1
|
Song L, Qiu Q, Ju F, Zheng C. Mechanisms of doxorubicin-induced cardiac inflammation and fibrosis; therapeutic targets and approaches. Arch Biochem Biophys 2024; 761:110140. [PMID: 39243924 DOI: 10.1016/j.abb.2024.110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Doxorubicin plays a pivotal role in the treatment of various malignancies. Despite its efficacy, the cardiotoxicity associated with doxorubicin limits its clinical utility. The cardiotoxic nature of doxorubicin is attributed to several mechanisms, including its interference with mitochondrial function, the generation of reactive oxygen species (ROS), and the subsequent damage to cardiomyocyte DNA, proteins, and lipids. Furthermore, doxorubicin disrupts the homeostasis of cardiac-specific transcription factors and signaling pathways, exacerbating cardiac dysfunction. Oxidative stress, cell death, and other severe changes, such as mitochondrial dysfunction, activation of pro-oxidant enzymes, the renin-angiotensin system (RAS), endoplasmic reticulum (ER) stress, and infiltration of immune cells in the heart after treatment with doxorubicin, may cause inflammatory and fibrotic responses. Fibrosis and inflammation can lead to a range of disorders in the heart, resulting in potential cardiac dysfunction and disease. Various adjuvants have shown potential in preclinical studies to mitigate these challenges associated with cardiac inflammation and fibrosis. Antioxidants, plant-based products, specific inhibitors, and cardioprotective drugs may be recommended to alleviate cardiotoxicity. This review explores the complex mechanisms of doxorubicin-induced heart inflammation and fibrosis, identifies possible cellular and molecular targets, and investigates potential substances that could help reduce these harmful effects.
Collapse
Affiliation(s)
- Linghua Song
- Department of Pharmacy, Yantai Mountain Hospital, Yantai City, Shandong Province, 264001, China
| | - Qingzhuo Qiu
- Medical Imaging Department of Qingdao Women and Children's Hospital, 266000, China
| | - Fei Ju
- Department of Critical Care, Medicine East Hospital of Qingdao Municipal Hospital, 266000, China
| | - Chunyan Zheng
- Cadre Health Office of Zibo Central Hospital in Shandong Province, 255000, China.
| |
Collapse
|
2
|
Nie Y, Ma Z, Zhang B, Sun M, Zhang D, Li HH, Song X. The role of the immunoproteasome in cardiovascular disease. Pharmacol Res 2024; 204:107215. [PMID: 38744399 DOI: 10.1016/j.phrs.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The ubiquitinproteasome system (UPS) is the main mechanism responsible for the intracellular degradation of misfolded or damaged proteins. Under inflammatory conditions, the immunoproteasome, an isoform of the proteasome, can be induced, enhancing the antigen-presenting function of the UPS. Furthermore, the immunoproteasome also serves nonimmune functions, such as maintaining protein homeostasis and regulating signalling pathways, and is involved in the pathophysiological processes of various cardiovascular diseases (CVDs). This review aims to provide a comprehensive summary of the current research on the involvement of the immunoproteasome in cardiovascular diseases, with the ultimate goal of identifying novel strategies for the treatment of these conditions.
Collapse
Affiliation(s)
- Yifei Nie
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Zhao Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Baoen Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Meichen Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Dongfeng Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
3
|
Wei S, Ma W, Yang Y, Sun T, Jiang C, Liu J, Zhang B, Li W. Trastuzumab potentiates doxorubicin-induced cardiotoxicity via activating the NLRP3 inflammasome in vivo and in vitro. Biochem Pharmacol 2023:115662. [PMID: 37331637 DOI: 10.1016/j.bcp.2023.115662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Trastuzumab (Tra), the first humanized monoclonal antibody that targets human epidermal growth factor receptor 2 (HER2), is commonly used alongside doxorubicin (Dox) as a combination therapy in HER2-positive breast cancer. Unfortunately, this leads to a more severe cardiotoxicity than Dox alone. NLRP3 inflammasome is known to be involved in Dox-induced cardiotoxicity and multiple cardiovascular diseases. However, whether the NLRP3 inflammasome contributes to the synergistic cardiotoxicity of Tra has not been elucidated. In this study, primary neonatal rat cardiomyocyte (PNRC), H9c2 cells and mice were treated with Dox (15 mg/kg in mice or 1μM in cardiomyocyte) or Tra (15.75 mg/kg in mice or 1μM in cardiomyocyte), or Dox combined Tra as cardiotoxicity models to investigate this question. Our results demonstrated that Tra significantly potentiated Dox-induced cardiomyocyte apoptosis and cardiac dysfunction. These were accompanied by the increased expressions of NLRP3 inflammasome components (NLRP3, ASC and cleaved caspase-1), the secretion of IL-β and the pronounced production of ROS. Inhibiting the activation of NLRP3 inflammasome by NLRP3 silencing significantly reduced cell apoptosis and ROS production in Dox combined Tra-treated PNRC. Compared with the wild type mice, the systolic dysfunction, myocardial hypertrophy, cardiomyocyte apoptosis and oxidative stress induced by Dox combined Tra were alleviated in NLRP3 gene knockout mice. Our data revealed that the co-activation of NLRP3 inflammasome by Tra promoted the inflammation, oxidative stress and cardiomyocytes apoptosis in Dox combined Tra-induced cardiotoxicity model both in vivo and in vitro. Our results suggest that NLRP3 inhibition is a promising cardioprotective strategy in Dox/Tra combination therapy.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Wanjun Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China; Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuanying Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Taoli Sun
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Chuanhao Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China.
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
4
|
The dichotomous role of immunoproteasome in cancer: Friend or foe? Acta Pharm Sin B 2022; 13:1976-1989. [DOI: 10.1016/j.apsb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022] Open
|
5
|
Chiaureli MR, Kovalev DV, Yurlov IA, Minaev AV, Podzolkov VP. Successful One-and-a-Half Ventricle Repair of Right Ventricle Dysfunction Due to Lymphoblastic Leukemia Treatment in a Patient with Restrictive Cardiomyopathy. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e933677. [PMID: 34815376 PMCID: PMC8630555 DOI: 10.12659/ajcr.933677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patient: Female, 29-year-old
Final Diagnosis: Restrictive cardiomyopathy with isolated endomyocardial fibrosis of the right ventricle • tricuspid valve insufficiency
Symptoms: Reduced exercise tolerance • dyspnea and heart rhythm disorders
Medication: —
Clinical Procedure: —
Specialty: Cardiac Surgery • Cardiology
Collapse
Affiliation(s)
- Mikhail Ramazovich Chiaureli
- Department of Congenital Heart Diseases, A.N. Bakoulev National Medical Research Center of Cardiovascular Surgery, Moscow, Russian Federation
| | - Dmitry Victorovich Kovalev
- Department of Congenital Heart Diseases, A.N. Bakoulev National Medical Research Center of Cardiovascular Surgery, Moscow, Russian Federation
| | - Ivan Aleksandrovich Yurlov
- Department of Congenital Heart Diseases, A.N. Bakoulev National Medical Research Center of Cardiovascular Surgery, Moscow, Russian Federation
| | - Anton Vladimirovich Minaev
- Department of Congenital Heart Diseases, A.N. Bakoulev National Medical Research Center of Cardiovascular Surgery, Moscow, Russian Federation
| | - Vladimir Petrovich Podzolkov
- Department of Congenital Heart Diseases, A.N. Bakoulev National Medical Research Center of Cardiovascular Surgery, Moscow, Russian Federation
| |
Collapse
|
6
|
Xing X, Tan Z, Zhi X, Sun H, Yang J, Li L, Liu Y, Wang L, Dong Z, Guo H. Integrating analysis of circular RNA and mRNA expression profiles in doxorubicin induced cardiotoxicity mice. J Appl Toxicol 2021; 42:793-805. [PMID: 34693535 DOI: 10.1002/jat.4257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 01/21/2023]
Abstract
Doxorubicin (DOX)-induced cardiotoxicity impedes its clinical application, but the mechanisms have not been thoroughly elucidated. Based on circRNA and mRNA expression profiles, we illustrated RNA expression signature changes during DOX-induced cardiotoxicity; mechanism exploration and biomarkers screening were also conducted. Twelve mice were randomly divided into two groups, induction group was treated with doxorubicin, and the control group was given an equal quantity of saline. After the confirmation of myocardial injury in induction group, the heart tissues from both groups were isolated for RNA high-throughput sequencing. The expression profiles were compared between the two groups; a total of 295 mRNAs and 11 circRNAs were shown as biased expression in DOX-induced cardiotoxicity mouse hearts. The dysregulation of three circRNAs were validated by quantitative real-time PCR: mmu_circ_0015773, mmu_circ_0002106, and mmu_circ_001606. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the differentially expressed RNAs were performed; the results implied that DOX might cause cardiotoxicity by interfering hemoglobin-based oxygen delivery and DNA-associated signal pathways. We integrated the differential expressed mRNA and validated circRNAs by constructing a competing endogenous RNA (ceRNA) network, which indicated that the alteration of the three circRNAs could activate apoptosis process of myocardial cells. This study provided novel insight into the mechanisms of DOX induced cardiotoxicity, and potential biomarkers or therapeutic targets were also proposed.
Collapse
Affiliation(s)
- Xiaoqing Xing
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Zhenzhen Tan
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Xuran Zhi
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Heming Sun
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Jing Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Longfei Li
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Yi Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Lei Wang
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang, China
| | - Zhanjun Dong
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Huicai Guo
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, China
| |
Collapse
|
7
|
Cheong A, McGrath S, Robinson T, Maliki R, Spurling A, Lock P, Rephaeli A, Nudelman A, Parker BS, Pepe S, Cutts SM. A switch in mechanism of action prevents doxorubicin-mediated cardiac damage. Biochem Pharmacol 2021; 185:114410. [PMID: 33428897 DOI: 10.1016/j.bcp.2021.114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Cancer patients treated with doxorubicin are at risk of congestive heart failure due to doxorubicin-mediated cardiotoxicity via topoisomerase IIβ poisoning. Acute cardiac muscle damage occurs in response to the very first dose of doxorubicin, however, cardioprotection has been reported after co-treatment of doxorubicin with acyloxyalkyl ester prodrugs. The aim of this study was to examine the role played by various forms of acute cardiac damage mediated by doxorubicin and determine a mechanism for the cardioprotective effect of formaldehyde-releasing prodrug AN-9 (pivaloyloxymethyl butyrate). Doxorubicin-induced cardiac damage in BALB/c mice bearing mammary tumours was established with a single dose of doxorubicin (4 or 16 mg/kg) administered alone or in combination with AN-9 (100 mg/kg). AN-9 protected the heart from doxorubicin-induced myocardial apoptosis and also significantly reduced dsDNA breaks, independent from the level of doxorubicin biodistribution to the heart. Covalent incorporation of [14C]doxorubicin into DNA showed that the combination treatment yielded significantly higher levels of formaldehyde-mediated doxorubicin-DNA adducts compared to doxorubicin alone, yet this form of damage was associated with cardioprotection from apoptosis. The cardiac transcriptomic analysis indicates that the combination treatment initiates inflammatory response signalling pathways. Doxorubicin and AN-9 combination treatments were cardioprotective, yet preserved doxorubicin-mediated anti-tumour proliferation and apoptosis in mammary tumours. This was associated with a switch in doxorubicin action from cardiac topoisomerase IIβ poisoning to covalent-DNA adduct formation. Co-administration of doxorubicin and formaldehyde-releasing prodrugs, such as AN-9, may be a promising cardioprotective therapy while maintaining doxorubicin activity in primary mammary tumours.
Collapse
Affiliation(s)
- Alison Cheong
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Sean McGrath
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Tina Robinson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Ruqaya Maliki
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Alex Spurling
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Peter Lock
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Ada Rephaeli
- Laboratory for Pharmacology and Experimental Oncology, Felsenstein Medical Research Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, 49100 Tel Aviv, Israel
| | - Abraham Nudelman
- Division of Medicinal Chemistry, Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Belinda S Parker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Salvatore Pepe
- Murdoch Children's Research Institute, Department of Cardiology, Royal Children's Hospital, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Suzanne M Cutts
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
8
|
Kanno SI, Hara A. The mRNA expression of Il6 and Pdcd1 are predictive and protective factors for doxorubicin‑induced cardiotoxicity. Mol Med Rep 2020; 23:113. [PMID: 33300057 PMCID: PMC7723161 DOI: 10.3892/mmr.2020.11752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Anthracyclines, such as doxorubicin (DOX), have been widely used in the treatment of a number of different solid and hematological malignancies. However, these drugs can inflict cumulative dose-dependent and irreversible damage to the heart, and can occasionally lead to heart failure. The cardiotoxic susceptibility varies among patients treated with anthracycline, and delays in the recognition of cardiotoxicity can result in poor prognoses. Accordingly, if the risk of cardiotoxicity could be predicted prior to drug administration, it would aid in safer and more effective chemotherapy treatment. The present study was carried out to identify genes that can predict DOX-induced cardiotoxicity (DICT). In an in vivo study, mice cumulatively treated with DOX demonstrated increases in serum levels of cardiac enzymes (aspartate aminotransferase, lactate dehydrogenase, creatine kinase MB isoenzyme and troponin T), in addition to decreases in body and heart weights. These changes were indicative of DICT, but the severity of these effects varied among individual mice. In the current study, the correlation in these mice between the extent of DICT and circulating blood concentrations of relevant transcripts before DOX administration was analyzed. Among various candidate genes, the plasma mRNA levels of the genes encoding interleukin 6 (Il6) and programmed cell death 1 (Pdcd1) in blood exhibited significant and positive correlations with the severity of DICT. In an in vitro study using cardiomyocyte H9c2 cells, knockdown of Il6 or Pdcd1 by small interfering RNA was revealed to enhance DOX-induced apoptosis, as determined by luminescent assays. These results suggested that the levels of transcription of Il6 and Pdcd1 in cardiomyocytes serve a protective role against DICT, and that the accumulation of these gene transcripts in blood is a predictive marker for DICT. To the best of our knowledge, this is the first report to demonstrate a role for Il6 and Pdcd1 mRNA expression in DICT.
Collapse
Affiliation(s)
- Syu-Ichi Kanno
- Department of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981‑8558, Japan
| | - Akiyoshi Hara
- Department of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981‑8558, Japan
| |
Collapse
|
9
|
Liao J, An X, Yang X, Lin QY, Liu S, Xie Y, Bai J, Xia YL, Li HH. Deficiency of LMP10 Attenuates Diet-Induced Atherosclerosis by Inhibiting Macrophage Polarization and Inflammation in Apolipoprotein E Deficient Mice. Front Cell Dev Biol 2020; 8:592048. [PMID: 33195259 PMCID: PMC7644912 DOI: 10.3389/fcell.2020.592048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
Macrophage polarization and inflammation are key factors for the onset and progression of atherosclerosis. The immunoproteasome complex consists of three inducible catalytic subunits (LMP2, LMP10, and LMP7) that play a critical role in the regulation of these risk factors. We recently demonstrated that the LMP7 subunit promotes diet-induced atherosclerosis via inhibition of MERTK-mediated efferocytosis. Here, we explored the role of another subunit of LMP10 in the disease process, using ApoE knockout (ko) mice fed on an atherogenic diet (ATD) containing 0.5% cholesterol and 20% fat for 8 weeks as an in vivo atherosclerosis model. We observed that ATD significantly upregulated LMP10 expression in aortic lesions, which were primarily co-localized with plaque macrophages. Conversely, deletion of LMP10 markedly attenuated atherosclerotic lesion area, CD68+ macrophage accumulation, and necrotic core expansion in the plaques, but did not change plasma metabolic parameters, lesional SM22α+ smooth muscle cells, or collagen content. Myeloid-specific deletion of LMP10 by bone marrow transplantation resulted in similar phenotypes. Furthermore, deletion of LMP10 remarkably reduced aortic macrophage infiltration and increased M2/M1 ratio, accompanied by decreased expression of pro-inflammatory M1 cytokines (MCP-1, IL-1, and IL-6) and increased expression of anti-inflammatory M2 cytokines (IL-4 and IL-10). In addition, we confirmed in cultured macrophages that LMP10 deletion blunted macrophage polarization and inflammation during ox-LDL-induced foam cell formation in vitro, which was associated with decreased IκBα degradation and NF-κB activation. Our results show that the immunoproteasome subunit LMP10 promoted diet-induced atherosclerosis in ApoE ko mice possibly through regulation of NF-κB-mediated macrophage polarization and inflammation. Targeting LMP10 may represent a new therapeutic approach for atherosclerosis.
Collapse
Affiliation(s)
- Jiawei Liao
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangbo An
- Department of Interventional Therapy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaolei Yang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiu-Yue Lin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuang Liu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, Dalian, China
| | - Yunpeng Xie
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jie Bai
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, Dalian, China
| | - Yun-Long Xia
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Possible Susceptibility Genes for Intervention against Chemotherapy-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4894625. [PMID: 33110473 PMCID: PMC7578723 DOI: 10.1155/2020/4894625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Recent therapeutic advances have significantly improved the short- and long-term survival rates in patients with heart disease and cancer. Survival in cancer patients may, however, be accompanied by disadvantages, namely, increased rates of cardiovascular events. Chemotherapy-related cardiac dysfunction is an important side effect of anticancer therapy. While advances in cancer treatment have increased patient survival, treatments are associated with cardiovascular complications, including heart failure (HF), arrhythmias, cardiac ischemia, valve disease, pericarditis, and fibrosis of the pericardium and myocardium. The molecular mechanisms of cardiotoxicity caused by cancer treatment have not yet been elucidated, and they may be both varied and complex. By identifying the functional genetic variations responsible for this toxicity, we may be able to improve our understanding of the potential mechanisms and pathways of treatment, paving the way for the development of new therapies to target these toxicities. Data from studies on genetic defects and pharmacological interventions have suggested that many molecules, primarily those regulating oxidative stress, inflammation, autophagy, apoptosis, and metabolism, contribute to the pathogenesis of cardiotoxicity induced by cancer treatment. Here, we review the progress of genetic research in illuminating the molecular mechanisms of cancer treatment-mediated cardiotoxicity and provide insights for the research and development of new therapies to treat or even prevent cardiotoxicity in patients undergoing cancer treatment. The current evidence is not clear about the role of pharmacogenomic screening of susceptible genes. Further studies need to done in chemotherapy-induced cardiotoxicity.
Collapse
|
11
|
Huang S, Blatti C, Sinha S, Parameswaran A. Uncovering Effective Explanations for Interactive Genomic Data Analysis. PATTERNS 2020; 1:100093. [PMID: 33205133 PMCID: PMC7660438 DOI: 10.1016/j.patter.2020.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/13/2020] [Accepted: 08/05/2020] [Indexed: 10/25/2022]
|
12
|
Wang L, Zhang TP, Zhang Y, Bi HL, Guan XM, Wang HX, Wang X, Du J, Xia YL, Li HH. Protection against doxorubicin-induced myocardial dysfunction in mice by cardiac-specific expression of carboxyl terminus of hsp70-interacting protein. Sci Rep 2016; 6:28399. [PMID: 27323684 PMCID: PMC4914971 DOI: 10.1038/srep28399] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 06/01/2016] [Indexed: 01/06/2023] Open
Abstract
Carboxyl terminus of Hsp70-interacting protein (CHIP) is a critical ubiquitin ligase/cochaperone to reduce cardiac oxidative stress, inflammation, cardiomyocyte apoptosis and autophage etc. However, it is unclear whether overexpression of CHIP in the heart would exert protective effects against DOX-induced cardiomyopathy. Cardiac-specific CHIP transgenic (CHIP-TG) mice and the wild-type (WT) littermates were treated with DOX or saline. DOX-induced cardiac atrophy, dysfunction, inflammation, oxidative stress and cardiomyocyte apoptosis were significantly attenuated in CHIP-TG mice. CHIP-TG mice also showed higher survival rate than that of WT mice (40% versus 10%) after 10-day administration of DOX. In contrast, knockdown of CHIP by siRNA in vitro further enhanced DOX-induced cardiotoxic effects. Global gene microarray assay revealed that after DOX-treatment, differentially expressed genes between WT and CHIP-TG mice were mainly involved in apoptosis, atrophy, immune/inflammation and oxidative stress. Mechanistically, CHIP directly promotes ubiquitin-mediated degradation of p53 and SHP-1, which results in activation of ERK1/2 and STAT3 pathways thereby ameliorating DOX-induced cardiac toxicity.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Tian-Peng Zhang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yuan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Baotou Medical College, Baotou 014060, China
| | - Hai-Lian Bi
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xu-Min Guan
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hong-Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jie Du
- Beijing AnZhen Hospital the Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing 100029, China
| | - Yun-Long Xia
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.,Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
13
|
Inhibition of chymotryptic-like standard proteasome activity exacerbates doxorubicin-induced cytotoxicity in primary cardiomyocytes. Toxicology 2016; 353-354:34-47. [DOI: 10.1016/j.tox.2016.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/19/2016] [Accepted: 04/29/2016] [Indexed: 01/16/2023]
|
14
|
Early transcriptional changes in cardiac mitochondria during chronic doxorubicin exposure and mitigation by dexrazoxane in mice. Toxicol Appl Pharmacol 2016; 295:68-84. [PMID: 26873546 DOI: 10.1016/j.taap.2016.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 11/24/2022]
Abstract
Identification of early biomarkers of cardiotoxicity could help initiate means to ameliorate the cardiotoxic actions of clinically useful drugs such as doxorubicin (DOX). Since DOX has been shown to target mitochondria, transcriptional levels of mitochondria-related genes were evaluated to identify early candidate biomarkers in hearts of male B6C3F1 mice given a weekly intravenous dose of 3mg/kg DOX or saline (SAL) for 2, 3, 4, 6, or 8 weeks (6, 9, 12, 18, or 24 mg/kg cumulative DOX doses, respectively). Also, a group of mice was pretreated (intraperitoneally) with the cardio-protectant, dexrazoxane (DXZ; 60 mg/kg) 30 min before each weekly dose of DOX or SAL. At necropsy a week after the last dose, increased plasma concentrations of cardiac troponin T (cTnT) were detected at 18 and 24 mg/kg cumulative DOX doses, whereas myocardial alterations were observed only at the 24 mg/kg dose. Of 1019 genes interrogated, 185, 109, 140, 184, and 451 genes were differentially expressed at 6, 9, 12, 18, and 24 mg/kg cumulative DOX doses, respectively, compared to concurrent SAL-treated controls. Of these, expression of 61 genes associated with energy metabolism and apoptosis was significantly altered before and after occurrence of myocardial injury, suggesting these as early genomics markers of cardiotoxicity. Much of these DOX-induced transcriptional changes were attenuated by pretreatment of mice with DXZ. Also, DXZ treatment significantly reduced plasma cTnT concentration and completely ameliorated cardiac alterations induced by 24 mg/kg cumulative DOX. This information on early transcriptional changes during DOX treatment may be useful in designing cardioprotective strategies targeting mitochondria.
Collapse
|