1
|
Yang B, Li X. Unveiling the Mechanisms of Bone Marrow Toxicity Induced by Lead Acetate Exposure. Biol Trace Elem Res 2024; 202:1041-1066. [PMID: 37378799 DOI: 10.1007/s12011-023-03733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Lead (Pb), a widespread heavy metal, causes severe toxicity in human and animal organs (e.g., bone marrow), whereas the mechanisms of the bone marrow toxicity induced by Pb exposure are unclear. Hence, this study was designed to reveal the hub genes involved in Pb-induced bone marrow toxicity. GSE59894 dataset obtained from Gene Expression Omnibus (GEO) was composed of lead acetate (PbAc2)-treated and control bone marrow samples. Totally 120 and 85 differentially expressed genes (DEGs) were identified on the 1st day, while 153 and 157 DEGs on the 3rd day in the bone marrow treated with 200 and 600 mg/kg of PbAc2, respectively. Notably, a total of 28 and 32 overlapping DEGs were identified in the bone marrow on the 1st and 3rd day treated with PbAc2, respectively. Biological process analysis suggested that the common DEGs were primarily participated in cell differentiation, the response to drug, xenobiotic stimulus, and organic cyclic compound. Pathway analysis demonstrated that the overlapping DEGs were primarily linked to PI3K-Akt, TGF-β, MAPK, and osteoclast differentiation signaling pathways. Moreover, the hub genes, including PLD2, DAPK1, ALB, TNF, FOS, CDKN1A, and TGFB3, might contribute to PbAc2-induced bone marrow toxicity. Overall, our study offers an important insight into the molecular mechanisms of Pb-induced bone marrow toxicity.
Collapse
Affiliation(s)
- Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Xiaofeng Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China.
| |
Collapse
|
2
|
Kumar K, Anjali S, Sharma S. Effect of lead exposure on histone modifications: A review. J Biochem Mol Toxicol 2024; 38:e23547. [PMID: 37867311 DOI: 10.1002/jbt.23547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023]
Abstract
Lead at any levels can result in detrimental health effects affecting various organ systems. These systematic manifestations under Pb exposure and the underlying probable pathophysiological mechanisms have not been elucidated completely. With advancements in molecular research under Pb exposure, epigenetics is one of the emerging field that has opened many possibilities for appreciating the role of Pb exposure in modulating gene expression profiles. In terms of epigenetic alterations reported in Pb toxicity, DNA methylation, and microRNA alterations are extensively explored in both experimental and epidemiological studies, however, the understanding of histone modifications under Pb exposure is still in its infant stage limited to experimental models. In this review, we aim to present a synoptic view of histone modifications explored in relation to Pb exposure attempting to bring out this potential lacunae in research. The scarcity of studies associating histone modifications with Pb toxicity, and the paucity of their validation in human cohort further emphasizes the strong research potential of this field. We summarize the review by presenting our hypotheses regarding the involvement of these histone modification in various diseases modalities associated with Pb toxicity.
Collapse
Affiliation(s)
- Kanishka Kumar
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Sudha Anjali
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Shailja Sharma
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
3
|
Niu C, Dong M, Niu Y. Lead toxicity and potential therapeutic effect of plant-derived polyphenols. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154789. [PMID: 37004401 DOI: 10.1016/j.phymed.2023.154789] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Due to its unique physical and chemical properties, lead is still used worldwide in several applications, especially in industry. Both environmental and industrial lead exposures remain a public health problem in many developing and rapidly industrializing countries. Plant polyphenols are pleiotropic in their function and have historically made a major contribution to pharmacotherapy. PURPOSE To summarize available pre-clinical and limited clinical evidence on plant polyphenols as potential antidotes against lead poisoning and discuss toxic mechanisms of lead. METHOD A comprehensive search of peer-reviewed publications was performed from core collections of electronic databases such as PubMed, Web of Science, Google Scholar, and Science Direct. Articles written in English-language from inception until December 2022 were selected. RESULTS In this review, we review key toxic mechanisms of lead and its pathological effects on the neurological, reproductive, renal, cardiovascular, hematological, and hepatic systems. We focus on plant polyphenols against lead toxicity and involved mechanisms. Finally, we address scientific gaps and challenges associated with translating these promising preclinical discoveries into effective clinical therapies. CONCLUSION While preclinical evidence suggests that plant polyphenols exhibit bioprotective effects against lead toxicity, scant and equivocal clinical data highlight a need for clinical trials with those polyphenols.
Collapse
Affiliation(s)
- Chengu Niu
- Internal medicine residency program, Rochester General Hospital, Rochester, NY 14621, USA
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China.
| |
Collapse
|
4
|
Vahedi P, Rajabzadeh A, Soleimani A. An evaluation of the effects of ascorbic acid on the endothelium of coronary and aorta arteries in lead-intoxicated rabbits. SAGE Open Med 2022; 10:20503121221105330. [PMID: 35769490 PMCID: PMC9235302 DOI: 10.1177/20503121221105330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Objectives: Lead exposure has destructive effects on some organs. It may
produce a variety of toxic effects on endothelial cells of the
vascular system. Any changes or damages to endothelial cells may
lead to cardiovascular diseases, particularly the formation of
atherosclerotic plaques. The aim of this study was to determine
the ameliorative effects of ascorbic acid on the endothelium of
coronary and aorta arteries in lead-exposed rabbits. Methods: In this study, 30 white male rabbits of New Zealand race (weighing
about 1.6–2 kg and 5 months old) were used and divided randomly
into three groups: Group 1 (N = 10) that served
as the control and received water and normal diet, Group 2
(N = 10) was exposed to lead acetate
547 ppm (5 mg/L) daily for 40 days, and Group 3
(N = 10) received vitamin C (500 mg/kg)
and underwent the same duration of lead exposure (5 mg/L) daily
for 40 days. The levels of cholesterol, triglyceride,
low-density lipoprotein, and high-density lipoprotein were
measured using spectrophotometry, and the level of blood lead
was calculated using a lead analyzer (Magellan Diagnostics,
USA). The animals were anesthetized by pentobarbital (50 mg/kg).
Subsequently, they were sacrificed, and their thoracic aortas
and coronary arteries were removed. Then fixation, tissue
processing, histological sectioning, and H & E staining were
carried out. Finally, the sections were studied using light
microscopy. The results were analyzed using the Mann–Whitney
test. Results: The results indicated that ascorbic acid could reduce the
destructive effects of lead on vascular endothelial cells and
prevent the formation of atherosclerotic plaques in coronary and
aorta arteries. Conclusion: The results of this study confirm the beneficial effects of
ascorbic acid against the destructive effects of lead on
vascular endothelial cells. Hence, it could be proposed as a
potential prophylactic treatment for the amelioration of lead
toxicity, prevention of atherosclerosis, and improvement of
endothelial cells dysfunction.
Collapse
Affiliation(s)
- Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Asghar Rajabzadeh
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Soleimani
- Department of Public Health, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
7
|
Liu Q, Jin J, Xu C, Li W, Liang J, Xu J, Weng Z, Zhang X, Zhang X, Shao J, Yao H, Wang L, Yang J, Lu X, Guan X, Li Q, Gu A. HDL cholesterol: A potential mediator of the association between serum levels of a mixture of metals and the risk of aortic dissection in a Chinese population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117942. [PMID: 34454198 DOI: 10.1016/j.envpol.2021.117942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Aortic dissection (AD) is a severe cardiovascular disease with a high mortality rate. However, the associations between the serum levels of metals and the risk of AD remain unclear. One hundred twenty-seven patients with AD (type A and B) identified from 2017 to 2019 at the Second Affiliated Hospital of Nanjing Medical University were included; 183 controls that were also included. A logistic regression analysis was performed to determine the associations between serum levels of metals and the risk of AD. Weighted Quantile Sum (WQS) regression and Bayesian Kernel Machine Regression (BKMR) analyses were performed to explore the effects of mixtures of metals on the risk of AD. A linear regression analysis was performed to evaluate the relationships between the serum levels of metals and the white blood cells (WBCs) count and serum lipid levels and blood glucose. We conducted a mediation analysis to explore the contribution rates of WBC counts or serum lipid levels and blood glucose to the association between metal levels and the risk of AD. Exposure to serum levels of Cu (coefficient = 6.33; 95 % CI = 2.52, 10.14; p trend < 0.001) were significantly and positively associated with the risk of AD. In the WQS analysis, Cu (50.3 %), Ni (32.7 %) and Mo (17.1 %) contributed to the AD risk. In the BKMR analysis, Cu and Mo were shown to play important roles in the association with the AD risk. Moreover, serum concentrations of Cu were significantly and inversely associated with HDL-cholesterol levels. HDL-cholesterol levels mediated 7.42 % of the association between serum Cu levels and the prevalence of AD. Our study provided the first evidence that serum levels of mixtures of metals are associated with the AD risk in a Chinese population. Increased concentrations of metals, particularly Cu, may increase the risk of AD by reducing HDL-cholesterol levels.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), Gusu School, Nanjing Medical University, Nanjing, Jiangsu, China; State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Jin
- Department of Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenxiang Li
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingjia Liang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xun Zhang
- Department of Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Shao
- Department of Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Yao
- Department of Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Wang
- Department of Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Yang
- Department of Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaodong Lu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiang Guan
- Department of Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qingguo Li
- Department of Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Cardiovascular Surgery Department, The Affiliated Hospital of Qinghai University, Xining, Qinghai, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Ujueta F, Navas-Acien A, Mann KK, Prashad R, Lamas GA. Low-Level Metal Contamination and Chelation in Cardiovascular Disease-A Ripe Area for Toxicology Research. Toxicol Sci 2021; 181:135-147. [PMID: 33662137 DOI: 10.1093/toxsci/kfab026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease remains the leading cause of death worldwide. In spite of cardiovascular prevention, there is residual risk not explicable by traditional risk factors. Metal contamination even at levels previously considered safe in humans may be a potential risk factor for atherosclerosis. This review examines evidence that 2 metals, lead, and cadmium, demonstrate sufficient toxicological and epidemiologic evidence to attribute causality for atherosclerotic disease. Basic science suggests that both metals have profound adverse effects on the human cardiovascular system, resulting in endothelial dysfunction, an increase in inflammatory markers, and reactive oxygen species, all of which are proatherosclerotic. Epidemiological studies have shown both metals to have an association with cardiovascular disease, such as peripheral arterial disease, ischemic heart disease, and cardiovascular mortality. This review also examines edetate disodium-based chelation as a possible pharmacotherapy to reduce metal burden in patients with a history of cardiovascular disease and thus potentially reduce cardiovascular events.
Collapse
Affiliation(s)
- Francisco Ujueta
- Department of Medicine, Mount Sinai Medical Center, Miami Beach, Florida
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Koren K Mann
- Lady Davis Institute for Medical Research, Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Rakesh Prashad
- Department of Internal Medicine, University of Central Florida College of Medicine, Orlando, Florida
| | - Gervasio A Lamas
- Department of Medicine, Mount Sinai Medical Center, Miami Beach, Florida.,Columbia University Division of Cardiology, Mount Sinai Medical Center,Miami Beach, Florida
| |
Collapse
|