1
|
Liu JY, Beard JM, Hussain S, Sayes CM. Advancing analytical and graphical methods for binary and ternary mixtures: The toxic interactions of divalent metal ions in human lung cells. Heliyon 2024; 10:e40481. [PMID: 39634418 PMCID: PMC11615481 DOI: 10.1016/j.heliyon.2024.e40481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Humans are exposed to various environmental chemicals, particles, and pathogens that can cause adverse health outcomes. These exposures are rarely homogenous but rather complex mixtures in which the components may interact, such as through synergism or antagonism. Toxicologists have conducted preliminary investigations into binary mixtures of two components, but little work has been done to understand mixtures of three or more components. We investigated mixtures of divalent metal ions, quantifying the toxic interactions in a human lung model. Eight metals were chosen: heavy metals cadmium, copper, lead, and tin, as well as transition metals iron, manganese, nickel, and zinc. Human alveolar epithelial cells (A549) were exposed to individual metals and sixteen binary and six ternary combinations. The dose-response was modeled using logistic regression in R to extract LC50 values. Among the individual metals, the highest and lowest toxicity were observed with copper at an LC50 of 102 μM and lead at an LC50 of 5639 μM, respectively. First and second-order interaction coefficients were obtained using machine learning-based linear regression in Python. The resulting second-degree polynomial model formed either a hyperbolic or elliptical conic section, and the positive quadrant was used to produce isobolograms and contour plots. The strongest synergism and antagonism were observed in cadmium-copper and iron-zinc, respectively. A three-way interaction term was added to produce full ternary isobologram surfaces, which, to our knowledge, are a significant first in the toxicology literature.
Collapse
Affiliation(s)
- James Y. Liu
- Department of Environmental Science, Baylor University, Waco, TX 76798-7266, USA
| | - Jonathan M. Beard
- Department of Environmental Science, Baylor University, Waco, TX 76798-7266, USA
| | - Saber Hussain
- 711th Human Performance Wing, Air Force Research Laboratory, Dayton, OH, USA
| | - Christie M. Sayes
- Department of Environmental Science, Baylor University, Waco, TX 76798-7266, USA
| |
Collapse
|
2
|
Liu JY, Sayes CM. Modeling mixtures interactions in environmental toxicology. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104380. [PMID: 38309542 DOI: 10.1016/j.etap.2024.104380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
In the environment, organisms are exposed to mixtures of different toxicants, which may interact in ways that are difficult to predict when only considering each component individually. Adapting and expanding tools from pharmacology, the toxicology field uses analytical, graphical, and computational methods to identify and quantify interactions in multi-component mixtures. The two general frameworks are concentration addition, where components have similar modes of action and their effects sum together, or independent action, where components have dissimilar modes of action and do not interact. Other interaction behaviors include synergism and antagonism, where the combined effects are more or less than the additive sum of individual effects. This review covers foundational theory, methods, an in-depth survey of original research from the past 20 years, current trends, and future directions. As humans and ecosystems are exposed to increasingly complex mixtures of environmental contaminants, analyzing mixtures interactions will continue to become a more critical aspect of toxicological research.
Collapse
Affiliation(s)
- James Y Liu
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX, USA.
| |
Collapse
|
3
|
Dutta S, Sengupta P, Bagchi S, Chhikara BS, Pavlík A, Sláma P, Roychoudhury S. Reproductive toxicity of combined effects of endocrine disruptors on human reproduction. Front Cell Dev Biol 2023; 11:1162015. [PMID: 37250900 PMCID: PMC10214012 DOI: 10.3389/fcell.2023.1162015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Confluence of environmental, genetic, and lifestyle variables is responsible for deterioration of human fecundity. Endocrine disruptors or endocrine disrupting chemicals (EDCs) may be found in a variety of foods, water, air, beverages, and tobacco smoke. It has been demonstrated in experimental investigations that a wide range of endocrine disrupting chemicals have negative effects on human reproductive function. However, evidence on the reproductive consequences of human exposure to endocrine disrupting chemicals is sparse and/or conflicting in the scientific literature. The combined toxicological assessment is a practical method for assessing the hazards of cocktails of chemicals, co-existing in the environment. The current review provides a comprehensive overview of studies emphasizing the combined toxicity of endocrine disrupting chemicals on human reproduction. Endocrine disrupting chemicals interact with each other to disrupt the different endocrine axes, resulting in severe gonadal dysfunctions. Transgenerational epigenetic effects have also been induced in germ cells, mostly through DNA methylation and epimutations. Similarly, after acute or chronic exposure to endocrine disrupting chemicals combinations, increased oxidative stress (OS), elevated antioxidant enzymatic activity, disrupted reproductive cycle, and reduced steroidogenesis are often reported consequences. The article also discusses the concentration addition (CA) and independent action (IA) prediction models, which reveal the importance of various synergistic actions of endocrine disrupting chemicals mixtures. More crucially, this evidence-based study addresses the research limitations and information gaps, as well as particularly presents the future research views on combined endocrine disrupting chemicals toxicity on human reproduction.
Collapse
Affiliation(s)
- Sulagna Dutta
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Sovan Bagchi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Bhupender S. Chhikara
- Molecular Medicinal and Material NanoChemistry Laboratory, Department of Chemistry, Aditi Mahavidyalaya, University of Delhi, Delhi, India
| | - Aleš Pavlík
- Laboratory of Animal Physiology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Petr Sláma
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | | |
Collapse
|
4
|
Experimental Testing of an Approach to Establishing Combined Toxicity of Ternary Nanoparticle Mixtures. Int J Mol Sci 2022; 23:ijms23084356. [PMID: 35457173 PMCID: PMC9032812 DOI: 10.3390/ijms23084356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/10/2022] Open
Abstract
Our studies of exposure to binary mixtures of nanoparticles (TiO2 + SiO2; TiO2 + Al2O3 and SiO2 + Al2O3) based on mathematical modelling show that their combined subchronic toxicity can either be of an additive type or deviate from it depending on the outcome, dose ratio, and levels of effect. To characterize the type of toxicity of ternary mixtures of nanoparticles, we successfully tested a previously developed approach for assessing the combined toxicity of metal ions. In this approach, the effects are classified by a null, positive, or negative change in the toxicity of binary nanoparticle mixtures when modeled against the toxicity of the third agent added.
Collapse
|
5
|
Hamid N, Junaid M, Pei DS. Combined toxicity of endocrine-disrupting chemicals: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112136. [PMID: 33735605 DOI: 10.1016/j.ecoenv.2021.112136] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
The combined toxicological assessment provides a realistic approach for hazard evaluation of chemical cocktails that co-existed in the environment. This review provides a holistic insight into the studies highlighting the mixture toxicity of the endocrine-disrupting chemicals (EDCs), especially focusing on the screening of biochemical pathways and other toxicogenetic endpoints. Reviewed literature showed that numerous multiplexed toxicogenomic techniques were applied to determine reproductive effects in vertebrates, but limited studies were found in non-mammalian species after mixture chemical exposure. Further, we found that the experimental design and concentration selection are the two important parameters in mixture toxicity studies that should be time- and cost-effective, highly precise, and environmentally relevant. A summary of EDC mixtures affecting the thyroid axis, estrogen axis, androgen axis, growth stress, and immune system via in vivo bioassays was also presented. It is interesting to mention that majority of estrogenic effects of the mixtures were sex-dependent, particularly observed in male fish as compared to female fish. Further, the androgen axis was perturbed with serious malformations in male rat testis (epididymal or gubernacular lesions, and deciduous spermatids). Also, transgenerational epigenetic effects were promoted in the F3 and F4 generations in the form of DNA methylation epimutations in sperm, increasing polycystic ovaries and reducing the offspring. Similarly, increased oxidative stress, high antioxidant enzymatic activities, disturbed estrous cycle, and decreased steroidogenesis were the commonly found effects after acute or chronic exposure to EDC mixtures. Importantly, the concentration addition (CA) and independent action (IA) models became more prevalent and suitable predictive models to unveil the prominence of synergistic estrogenic and anti-androgenic effects of chemical mixtures. More importantly, this review encompasses the research challenges and gaps in the existing knowledge and specific future research perspectives on combined toxicity.
Collapse
Affiliation(s)
- Naima Hamid
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Junaid
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| |
Collapse
|
6
|
Bushueva TV, Minigalieva IA, Panov VG, Sutunkova MP, Gurvich VB, Shur VY, Shishkina EV, Naumova AS, Artemenko EP, Katsnelson BA. Comparative and Combined In Vitro Vasotoxicity of Nanoparticles Containing Lead and Cadmium. Dose Response 2021; 19:1559325820982163. [PMID: 33628148 PMCID: PMC7882761 DOI: 10.1177/1559325820982163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/10/2020] [Accepted: 11/26/2020] [Indexed: 01/15/2023] Open
Abstract
In vitro toxicological experiments were performed on an endothelial cell line exposed to different doses of spherical nanoparticles of cadmium and/or of lead sulfides with mean diameter 37 ± 5 nm and 24 ± 4 nm, respectively. Toxic effects were estimated by Luminescent Cell Viability Assay, endothelin-1 concentration and cell size determination. Some dose-response relationships were typically monotonic (well approximated with hyperbolic function) while others were bi- or even 3-phasic and could be described within the expanded hormesis paradigm. The combined toxicity type variated depending on the effect it was assessed by.
Collapse
Affiliation(s)
- Tatiana V Bushueva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir G Panov
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia.,Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Marina P Sutunkova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir B Gurvich
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir Ya Shur
- Institute of Natural Sciences and Mathematics, The Ural Federal University, Yekaterinburg, Russia
| | - Ekaterina V Shishkina
- Institute of Natural Sciences and Mathematics, The Ural Federal University, Yekaterinburg, Russia
| | - Anna S Naumova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Elizaveta P Artemenko
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Boris A Katsnelson
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| |
Collapse
|
7
|
Sutunkova MP, Minigalieva IA, Klinova SV, Panov VG, Gurvich VB, Privalova LI, Sakhautdinova RR, Shur VY, Shishkina EV, Shtin TN, Riabova JV, Katsnelson BA. Some data on the comparative and combined toxic activity of nanoparticles containing lead and cadmium with special attention to their vasotoxicity. Nanotoxicology 2020; 15:205-222. [PMID: 33186499 DOI: 10.1080/17435390.2020.1845410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Moderate subchronic intoxication was induced in rats by repeated intraperitoneal injections of PbO (49.6 ± 16.0 nm) and/or CdO (57.0 ± 13.0 nm) nanoparticles (NP) three times a week during 6 weeks. In particular, there was a reduction in arterial blood pressure and in blood concentrations of a number of factors controlling vasoconstriction and vasodilation, particularly of endothelin 1 (ET-1). This toxic effect was attenuated with a bioprotective complex administered in the background. The study confirmed as well that the combined binary action typology varies depending on which effect it is estimated by.
Collapse
Affiliation(s)
- Marina P Sutunkova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Svetlana V Klinova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir G Panov
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia.,Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Vladimir B Gurvich
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Larisa I Privalova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Renata R Sakhautdinova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir Ya Shur
- Institute of Natural Sciences and Mathematics, The Ural Federal University, Yekaterinburg, Russia
| | - Ekaterina V Shishkina
- Institute of Natural Sciences and Mathematics, The Ural Federal University, Yekaterinburg, Russia
| | - Tatiana N Shtin
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Julia V Riabova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Boris A Katsnelson
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| |
Collapse
|
8
|
Katsnelson BA, Klinova SV, Gerzen OP, Balakin AA, Lookin ON, Lisin RV, Nabiev SR, Privalova LI, Minigalieva IA, Panov VG, Katsnelson LB, Nikitina LV, Kuznetsov DA, Protsenko YL. Force-velocity characteristics of isolated myocardium preparations from rats exposed to subchronic intoxication with lead and cadmium acting separately or in combination. Food Chem Toxicol 2020; 144:111641. [PMID: 32758638 DOI: 10.1016/j.fct.2020.111641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/28/2023]
Abstract
This investigation continues our study of the effects of Pb-Cd poisoning on the heart, extending the enquiry from isometric to auxotonic contractions, thereby examining the effect on the ability of myocardial tissues to perform mechanical work. Different shifts were revealed in myocardial force-velocity relations following subchronic exposure of rats to lead acetate and cadmium chloride acting separately, in combination, or in combination with a bioprotective complex (BPC). The experiments were conducted on isolated preparations of trabecules and papillary muscles of the right ventricle in physiological loading conditions and on isolated heart muscle contractile proteins examined by the in vitro motility assay. The results of the latter correlate with the shifts in the ratio of cardiac myosin isoforms. The amount of work performed by the myocardium was calculated on the basis of the tension-shortening loop area and was found to be similar in the preparations from all experimental groups. This fact presumably reflects adaptive capacity of the myocardial function even when contractility is damaged due to the metallic intoxication of a moderate severity. Some characteristics of rat myocardium altered by the impact of lead-cadmium intoxication became fully or partly normalized if intoxication developed against background administration of a bioprotective complex (BPC). Together with previously reported results obtained in the isometric mode of contractility, all these results strengthen the scientific foundations of risk assessment and risk management projects in the occupational and environmental conditions characterized by human exposure to lead and/or cadmium.
Collapse
Affiliation(s)
- Boris A Katsnelson
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia.
| | - Svetlana V Klinova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Oksana P Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Alexander A Balakin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Oleg N Lookin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Ruslan V Lisin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Salavat R Nabiev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Larisa I Privalova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir G Panov
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia; The Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Leonid B Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Daniil A Kuznetsov
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Yuri L Protsenko
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| |
Collapse
|
9
|
Minigaliyeva IA, Sutunkova MP, Gurvich VB, Bushueva TV, Klinova SV, Solovyeva SN, Chernyshov IN, Valamina IE, Shur VY, Shishkina EV, Makeyev OH, Panov VG, Privalova LI, Katsnelson BA. An overview of experiments with lead-containing nanoparticles performed by the Ekaterinburg nanotoxicological research team. Nanotoxicology 2020; 14:788-806. [PMID: 32396411 DOI: 10.1080/17435390.2020.1762132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Over the past few years, the Ekaterinburg (Russia) interdisciplinary nanotoxicological research team has carried out a series of investigations using different in vivo and in vitro experimental models in order to elucidate the cytotoxicity and organ-systemic and organism-level toxicity of lead-containing nanoparticles (NP) acting separately or in combinations with some other metallic NPs. The authors claim that their many-sided experience in this field is unique and that some of their important results have been obtained for the first time. This paper is an overview of the team's previous publications in different journals. It is suggested to be used as a compact scientific base for assessing health risks associated not only with the production and usage of engineered lead-containing NPs but also with their inevitable by-production as toxic air pollutants in the metallurgy of lead, copper or their alloys and in soldering operations.
Collapse
Affiliation(s)
- Ilzira A Minigaliyeva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Marina P Sutunkova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Vladimir B Gurvich
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Tatiana V Bushueva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Svetlana V Klinova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Svetlana N Solovyeva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ivan N Chernyshov
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Irene E Valamina
- The Central Research Laboratory, Ural Medical University, Ekaterinburg, Russia
| | - Vladimir Y Shur
- The Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russia
| | | | - Oleg H Makeyev
- The Central Research Laboratory, Ural Medical University, Ekaterinburg, Russia
| | - Vladimir G Panov
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia.,The Institute of Industrial Ecology, Russian Academy of Sciences - Urals Branch, Ekaterinburg, Russia
| | - Larisa I Privalova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Boris A Katsnelson
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| |
Collapse
|
10
|
Panov V, Minigalieva I, Bushueva T, Fröhlich E, Meindl C, Absenger-Novak M, Shur V, Shishkina E, Gurvich V, Privalova L, Katsnelson BA. Some Peculiarities in the Dose Dependence of Separate and Combined In Vitro Cardiotoxicity Effects Induced by CdS and PbS Nanoparticles With Special Attention to Hormesis Manifestations. Dose Response 2020; 18:1559325820914180. [PMID: 32231470 PMCID: PMC7088228 DOI: 10.1177/1559325820914180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Spherical nanoparticles (NPs) of cadmium and lead sulfides (diameter 37 ± 5 and 24 ± 4 nm, respectively) have been found to be cytotoxic for HL-1 cardiomyocytes as evidenced by decrease in adenosine triphosphate-dependent luminescence. Cadmium sulfide (CdS)-NPs were discovered to produce a much greater cytotoxic impact than lead sulphide (PbS)-NP. Given the same dose range, CdS-NP reduced the number of calcium spikes. A similar effect was observed for small doses of PbS-NP. In addition to cell hypertrophy under the impact of certain doses of CdS-NP and PbS-NP, doses causing cardiomyocyte size reduction were identified. For these 3 outcomes, we obtained both monotonic "dose-response" functions (well approximated by the hyperbolic function) and different variants of non-monotonic ones for which we found adequate mathematical expressions by modifying certain models of hormesis available in the literature. Data analysis using a response surface linear model with a cross-term provided new support to the previously established postulate that a diversity of types of joint action characteristic of one and the same pair of damaging agents is one of the important assertions of the general theory of combined toxicity.
Collapse
Affiliation(s)
- Vladimir Panov
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia.,Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ilzira Minigalieva
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Tatiana Bushueva
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Eleonore Fröhlich
- Center for Medical Research of the Medical University of Graz, Austria
| | - Claudia Meindl
- Center for Medical Research of the Medical University of Graz, Austria
| | | | - Vladimir Shur
- School of Natural Sciences and Mathematics, the Ural Federal University, Ekaterinburg, Russia
| | - Ekaterina Shishkina
- School of Natural Sciences and Mathematics, the Ural Federal University, Ekaterinburg, Russia
| | - Vladimir Gurvich
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Larisa Privalova
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Boris A Katsnelson
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| |
Collapse
|
11
|
Klinova SV, Minigalieva IA, Privalova LI, Valamina IE, Makeyev OH, Shuman EA, Korotkov AA, Panov VG, Sutunkova MP, Ryabova JV, Bushueva TV, Shtin TN, Gurvich VB, Katsnelson BA. Further verification of some postulates of the combined toxicity theory: New animal experimental data on separate and joint adverse effects of lead and cadmium. Food Chem Toxicol 2019; 136:110971. [PMID: 31751644 DOI: 10.1016/j.fct.2019.110971] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 01/10/2023]
Abstract
Outbred male rats were repeatedly injected intraperitoneally two-level sub-lethal doses of lead acetate and/or cadmium chloride solutions 3 times a week during 6 weeks. The animals developed explicit, even if moderate, subchronic intoxication characterized by a large number of indices, both common to both metals (including increased DNA fragmentation coefficient) and lead-specific. Special attention was paid to hemodynamic and electrocardiographic effects. The combined action of lead and cadmium was modeled with the help of the Response Surface Methodology to obtain additional support for the previously substantiated postulates of combined toxicity's typological ambiguity. This is dependent on which particular effect comes under consideration, on its level, and on the acting dose ratio. For one and the same toxic combination, the type of combined toxic action can vary from synergistic to contra-directional. In particular, the actions of lead and cadmium on blood pressure were found to be opposite in direction. Furthermore, it is shown once again that the systemic toxic effects of a metal combination, its in vivo genotoxicity included, can be more or less attenuated by background administration of a theoretically justified composition of biologically active agents.
Collapse
Affiliation(s)
- Svetlana V Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Irene E Valamina
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str, Ekaterinburg, 620109, Russia
| | - Oleg H Makeyev
- The Ural Federal University Named After the First President of Russia B.N. Yeltsin, 19 Mira Str, Ekaterinburg, 620002, Russia
| | - Eugene A Shuman
- The Ural Federal University Named After the First President of Russia B.N. Yeltsin, 19 Mira Str, Ekaterinburg, 620002, Russia
| | - Artem A Korotkov
- The Ural Federal University Named After the First President of Russia B.N. Yeltsin, 19 Mira Str, Ekaterinburg, 620002, Russia
| | - Vladimir G Panov
- Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str, Ekaterinburg, 620990, Russia
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Julia V Ryabova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Tatiana V Bushueva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Tatiana N Shtin
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia.
| |
Collapse
|
12
|
Abstract
Nickel (Ni) metal and Ni compounds are widely used in applications like stainless steel, alloys, and batteries. Nickel is a naturally occurring element in water, soil, air, and living organisms, and is essential to microorganisms and plants. Thus, human and environmental nickel exposures are ubiquitous. Production and use of nickel and its compounds can, however, result in additional exposures to humans and the environment. Notable human health toxicity effects identified from human and/or animal studies include respiratory cancer, non-cancer toxicity effects following inhalation, dermatitis, and reproductive effects. These effects have thresholds, with indirect genotoxic and epigenetic events underlying the threshold mode of action for nickel carcinogenicity. Differences in human toxicity potencies/potentials of different nickel chemical forms are correlated with the bioavailability of the Ni2+ ion at target sites. Likewise, Ni2+ has been demonstrated to be the toxic chemical species in the environment, and models have been developed that account for the influence of abiotic factors on the bioavailability and toxicity of Ni2+ in different habitats. Emerging issues regarding the toxicity of nickel nanoforms and metal mixtures are briefly discussed. This review is unique in its covering of both human and environmental nickel toxicity data.
Collapse
|
13
|
Varaksin AN, Panov VG, Katsnelson BA, Minigalieva IA. Using Various Nonlinear Response Surfaces for Mathematical Description of the Type of Combined Toxicity. Dose Response 2018; 16:1559325818816596. [PMID: 30574029 PMCID: PMC6299322 DOI: 10.1177/1559325818816596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/24/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
The article considers the problem of characterizing the type of combined action produced by a mixture of toxic substances with the help of nonlinear response functions. Most attention is given to second-order models: the linear model with a cross-term and the quadratic model. General propositions are formulated based on the data on combined toxicity patterns previously obtained by the Ekaterinburg nanotoxicology team in animal experiments and analyzed with the help of the linear model with a cross-term. It is shown now that the quadratic model features these general characteristics in full measure, but interpretation of combined toxicity types based on isobolograms obtained by the quadratic model is more difficult. This suggests that where both models ensure a comparable quality of combined toxicity type identification, it would be enough to use the linear model with a cross-term.
Collapse
Affiliation(s)
- Anatoly N Varaksin
- Institute of Industrial Ecology of Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
| | - Vladimir G Panov
- Institute of Industrial Ecology of Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
| | - Boris A Katsnelson
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| |
Collapse
|
14
|
Minigalieva IA, Katsnelson BA, Privalova LI, Sutunkova MP, Gurvich VB, Shur VY, Shishkina EV, Valamina IE, Makeyev OH, Panov VG, Varaksin AN, Bushueva TV, Sakhautdinova RR, Klinova SV, Solovyeva SN, Meshtcheryakova EY. Combined Subchronic Toxicity of Aluminum (III), Titanium (IV) and Silicon (IV) Oxide Nanoparticles and Its Alleviation with a Complex of Bioprotectors. Int J Mol Sci 2018. [PMID: 29534019 PMCID: PMC5877698 DOI: 10.3390/ijms19030837] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Stable suspensions of metal/metalloid oxide nanoparticles (MeO-NPs) obtained by laser ablation of 99.99% pure elemental aluminum, titanium or silicon under a layer of deionized water were used separately, or in three binary combinations, or in a ternary combination to induce subchronic intoxications in rats. To this end, the MeO-NPs were repeatedly injected intraperitoneally (i.p.) 18 times during 6 weeks before measuring a large number of functional, biochemical, morphological and cytological indices for the organism’s status. In many respects, the Al2O3-NP was found to be the most toxic species alone and the most dangerous component of the combinations studied. Mathematical modeling with the help of the Response Surface Methodology showed that, as well as in the case of any other binary toxic combinations previously investigated by us, the organism’s response to a simultaneous exposure to any two of the MeO-NP species under study was characterized by a complex interaction between all possible types of combined toxicity (additivity, subadditivity or superadditivity of unidirectional action and different variants of opposite effects) depending on which outcome this type was estimated for and on effect and dose levels. With any third MeO-NP species acting in the background, the type of combined toxicity displayed by the other two remained virtually the same or changed significantly, becoming either more or less unfavorable. Various harmful effects produced by the (Al2O3-NP + TiO2-NP + SiO2-NP)-combination, including its genotoxicity, were substantially attenuated by giving the rats per os during the entire exposure period a complex of innocuous bioactive substances expected to increase the organism’s antitoxic resistance.
Collapse
Affiliation(s)
- Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Vladimir Y Shur
- The Institute of Natural Sciences, The Ural Federal University, Ekaterinburg 620000, Russia.
| | - Ekaterina V Shishkina
- The Institute of Natural Sciences, The Ural Federal University, Ekaterinburg 620000, Russia.
| | - Irene E Valamina
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 620109, Russia.
| | - Oleg H Makeyev
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 620109, Russia.
| | - Vladimir G Panov
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str., Ekaterinburg 620990, Russia.
| | - Anatoly N Varaksin
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str., Ekaterinburg 620990, Russia.
| | - Tatiana V Bushueva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Renata R Sakhautdinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Svetlana V Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Svetlana N Solovyeva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Ekaterina Y Meshtcheryakova
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 620109, Russia.
| |
Collapse
|
15
|
Sutunkova MP, Privalova LI, Minigalieva IA, Gurvich VB, Panov VG, Katsnelson BA. The most important inferences from the Ekaterinburg nanotoxicology team's animal experiments assessing adverse health effects of metallic and metal oxide nanoparticles. Toxicol Rep 2018; 5:363-376. [PMID: 29854606 PMCID: PMC5977416 DOI: 10.1016/j.toxrep.2018.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 01/01/2023] Open
Abstract
During 2009-2017 we have studied nanoparticles of elemental silver or gold and of iron, copper, nickel, manganese, lead, zinc, aluminium and titanium oxides (Me-NPs) using, in most cases, a single low-dose intratracheal instillation 24 h before the bronchoalveolar lavage to obtain a fluid for cytological and biochemical assessment and, in all cases, repeated intraperitoneal injections in non-lethal doses to induce subchronic intoxications assessed by a lot of toxicodynamic and toxicokinetic features. We have also studied the same effects for a number of relevant combinations of these Me-NPs and have revealed some important patterns of their combined toxicity. Besides, we have carried out long-term inhalation experiments with Fe2O3, NiO and amorphous SiO2 nano-aerosols. We have demonstrated that Me-NPs are much more noxious as compared with their fine micrometric counterparts although the physiological mechanisms of their elimination from the lungs proved to be highly active. Even if water-insoluble, Me-NPs are significantly solubilized in some biological milieus in vitro and in vivo, which may explain some important peculiarities of their toxicity. At the same time, the in situ cytotoxicity, organ-systemic toxicity and in vivo genotoxicity of Me-NPs strongly depends on specific mechanisms characteristic of a particular metal. For some of the Me-NPs studied, we have proposed standards of presumably safe concentrations in workplace air. Along with this, we have proved that the adverse effects of Me-NPs could be significantly alleviated by background or preliminary administration of adequately composed combinations of some bioprotectors.
Collapse
Affiliation(s)
- Marina P. Sutunkova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Larisa I. Privalova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Ilzira A. Minigalieva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Vladimir B. Gurvich
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Vladimir G. Panov
- Institute of Industrial Ecology of Ural Branch of Russian Academy of Science, Ekaterinburg, 620990, Russia
| | - Boris A. Katsnelson
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| |
Collapse
|
16
|
Are in vivo and in vitro assessments of comparative and combined toxicity of the same metallic nanoparticles compatible, or contradictory, or both? A juxtaposition of data obtained in respective experiments with NiO and Mn 3O 4 nanoparticles. Food Chem Toxicol 2017; 109:393-404. [PMID: 28935498 DOI: 10.1016/j.fct.2017.09.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/05/2017] [Accepted: 09/14/2017] [Indexed: 02/08/2023]
Abstract
Comparative and combined damaging effects of NiO and Mn3O4 nanoparticles were estimated on cultures of several established human cell lines. The cytotoxicity indices used were: (a) reduction in cellular dehydrogenase activity, (b) decrease in the ATP-content, (c) for SH-SY5Y cells also decrease in the tyrosine hydroxylase content. The combined cytotoxicity was modeled using the Response Surface Methodology. When assessing the stability of metal oxide nanoparticles (MeO-NPs) in cultural media used by us, we found that the addition of the fetal bovine serum (FBS) to them renders NiO-NPs and, to even greater extent, Mn3O4-NPs exponentially slow soluble while without FBS their dissolution was virtually undetectable. At the same time, sedimentation of these MeO-NPs noticeably slowed down in the presence of the same FBS. We have found dependence of cell damage on concentrations of MeO-NPs and higher cytotoxicity of Mn3O4-NP compared with NiO-NP. Thus, comparative assessment of the NPs unspecific toxicity obtained in our animal experiments was reproduced by the "in vitro" tests. However, with respect to manganese-specific brain damage "in vivo" discovered previously, present experiments on neurons "in vitro" showed only a certain enhancing effect of Mn3O4-NP on the action of NiO-NP, but the role of NiO-NP in the combination prevailed.
Collapse
|
17
|
Minigalieva IA, Katsnelson BA, Panov VG, Varaksin AN, Gurvich VB, Privalova LI, Sutunkova MP, Klinova SV. Experimental study and mathematical modeling of toxic metals combined action as a scientific foundation for occupational and environmental health risk assessment. A summary of results obtained by the Ekaterinburg research team (Russia). Toxicol Rep 2017; 4:194-201. [PMID: 28959640 PMCID: PMC5615118 DOI: 10.1016/j.toxrep.2017.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 11/24/2022] Open
Abstract
Cumulative health risks assessment should be based on toxicology of mixtures. Some principal discrepancies between these domains are discussed by the authors. While simplification of the theory is inevitable, its vulgarization should be avoided. Our contribution to this theory and its practical applications is summarized here.
Assessment of cumulative health risks associated with the widely observed combined effects of two or more metals and their compounds on the organism has the toxicology of mixtures as its scientific basis although there is no full match between such assessment and this basis while some of the contradictions between them are of a fundamental nature. This state of things may be explained not only by simplifications characteristic of the generally recognized methodology of risk assessment but also by extreme complexity of the theory of combined toxicity, the most essential issues of which are considered by authors on the basis of literary and, mostly, their own previously published data.
Collapse
Affiliation(s)
- Ilzira A. Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Boris A. Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
- Corresponding author at: DSci – 30 Popov Str, Ekaterinburg 620014, Russia.
| | - Vladimir G. Panov
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Anatoly N. Varaksin
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Vladimir B. Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Larisa I. Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Marina P. Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Svetlana V. Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| |
Collapse
|
18
|
Minigalieva IA, Katsnelson BA, Panov VG, Privalova LI, Varaksin AN, Gurvich VB, Sutunkova MP, Shur VY, Shishkina EV, Valamina IE, Zubarev IV, Makeyev OH, Meshtcheryakova EY, Klinova SV. In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bio-protectors. Toxicology 2017; 380:72-93. [PMID: 28212817 DOI: 10.1016/j.tox.2017.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 11/28/2022]
Abstract
Stable suspensions of metal oxide nanoparticles (Me-NPs) obtained by laser ablation of 99.99% pure copper, zinc or lead under a layer of deionized water were used separately, in three binary combinations and a triple combination in two independent experiments on rats. In one of the experiments the rats were instilled with Me-NPs intratracheally (i.t.) (for performing a broncho-alveolar lavage in 24h to estimate the cytological and biochemical indices of the response of the lower airways), while in the other, Me-NPs were repeatedly injected intraperitoneally (i.p.) 18 times during 6 weeks (for estimating the accumulation of corresponding metals in the blood and their excretion with urine and feces and for assessing subchronic intoxication by a large number of functional and morphological indices). Mathematical description of the results from both experiments with the help of the Response Surface Methodology has shown that, as well as in the case of any other binary toxic combinations previously investigated by us, the response of the organism to a simultaneous exposure to any two of the Me-NPs under study is characterized by complex interactions between all possible types of combined toxicity (additivity, subadditivity or superadditivity of unidirectional action and different variants of opposite effects) depending on which effect it is estimated for as well as on the levels of the effect and dose. With any third Me-NP species acting in the background, the type of combined toxicity displayed by the other two may change significantly (as in the earlier described case of a triple combination of soluble metal salts). It is shown that various harmful effects produced by CuO-NP+ZnO-NP+PbO-NP combination may be substantially attenuated by giving rats per os a complex of innocuous bioactive substances theoretically expected to provide a protective integral and/or metal-specific effect during one month before i.t. instillation or during the entire period of i.p. injections.
Collapse
Affiliation(s)
- Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia.
| | - Vladimir G Panov
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Anatoly N Varaksin
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Vladimir Ya Shur
- School of Natural Sciences and Mathematics, The Ural Federal University, Ekaterinburg, Russia
| | - Ekaterina V Shishkina
- School of Natural Sciences and Mathematics, The Ural Federal University, Ekaterinburg, Russia
| | - Irene E Valamina
- The Central Research Laboratory of the Ural Medical University, Ekaterinburg, Russia
| | - Ilya V Zubarev
- School of Natural Sciences and Mathematics, The Ural Federal University, Ekaterinburg, Russia
| | - Oleg H Makeyev
- The Central Research Laboratory of the Ural Medical University, Ekaterinburg, Russia
| | | | - Svetlana V Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| |
Collapse
|
19
|
Katsnelson BA, Privalova LI, Sutunkova MP, Minigalieva IA, Gurvich VB, Shur VY, Shishkina EV, Makeyev OH, Valamina IE, Varaksin AN, Panov VG. Experimental Research into Metallic and Metal Oxide Nanoparticle Toxicity In Vivo. BIOACTIVITY OF ENGINEERED NANOPARTICLES 2017. [DOI: 10.1007/978-981-10-5864-6_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Katsnelson BA, Panov VG, Varaksin AN, Minigalieva IA, Privalova LI, Sutunkova MP. Changes in the Dose-Response Relationship of One Toxicant Under Simultaneous Exposure to Another Toxicant. Dose Response 2016; 14:1559325816672935. [PMID: 27867320 PMCID: PMC5105299 DOI: 10.1177/1559325816672935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We considered, in general form for a 22 full factorial experiment, linear approximations of the organism's dose-response relationship for some factors operating alone and modification of this relationship by another factor operating in the background. A typological classification of such modifications is suggested. An analysis of the outcomes obtained in a number of subchronic animal experiments on rats in which this response was assessed by changes in a large number of biomedical indices revealed that all theoretically possible variants (types) of the modification under consideration are actually observed depending on a specific index and specific harmful exposure. Statistical significance estimation procedures are formulated for each of them.
Collapse
Affiliation(s)
- B. A. Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - V. G. Panov
- Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - A. N. Varaksin
- Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - I. A. Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - L. I. Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - M. P. Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| |
Collapse
|
21
|
Privalova LI, Katsnelson BA, Varaksin AN, Panov VG, Balesin SL. The pulmonary phagocytosis response to separate and combined impacts of manganese (IV) and chromium (VI) containing particulates. Toxicology 2016; 370:78-85. [PMID: 27693498 DOI: 10.1016/j.tox.2016.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
Abstract
We investigated by the optical microscopy some cytological characteristics of the bronchoalveolar lavage fluid cell population 24h after intratracheal instillation of microscale MnO2 and BaCrO4 particles (separately or together at two different doses) into the lungs of Wistar rats. Besides, the cytotoxicity of both particulates for rat peritoneal macrophages in vitro was assessed by the trypan blue exclusion test and proved significant. They were found to evoke a typical dose-dependent pulmonary phagocytosis response usually observed under inhalation or intratracheal impacts of low-soluble mineral and metal particles. A significant shift in the above mentioned cell population toward the prevalence of neutrophllic leukocytes (NL) over alveolar macrophages (AM) proved once more to be the most characteristic feature of this response. Although the particle load of a unit AM was always higher than that of a unit NL, the collective contribution of the recruited NLs to the total particles internalization by both AMs and NLs together was quite significant. This fact confirms that NL recruitment is an important auxiliary mechanism of the cytotoxic particle elimination from lungs compensating for the macrophage damage caused by them. Well adjusted functioning of this compensatory mechanism was additionally demonstrated by isobolographic analysis based on the Response Surface Methodology. On the other hand, this analysis confirmed that the type of combined toxicity depends on a particular effect this type is assessed for and on the effect's dose-dependent level.
Collapse
Affiliation(s)
- Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Anatoly N Varaksin
- Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str., Ekaterinburg 620990, Russia
| | - Vladimir G Panov
- Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str., Ekaterinburg 620990, Russia
| | - Sergey L Balesin
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia
| |
Collapse
|
22
|
Panov VG, Varaksin AN. Identification of combined action types in experiments with two toxicants: a response surface linear model with a cross term. Toxicol Mech Methods 2016; 26:139-50. [PMID: 26894918 DOI: 10.3109/15376516.2016.1139023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Within the framework of the response surface linear model with a cross term, i.e. a model of the type Y(x1, x2) = b0 + b1x1 + b2x2 + b12x1x2 (hyperbolic paraboloid), a complete solution of identification of combined action types of two toxicants x1 and x2 is presented. It is shown that the type of combined effect in this model is determined by two factors: the direction in which the toxicants act (unidirectional or oppositely directed), and the position of the saddle point S of a hyperbolic paraboloid. For unidirectional actions of toxicants, already-known ways to identify the type of combined effect (including a shape of the isobole: concave-up or concave-down) provided identical and unambiguous answers regarding the type of combined effect (antagonism or synergism). For oppositely directed actions of toxicants, the shape of the isobole (concave-up or concave-down) did not allow us to determine the type of combined action type unambiguously. We show that in both cases (unidirectional or oppositely directed actions of toxicants) the signs of the model coefficients b1, b2 and b12, in conjunction with the coordinates of the saddle point S help unambiguously identify the type of combined action by comparing the observed effect with the zero interaction response surface. An atlas of all possibly combined action types for two toxicants for the hyperbolic paraboloid model was created. Applications of the developed formalism to experimental data are provided.
Collapse
Affiliation(s)
- Vladimir G Panov
- a Institute of Industrial Ecology of Ural Branch of RAS , Ekaterinburg , Russia
| | - Anatoly N Varaksin
- a Institute of Industrial Ecology of Ural Branch of RAS , Ekaterinburg , Russia
| |
Collapse
|
23
|
Some patterns of metallic nanoparticles' combined subchronic toxicity as exemplified by a combination of nickel and manganese oxide nanoparticles. Food Chem Toxicol 2015; 86:351-64. [PMID: 26607108 DOI: 10.1016/j.fct.2015.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/09/2015] [Accepted: 11/14/2015] [Indexed: 01/22/2023]
Abstract
Stable suspensions of NiO and/or Mn3O4 nanoparticles with a mean diameter of 16.7 ± 8.2 nm and 18.4 ± 5.4 nm, respectively, prepared by laser ablation of 99.99% pure metals in de-ionized water were repeatedly injected IP to rats at a dose of 0.50 mg or 0.25 mg 3 times a week up to 18 injections, either separately or in different combinations. Many functional indices as well as histological features of the liver, spleen, kidneys and brain were evaluated for signs of toxicity. The accumulation of Ni and Mn in these organs was measured with the help of AES and EPR methods. Both metallic nanoparticles proved adversely bio-active, but those of Mn3O4 were found to be more noxious in most of the non-specific toxicity manifestations. Moreover, they induced a more marked damaging effect in the neurons of the caudate nucleus and hippocampus which may be considered an experimental correlate of manganese-induced parkinsonism. Mathematical analysis based on the Response Surface Methodology (RSM) revealed a diversity of combined toxicity types depending not only on particular effects these types are assessed for but on their level as well. The prognostic power of the RSM model proved satisfactory.
Collapse
|
24
|
Minigalieva IA, Katsnelson BA, Privalova LI, Sutunkova MP, Gurvich VB, Shur VY, Shishkina EV, Valamina IE, Makeyev OH, Panov VG, Varaksin AN, Grigoryeva EV, Meshtcheryakova EY. Attenuation of Combined Nickel(II) Oxide and Manganese(II, III) Oxide Nanoparticles' Adverse Effects with a Complex of Bioprotectors. Int J Mol Sci 2015; 16:22555-83. [PMID: 26393577 PMCID: PMC4613324 DOI: 10.3390/ijms160922555] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 12/29/2022] Open
Abstract
Stable suspensions of NiO and Mn₃O₄ nanoparticles (NPs) with a mean (±s.d.) diameter of 16.7±8.2 and 18.4±5.4 nm, respectively, purposefully prepared by laser ablation of 99.99% pure nickel or manganese in de-ionized water, were repeatedly injected intraperitoneally (IP) to rats at a dose of 2.5 mg/kg 3 times a week up to 18 injections, either alone or in combination. A group of rats was injected with this combination with the background oral administration of a "bio-protective complex" (BPC) comprising pectin, vitamins A, C, E, glutamate, glycine, N-acetylcysteine, selenium, iodide and omega-3 PUFA, this composition having been chosen based on mechanistic considerations and previous experience. After the termination of injections, many functional and biochemical indices and histopathological features (with morphometric assessment) of the liver, spleen, kidneys and brain were evaluated for signs of toxicity. The Ni and Mn content of these organs was measured with the help of the atomic emission and electron paramagnetic resonance spectroscopies. We obtained blood leukocytes for performing the RAPD (Random Amplified Polymorphic DNA) test. Although both metallic NPs proved adversely bio-active in many respects considered in this study, Mn₃O₄-NPs were somewhat more noxious than NiO-NPs as concerns most of the non-specific toxicity manifestations and they induced more marked damage to neurons in the striatum and the hippocampus, which may be considered an experimental correlate of the manganese-induced Parkinsonism. The comparative solubility of the Mn₃O₄-NPs and NiO-NPs in a biological medium is discussed as one of the factors underlying the difference in their toxicokinetics and toxicities. The BPC has attenuated both the organ-systemic toxicity and the genotoxicity of Mn₃O₄-NPs in combination with NiO-NPs.
Collapse
Affiliation(s)
- Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Vladimir Y Shur
- The Institute of Natural Sciences, The Ural Federal University, Ekaterinburg 620000, Russia.
| | - Ekaterina V Shishkina
- The Institute of Natural Sciences, The Ural Federal University, Ekaterinburg 620000, Russia.
| | - Irene E Valamina
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 620109, Russia.
| | - Oleg H Makeyev
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 620109, Russia.
| | - Vladimir G Panov
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str., Ekaterinburg 620990, Russia.
| | - Anatoly N Varaksin
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str., Ekaterinburg 620990, Russia.
| | - Ekaterina V Grigoryeva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Ekaterina Y Meshtcheryakova
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 620109, Russia.
| |
Collapse
|