1
|
Liu S. AHR regulates liver enlargement and regeneration through the YAP signaling pathway. Heliyon 2024; 10:e37265. [PMID: 39296106 PMCID: PMC11408047 DOI: 10.1016/j.heliyon.2024.e37265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a transcription factor activated by ligands that participates in many important physiological processes. Although AHR activation is associated with hepatomegaly, the underlying mechanism remains unclear. This study evaluated the effects of AHR activation on liver enlargement and regeneration in various transgenic mice and animal models. Activation of AHR by the non-toxic ligand YH439 significantly induced liver/body weight ratio in wild-type mice (1.37-fold) and AHRfl/fl.ALB-CreERT2 mice (1.54-fold). However, these effects not present in AHRΔHep mice. Additionally, the activation of AHR promotes hepatocyte enlargement (1.43-fold or 1.41-fold) around the central vein (CV) and increases number of Ki67+ cells (42.5-fold or 48.8-fold) around the portal vein (PV) in wild-type mice and AHRfl/fl.ALB-CreERT2 mice. In the 70 % partial hepatectomy (PHx) model, YH439 significantly induced hepatocyte enlargement (1.40-fold) and increased number of Ki67+ cells (3.97-fold) in AHRfl/fl.ALB-CreERT2 mice. However, these effects were not observed in AHRΔHep mice. Co-immunoprecipitation results suggested a potential protein-protein interaction between AHR and Yes-associated protein (YAP). Disruption of the association between YAP and transcription enhancer domain family member (TEAD) significantly inhibited AHR-induced liver enlargement and regeneration. Furthermore, AHR failed to induce liver enlargement and regeneration in YAPΔHep mice. Blocking the YAP signaling pathway effectively eliminated AHR-induced liver enlargement and regeneration. This study revealed the molecular mechanism of AHR regulation of liver size and regeneration through the activation of AHR-TEAD signaling pathway, thereby offering novel insights into the physiological role of AHR. These findings provide a theoretical foundation for the prevention and treatment of disorders associated with liver regeneration.
Collapse
Affiliation(s)
- Shenghui Liu
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| |
Collapse
|
2
|
Grishanova AY, Klyushova LS, Perepechaeva ML. AhR and Wnt/β-Catenin Signaling Pathways and Their Interplay. Curr Issues Mol Biol 2023; 45:3848-3876. [PMID: 37232717 DOI: 10.3390/cimb45050248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
As evolutionarily conserved signaling cascades, AhR and Wnt signaling pathways play a critical role in the control over numerous vital embryonic and somatic processes. AhR performs many endogenous functions by integrating its signaling pathway into organ homeostasis and into the maintenance of crucial cellular functions and biological processes. The Wnt signaling pathway regulates cell proliferation, differentiation, and many other phenomena, and this regulation is important for embryonic development and the dynamic balance of adult tissues. AhR and Wnt are the main signaling pathways participating in the control of cell fate and function. They occupy a central position in a variety of processes linked with development and various pathological conditions. Given the importance of these two signaling cascades, it would be interesting to elucidate the biological implications of their interaction. Functional connections between AhR and Wnt signals take place in cases of crosstalk or interplay, about which quite a lot of information has been accumulated in recent years. This review is focused on recent studies about the mutual interactions of key mediators of AhR and Wnt/β-catenin signaling pathways and on the assessment of the complexity of the crosstalk between the AhR signaling cascade and the canonical Wnt pathway.
Collapse
Affiliation(s)
- Alevtina Y Grishanova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| | - Lyubov S Klyushova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| | - Maria L Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| |
Collapse
|
3
|
Chung YL, Laiman V, Tsao PN, Chen CM, Heriyanto DS, Chung KF, Chuang KJ, Chuang HC. Diesel exhaust particles inhibit lung branching morphogenesis via the YAP/TAZ pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160682. [PMID: 36481141 DOI: 10.1016/j.scitotenv.2022.160682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Prenatal exposure to air pollution may associated with inhibition of lung development in the child, however the possible mechanism is unclear. We investigated the effects of traffic-related diesel exhaust particle (DEP) exposure on fetal lung branching morphogenesis and elucidate the possible mechanism. Ex vivo fetal lungs collected from ICR mice at an age of 11.5 embryonic (E) days were exposed to DEPs at 0 (control), 10, and 50 μg/mL and branching morphogenesis was measured for 3 days. Normal IMR-90 human fetal lung fibroblast cells were exposed to DEPs at 0 (control), 10, and 50 μg/mL for 24 h. We observed that DEP exposure significantly inhibited lung branching morphogenesis with reduced lung branching ratios and surface areas on day 3. RNA sequencing (RNA-Seq) showed that DEP increased the inflammatory response and impaired lung development-related gene expressions. DEPs significantly decreased Yes-associated protein (YAP), phosphorylated (p)-YAP, transcriptional coactivator with a PDZ-binding motif (TAZ), and p-TAZ in IMR-90 cells at 10 and 50 μg/mL. Treatment of fetal lungs with the YAP inhibitor, PFI-2, also demonstrated restricted lung branching development similar to that of DEP exposure, with a significantly decreased lung branching ratio on day 3. DEP exposure significantly decreased the lung branching modulators fibroblast growth factor receptor 2 (FGFR2), sex-determining region Y-box 2 (SOX2), and SOX9 in IMR-90 cells at 10 and 50 μg/mL. Fetal lung immunofluorescence staining showed that DEP decreased SOX2 expression in fibronectin+ fibroblasts. DEP exposure decreased the cellular senescence regulator, p-sirtuin 1 (SIRT1)/SIRT1 in IMR-90 cells, with RNA-Seq showing impaired telomere maintenance. DEP exposure impaired fetal lung growth during the pseudoglandular stage through dysregulating the Hippo signaling pathway, causing fibroblast lung branching restriction and early senescence. Prenatal exposure to traffic-related air pollution has adverse effects on fetal lung development.
Collapse
Affiliation(s)
- Yu-Ling Chung
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Vincent Laiman
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; The Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Ming Chen
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Didik Setyo Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
4
|
Svobodová J, Procházková J, Kabátková M, Krkoška M, Šmerdová L, Líbalová H, Topinka J, Kléma J, Kozubík A, Machala M, Vondráček J. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Disrupts Control of Cell Proliferation and Apoptosis in a Human Model of Adult Liver Progenitors. Toxicol Sci 2020; 172:368-384. [PMID: 31536130 DOI: 10.1093/toxsci/kfz202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) activation has been shown to alter proliferation, apoptosis, or differentiation of adult rat liver progenitors. Here, we investigated the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated AhR activation on a human model of bipotent liver progenitors, undifferentiated HepaRG cells. We used both intact undifferentiated HepaRG cells, and the cells with silenced Hippo pathway effectors, yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), which play key role(s) in tissue-specific progenitor cell self-renewal and expansion, such as in liver, cardiac, or respiratory progenitors. TCDD induced cell proliferation in confluent undifferentiated HepaRG cells; however, following YAP, and, in particular, double YAP/TAZ knockdown, TCDD promoted induction of apoptosis. These results suggested that, unlike in mature hepatocytes, or hepatocyte-like cells, activation of the AhR may sensitize undifferentiated HepaRG cells to apoptotic stimuli. Induction of apoptosis in cells with silenced YAP/TAZ was associated with upregulation of death ligand TRAIL, and seemed to involve both extrinsic and mitochondrial apoptosis pathways. Global gene expression analysis further suggested that TCDD significantly altered expression of constituents and/or transcriptional targets of signaling pathways participating in control of expansion or differentiation of liver progenitors, including EGFR, Wnt/β-catenin, or tumor growth factor-β signaling pathways. TCDD significantly upregulated cytosolic proapoptotic protein BMF (Bcl-2 modifying factor) in HepaRG cells, which could be linked with an enhanced sensitivity of TCDD-treated cells to apoptosis. Our results suggest that, in addition to promotion of cell proliferation and alteration of signaling pathways controlling expansion of human adult liver progenitors, AhR ligands may also sensitize human liver progenitor cells to apoptosis.
Collapse
Affiliation(s)
- Jana Svobodová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 61137, Czech Republic
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno 62100, Czech Republic
| | - Markéta Kabátková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| | - Martin Krkoška
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 61137, Czech Republic
| | - Lenka Šmerdová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| | - Helena Líbalová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Jan Topinka
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Jiří Kléma
- Department of Computer Science, Czech Technical University, Prague 12135, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno 62100, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| |
Collapse
|
5
|
Bock KW. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-mediated deregulation of myeloid and sebaceous gland stem/progenitor cell homeostasis. Arch Toxicol 2017; 91:2295-2301. [PMID: 28386637 DOI: 10.1007/s00204-017-1965-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/21/2017] [Indexed: 01/09/2023]
Abstract
Studies of TCDD toxicity stimulated identification of the responsible aryl hydrocarbon receptor (AHR), a multifunctional, ligand-activated transcription factor of the basic helix-loop-helix/Per-Arnt-Sim family. Accumulating evidence suggests a role of this receptor in homeostasis of stem/progenitor cells, in addition to its known role in xenobiotic metabolism. (1) Regulation of myelopoiesis is complex. As one example, AHR-mediated downregulation of human CD34+ progenitor differentiation to monocytes/macrophages is discussed. (2) Accumulation of TCDD in sebum leads to deregulation of sebocyte differentiation via Blimp1-mediated inhibition of c-Myc signaling and stimulation of Wnt-mediated proliferation of interfollicular epidermis. The resulting sebaceous gland atrophy and formation of dermal cysts may explain the pathogenesis of chloracne, the hallmark of TCDD toxicity. (3) TCDD treatment of confluent liver stem cell-like rat WB-F344 cells leads to release from cell-cell contact inhibition via AHR-mediated crosstalk with multiple signaling pathways. Further work is needed to delineate AHR function in crosstalk with other signaling pathways.
Collapse
Affiliation(s)
- Karl Walter Bock
- Department of Toxicology, Institute of Pharmacology and Toxicology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
6
|
Effect of TCDD on the fate of epithelial cells isolated from human fetal palatal shelves (hFPECs). Toxicol Appl Pharmacol 2016; 305:186-193. [DOI: 10.1016/j.taap.2016.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/21/2022]
|
7
|
Environmental Ligands of the Aryl Hydrocarbon Receptor and Their Effects in Models of Adult Liver Progenitor Cells. Stem Cells Int 2016; 2016:4326194. [PMID: 27274734 PMCID: PMC4870370 DOI: 10.1155/2016/4326194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022] Open
Abstract
The toxicity of environmental and dietary ligands of the aryl hydrocarbon receptor (AhR) in mature liver parenchymal cells is well appreciated, while considerably less attention has been paid to their impact on cell populations exhibiting phenotypic features of liver progenitor cells. Here, we discuss the results suggesting that the consequences of the AhR activation in the cellular models derived from bipotent liver progenitors could markedly differ from those in hepatocytes. In contact-inhibited liver progenitor cells, the AhR agonists induce a range of effects potentially linked with tumor promotion. They can stimulate cell cycle progression/proliferation and deregulate cell-to-cell communication, which is associated with downregulation of proteins forming gap junctions, adherens junctions, and desmosomes (such as connexin 43, E-cadherin, β-catenin, and plakoglobin), as well as with reduced cell adhesion and inhibition of intercellular communication. At the same time, toxic AhR ligands may affect the activity of the signaling pathways contributing to regulation of liver progenitor cell activation and/or differentiation, such as downregulation of Wnt/β-catenin and TGF-β signaling, or upregulation of transcriptional targets of YAP/TAZ, the effectors of Hippo signaling pathway. These data illustrate the need to better understand the potential role of liver progenitors in the AhR-mediated liver carcinogenesis and tumor promotion.
Collapse
|