established by integrating serum and urine paraquat concentration, serum creatinine, alanine aminotransferase, aspartate transaminase, total and direct bilirubin, at different weighting coefficients, with the accuracy of about 90%. The model to predict the survival probability by PCAMII was established with good fitness (R2 = 0.9325), providing the simulated survival rates comparable to the clinical data. PCAMII, which is independent of hospital admission time, is a feasible and accurate marker to predict the survival rate of patients with PQ poisoning.
Collapse
Affiliation(s)
- Ya-Xiang Song
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Shanghai 200072, China; Center for Nephrology and Metabolomics, Tongji University School of Medicine, Shanghai, 200072, China
| | - Shu-Ling Fan
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Shanghai 200072, China; Center for Nephrology and Metabolomics, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ai Peng
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Shanghai 200072, China; Center for Nephrology and Metabolomics, Tongji University School of Medicine, Shanghai, 200072, China
| | - Shijun Shen
- The School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai 200092, China
| | - Jia-Fen Cheng
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Shanghai 200072, China; Center for Nephrology and Metabolomics, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guang-Qi Chen
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Shanghai 200072, China; Center for Nephrology and Metabolomics, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chang-Bin Li
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Shanghai 200072, China; Center for Nephrology and Metabolomics, Tongji University School of Medicine, Shanghai, 200072, China
| | - Cizhong Jiang
- The School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai 200092, China
| | - Xin-Hua Li
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Shanghai 200072, China; Center for Nephrology and Metabolomics, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Jun-Yan Liu
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Shanghai 200072, China; Center for Nephrology and Metabolomics, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
9
|
Dostal V, Wood SD, Thomas CT, Han Y, Lau E, Lam MPY. Proteomic signatures of acute oxidative stress response to paraquat in the mouse heart. Sci Rep 2020; 10:18440. [PMID: 33116222 PMCID: PMC7595225 DOI: 10.1038/s41598-020-75505-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/15/2020] [Indexed: 01/11/2023] Open
Abstract
The heart is sensitive to oxidative damage but a global view on how the cardiac proteome responds to oxidative stressors has yet to fully emerge. Using quantitative tandem mass spectrometry, we assessed the effects of acute exposure of the oxidative stress inducer paraquat on protein expression in mouse hearts. We observed widespread protein expression changes in the paraquat-exposed heart especially in organelle-containing subcellular fractions. During cardiac response to acute oxidative stress, proteome changes are consistent with a rapid reduction of mitochondrial metabolism, coupled with activation of multiple antioxidant proteins, reduction of protein synthesis and remediation of proteostasis. In addition to differential expression, we saw evidence of spatial reorganizations of the cardiac proteome including the translocation of hexokinase 2 to more soluble fractions. Treatment with the antioxidants Tempol and MitoTEMPO reversed many proteomic signatures of paraquat but this reversal was incomplete. We also identified a number of proteins with unknown function in the heart to be triggered by paraquat, suggesting they may have functions in oxidative stress response. Surprisingly, protein expression changes in the heart correlate poorly with those in the lung, consistent with differential sensitivity or stress response in these two organs. The results and data set here could provide insights into oxidative stress responses in the heart and avail the search for new therapeutic targets.
Collapse
Affiliation(s)
- Vishantie Dostal
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Silas D Wood
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Cody T Thomas
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yu Han
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Edward Lau
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Maggie P Y Lam
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Department of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
10
|
Chen AB, Li F, Di EM, Zhang X, Zhao QY, Wen J. Influence of strengthened hemoperfusion combined with continuous venovenous hemofiltration on prognosis of patients with acute paraquat poisoning: SHP + CVVH improve prognosis of acute PQ patients. BMC Pharmacol Toxicol 2020; 21:49. [PMID: 32631415 PMCID: PMC7339412 DOI: 10.1186/s40360-020-00428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/26/2020] [Indexed: 12/03/2022] Open
Abstract
Background The success rate of rescue is extremely low in acute paraquat poisoning. This study aimed to assess whether strengthened hemoperfusion (SHP) combined with continuous venovenous hemofiltration (CVVH) improves prognosis in patients with acute paraquat poisoning. Methods Patients from January 2005 to December 2018 were enrolled retrospectively. All selected patients were administered conventional therapy. They were divided according to the received treatments in the conventional therapy, hemoperfusion (HP), CVVH, SHP and SHP + CVVH groups. Follow-up was implemented until the 90th day after poisoning. Other outcomes included all-cause mortality on the 15th day after poisoning, and the percentages of respiratory failure and mechanical ventilation use. Results The study included 487 patients,and 211 died in all. Mortality rate in the SHP + CVVH group on the 90th day after poisoning was significantly decreased compared with those of other groups (p<0.001). Survival curves of all groups showed significant differences (p<0.001). SHP combined with CVVH was an independent factor reducing mortality risk (p<0.001). Mortality rate in the SHP + CVVH group on the 15th day after poisoning was also significantly decreased (p < 0.05). The proportions of patients in the SHP + CVVH group with acute respiratory failure and mechanical ventilation were significantly lower than those of other groups (p < 0.05). Conclusions SHP with CVVH may decrease the mortality rate of patients with acute paraquat poisoning on the 90th day after poisoning and improve the prognosis.
Collapse
Affiliation(s)
- An-Bao Chen
- Department of Emergency Medicine, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fang Li
- Department of Emergency Medicine, the Second Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - E-Mu Di
- Department of Emergency Medicine, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiao Zhang
- Department of Emergency Medicine, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qun-Yuan Zhao
- Department of Emergency Medicine, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Wen
- Department of Emergency Medicine, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
11
|
Zhao J, Wang Y, Li X, Gai Z. Genome-wide identification and characterization of Toll-like receptors (TLRs) in housefly (Musca domestica) and their roles in the insecticide resistance. Int J Biol Macromol 2020; 150:141-151. [DOI: 10.1016/j.ijbiomac.2020.02.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
|
12
|
Jing Y, Peng F, Shan Y, Jiang J. Berberine reduces the occurrence of neonatal necrotizing enterocolitis by reducing the inflammatory response. Exp Ther Med 2018; 16:5280-5285. [PMID: 30542485 DOI: 10.3892/etm.2018.6871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/09/2018] [Indexed: 12/26/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a life-threatening disease that occurs in premature infants. The aim of the present study was to investigate the effects of berberine, an isoquinoline alkaloid mainly used to treat digestive diseases, in a rat model of NEC. NEC models were established in newborn rats via inhalation of N2 for 90 sec every 4 h and oral administration of 4 mg/kg/day lipopolysaccharides on days 0 and 1. Berberine was administered via oral gavage. In the NEC model group, Toll-like receptor (TLR)4, nuclear factor NF-κB (NF-κB), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10 were upregulated. Symptoms of NEC in the berberine intervention group were significantly relieved, with a clear reduction in the incidence of NEC compared with the NEC group. TLR4, NF-κB, iNOS, TNF-α, IL-6 and IL-10 expression was decreased following berberine intervention. Furthermore, the expression of mucin-2 (MUC2) and RNA polymerase σ factor SigA (SIgA) were decreased in the NEC model group and increased following berberine intervention, when compared with the untreated group. It was also demonstrated that the incidence of NEC was reduced following berberine administration, possibly owing to changes in the inflammatory responses. The results of the current study support a potential therapeutic role of berberine for the treatment of NEC.
Collapse
Affiliation(s)
- Yong Jing
- Department of Pediatric Surgery, The Second People's Hospital of Liaocheng, Linqing, Shandong 252600, P.R. China
| | - Fudong Peng
- Neonatal Intensive Care Unit, The Second People's Hospital of Liaocheng, Linqing, Shandong 252600, P.R. China
| | - Yufeng Shan
- Neonatal Intensive Care Unit, The Second People's Hospital of Liaocheng, Linqing, Shandong 252600, P.R. China
| | - Jingkai Jiang
- Department of Pediatric Surgery, The Second People's Hospital of Liaocheng, Linqing, Shandong 252600, P.R. China
| |
Collapse
|
13
|
PRDX2 in Myocyte Hypertrophy and Survival is Mediated by TLR4 in Acute Infarcted Myocardium. Sci Rep 2017; 7:6970. [PMID: 28765537 PMCID: PMC5539327 DOI: 10.1038/s41598-017-06718-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/16/2017] [Indexed: 01/04/2023] Open
Abstract
Peroxiredoxin 2 (PRDX2) is an antioxidant and molecular chaperone that can be secreted from tumor cells. But the role of PRDX2 in acute myocardial infarction (AMI) is not clear. In the current study, we demonstrate the role of PRDX2 from clinical trials, H9c2 cells and in a mouse model. ELISA analysis shows that serum concentrations of VEGF and inflammatory factor IL-1β, TNF-α and IL-6 were increased in AMI patients compared to a control group. The expression of PRDX2 was also upregulated. In vivo experiments show that the expression of PRDX2 inhibits hypoxia-induced oxidative stress injury to H9c2 cells. However, PRDX2 expression promotes TLR4 mediated inflammatory factor expression and VEGF expression under hypoxia conditions. PRDX2 overexpression in H9c2 cells also promotes human endothelial cell migration, vasculogenic mimicry formation and myocardial hypertrophy related protein expression. The overexpression of PRDX2 inhibits ROS level and myocardial injury after AMI but promotes inflammatory responses in vivo. Immunocytochemistry and immunofluorescence analysis show that overexpression of PRDX2 promotes angiogenesis and myocardial hypertrophy. Taken together, our results indicate that PRDX2 plays two roles in acute infarction – the promotion of cell survival and inflammatory myocardial hypertrophy.
Collapse
|
14
|
Lei Y, Li X, Yuan F, Liu L, Zhang J, Yang Y, Zhao J, Han Y, Ren J, Fu X. Toll-like receptor 4 ablation rescues against paraquat-triggered myocardial dysfunction: Role of ER stress and apoptosis. ENVIRONMENTAL TOXICOLOGY 2017; 32:656-668. [PMID: 27442881 DOI: 10.1002/tox.22267] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/18/2016] [Accepted: 03/20/2016] [Indexed: 06/06/2023]
Abstract
Paraquat is a nitrogen herbicide imposing severe organ toxicity in human leading to acute lung injury and heart failure. The present study was designed to examine the impact of ablation of the innate proinflammatory mediator toll-like receptor 4 (TLR4) in paraquat-induced cardiac contractile dysfunction and the underlying mechanisms involved with a focus on endoplasmic reticulum (ER) stress and apoptosis. Adult male wild-type (WT) and TLR4 knockout (TLR4-/- ) mice were challenged with paraquat (45 mg/kg, i.p.) for 48 h prior to the assessment of myocardial and cardiomyocyte sarcomere function, ER stress, apoptosis and inflammation. Acute paraquat challenge exerted myocardial functional and geometric alterations including enlarged left ventricular end systolic diameter (LVESD), reduced fractional shortening, decreased sarcomere shortening, maximal velocities of sarcomere shortening and relengthening associated with unchanged LV posterior wall thickness, septal thickness, LV end diastolic diameter (LVEDD), heart rate, sarcomere length, time-to-peak shortening and time-to-90% relengthening. Although TLR4 ablation did not affect mechanical properties in the heart, it significantly attenuated or ablated paraquat-induced cardiac contractile anomalies. Moreover, paraquat imposed overt ER stress, apoptosis and inflammation as evidenced by upregulation of Bip, CHOP, Caspase-3, -9, Bax, Bad, and IL-1β, phosphorylation of PERK, eIF2α and IΚB, as well as activation of the stress molecules ERK and p38, with unchanged Caspase-8, Bcl2, TNF-α, p53, HMGB1, MyD88 and phosphorylation of Akt, GSK3β and JNK, the effects of which were attenuated or negated by TLR4 knockout. Taken together, our results suggested that TLR4 ablation alleviated paraquat-induced myocardial contractile dysfunction possibly through attenuation of ER stress, apoptosis and inflammation. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 656-668, 2017.
Collapse
Affiliation(s)
- Yonghong Lei
- Institute of Wound Healing and Cell Biology Laboratory, the First Affiliated Hospital, Beijing, 100048, China
| | - Xue Li
- Cardiovascular Department, Tangdu Hospital, Xi'an, 710038, China
| | - Fang Yuan
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Lu Liu
- Department of Clinical Nutrition, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Juan Zhang
- Cardiovascular Department, Tangdu Hospital, Xi'an, 710038, China
| | - Yanping Yang
- Cardiovascular Department, Tangdu Hospital, Xi'an, 710038, China
| | - Jieqiong Zhao
- Cardiovascular Department, Tangdu Hospital, Xi'an, 710038, China
| | - Yan Han
- Department of Plastic Surgery, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Jun Ren
- Department of Cardiology, Fudan University, Zhongshan Hospital, Shanghai, 210032, China
| | - Xiaobing Fu
- Institute of Wound Healing and Cell Biology Laboratory, the First Affiliated Hospital, Beijing, 100048, China
| |
Collapse
|
15
|
Alizadeh-Tabrizi N, Malekinejad H, Varasteh S, Cheraghi H. Atorvastatin protected from paraquat-induced cytotoxicity in alveolar macrophages via down-regulation of TLR-4. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 49:8-13. [PMID: 27883937 DOI: 10.1016/j.etap.2016.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
The current study designed to clarify the mechanism of paraquat-induced cytotoxicity and protective effects of Atorvastatin on freshly isolated alveolar macrophages (AMs). AMs were collected via bronchoalveolar lavage and exposed to various concentrations of paraquat in the presence and absence of atorvastatin for 24h. Cell viability, myeloperoxidase activity; nitric oxide generation and total antioxidant capacity were assessed. Expression of TLR-4 at mRNA and protein levels were studied by using PCR and western blot methods Atorvastatin enhanced the paraquat-reduced cell viability and reduced the paraquat-induced myeloperoxidase activity and nitric oxide production. Moreover, atorvastatin down-regulated by 60% the paraquat up-regulated expression of TLR-4 at protein and mRNA level. Our results suggest that, AMs in vitro model could be a novel cytological tool for studies on paraquat poisoning and therapy regimens. Additionally, atorvastatin cytoprotective effects on paraquat-induced cytotoxicity partly attribute to its anti-myeloperoxidase, antioxidant properties, which might be regulated via TLR-4 expression.
Collapse
Affiliation(s)
- Nazli Alizadeh-Tabrizi
- Department of Pharmacology & Toxicology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hassan Malekinejad
- Department of Pharmacology & Toxicology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia Medical University of Sciences, Urmia, Iran.
| | - Soheil Varasteh
- Faculty of Science, Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Hadi Cheraghi
- Department of Pharmacology & Toxicology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
16
|
Wang S, Zhu X, Xiong L, Zhang Y, Ren J. Toll-like receptor 4 knockout alleviates paraquat-induced cardiomyocyte contractile dysfunction through an autophagy-dependent mechanism. Toxicol Lett 2016; 257:11-22. [DOI: 10.1016/j.toxlet.2016.05.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/02/2016] [Accepted: 05/27/2016] [Indexed: 12/15/2022]
|
17
|
Merkowsky K, Sethi RS, Gill JPS, Singh B. Fipronil induces lung inflammation in vivo and cell death in vitro. J Occup Med Toxicol 2016; 11:10. [PMID: 26997970 PMCID: PMC4797133 DOI: 10.1186/s12995-016-0102-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/14/2016] [Indexed: 12/16/2022] Open
Abstract
Background Fipronil is an insecticide that acts at the gamma-aminobutyric acid receptor and glutamate-gated chloride channels in the central nervous systems of target organisms. The use of fipronil is increasing across the globe. Presently, very little data exist on the potential impact of exposure to fipronil on the lungs. Methods We studied effects of intranasal (N = 8) and oral (N = 8) treatment with fipronil (10 mg/kg) on lungs of mice. Control mice were given groundnut oil orally (N = 7) or ethanol intranasally (N = 7) as these were the vehicles for respective treatments. Results Hematoxylin-eosin stained lung sections showed normal histology in the control lungs compared to the thickened alveolar septa, disruption of the airways epithelium and damage to vascular endothelium in the intranasal and the oral groups. Mice exposed to fipronil either orally or intranasally showed increased von Willebrand factor staining in the endothelium and septal capillaries. Compared to the control mice, TLR4 expression in airway epithelium was increased in mice treated intranasally but not orally with fipronil. Oral fipronil reduced TLR9 staining in the airway epithelium but intranasal exposure caused intense staining in the alveolar septa and airway epithelium. There were higher numbers of TLR4 positive cells in alveolar septa in lungs of mice treated intranasally (P = 0.010) compared to the respective control and orally treated mice but no significant differences between treatments for TLR9 positive stained cells (P = 0.226). The U937 macrophage cells exposed to fipronil at concentrations of 0.29 μm to 5.72 μm/ml over 3- or 24-hour showed significant increase in cell death at higher concentrations of fipronil (P < 0.0001). Western blots revealed no effect of fipronil on TLR4 (P = 0.49) or TLR9 (P = 0.94) expression on macrophage cell line. Conclusion While both oral or intranasal fipronil treatments induced signs of lung inflammation, the number TLR4-positive septal cells was increased only following intranasal treatment. Fipronil causes macrophage cell death without altering TLR4 and TLR9 expression in vitro.
Collapse
Affiliation(s)
- Kaitlin Merkowsky
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4 Canada
| | - Ram S Sethi
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jatinder P S Gill
- School of Veterinary Public Health, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Baljit Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4 Canada
| |
Collapse
|
18
|
Cardiac-Specific Knockout of ETA Receptor Mitigates Paraquat-Induced Cardiac Contractile Dysfunction. Cardiovasc Toxicol 2015; 16:235-43. [DOI: 10.1007/s12012-015-9331-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Yin Y, Zhang J, Song D. Effects of lysine aspirin on lung AQP5 expression and lymphocyte apoptosis in paraquat-poisoned rats. TOXIN REV 2015. [DOI: 10.3109/15569543.2015.1015036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Yu J, Lu Y, Li Y, Xiao L, Xing Y, Li Y, Wu L. Role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes via TLR4/ROS/NF-κB pathway. J Pharm Pharmacol 2015; 67:1240-50. [PMID: 25880347 DOI: 10.1111/jphp.12415] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/27/2015] [Indexed: 01/28/2023]
Abstract
Abstract
Objectives
S100A1 plays a crucial role in hypoxia-induced inflammatory response in cardiomyocytes. However, the role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes is still unknown.
Methods
enzyme-linked immunosorbent assay (ELISA) was performed for the determination of inflammatory cytokines. Immunocytochemistry and immunofluorescence, Western blot analysis and Real-time polymerase chain reaction (RT-PCR) were conducted to assess protein or mRNA expressions. Fluorogenic probe dihydroethidium (DHE) was used to evaluate the generation of reactive oxygen species (ROS) while Hoechst 33342 staining for apoptosis. Small interfering RNA (siRNA) for S100A1 was used to evaluate the role of S100A1.
Key findings
The levels of ROS and inflammatory cytokine including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-8 in H9c2 cells were increased remarkably by hypoxia. However, IL-37 protein or mRNA levels were decreased significantly. Both Toll-like receptor 4 (TLR4) inhibitor Ethyl (6R)-6-[N-(2-Chloro-4fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242) treatment or siRNA S100A1 downregulated TLR4 expression and inflammatory cytokine level and mRNA in H9c2 cells, as well as weakening ROS and phospho-p65 Nuclear factor (NF)-κB levels. Further, S100A1 treatment significantly reduced TNF-α protein or mRNA level whereas enhanced IL-37 protein or mRNA level, and could attenuate ROS and phospho-p65 NF-κB levels.
Conclusions
Our results demonstrate that S100A1 can regulate the inflammatory response and oxidative stress in H9C2 cells via TLR4/ROS/NF-κB pathway. These findings provide an interesting strategy for protecting cardiomyocytes from hypoxia-induced inflammatory response.
Collapse
Affiliation(s)
- Jiangkun Yu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanyu Lu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yapeng Li
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lili Xiao
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Xing
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanshen Li
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Leiming Wu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Heredia L, Bellés M, Llovet MI, Domingo JL, Linares V. Neurobehavioral effects of concurrent exposure to cesium-137 and paraquat during neonatal development in mice. Toxicology 2015; 329:73-9. [DOI: 10.1016/j.tox.2015.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/01/2015] [Accepted: 01/16/2015] [Indexed: 01/21/2023]
|