1
|
Yan X, Ma L, Chen X, Ren J, Zhai Y, Wu T, Song Y, Li X, Guo Y. Ferroptosis promotes valproate-induced liver steatosis in vitro and in vivo. Food Chem Toxicol 2024; 192:114926. [PMID: 39147356 DOI: 10.1016/j.fct.2024.114926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Valproic acid (VPA), a common antiepileptic drug, can cause liver steatosis after long-term therapy. However, an impact of ferroptosis on VPA-induced liver steatosis has not been investigated. In the study, treatment with VPA promoted ferroptosis in the livers of mice by elevating ferrous iron (Fe2+) levels derived from the increased absorption by transferrin receptor 1 (TFR1) and the decreased storage by ferritin (FTH1 and FTL), disrupting the redox balance via reduced levels of solute carrier family 7 member 11 (SLC7A11), glutathione (GSH), and glutathione peroxidase 4 (GPX4), and augmenting acyl-CoA synthetase long-chain family member 4 (ACSL4) -mediated lipid peroxide generation, accompanied by enhanced liver steatosis. All the changes were significantly reversed by co-treatment with an iron-chelating agent, deferoxamine mesylate (DFO) and a ferroptosis inhibitor, ferrostatin-1 (Fer-1). Similarly, the increases in Fe2+, TFR1, and ACSL4 levels, as well as the decreases in GSH, GPX4, and ferroportin (FPN) levels, were detected in VPA-treated HepG2 cells. These changes were also attenuated after co-treatment with Fer-1. It demonstrates that ferroptosis promotes VPA-induced liver steatosis through iron overload, inhibition of the GSH-GPX4 axis, and upregulation of ACSL4. It offers a potential therapy targeting ferroptosis for patients with liver steatosis following VPA treatment.
Collapse
Affiliation(s)
- Xinrui Yan
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Linfeng Ma
- Department of Medicine, Shandong College of Traditional Chinese Medicine, Yantai, Shandong, 264199, China; Department of Clinical Laboratory, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, 264099, China
| | - Xue Chen
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Jing Ren
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Yu Zhai
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Ting Wu
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Yu Song
- Yazhou Bay Innovation Institute, Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Xiaojiao Li
- Phase I Clinical Trial Center, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yingjie Guo
- School of Life Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
2
|
Wang ML, Zhang YJ, He DL, Li T, Zhao MM, Zhao LM. Inhibition of PLA2G4A attenuated valproic acid- induced lysosomal membrane permeabilization and restored impaired autophagic flux: Implications for hepatotoxicity. Biochem Pharmacol 2024; 227:116438. [PMID: 39025409 DOI: 10.1016/j.bcp.2024.116438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Valproic acid (VPA) has broad efficacy against several seizures but causes liver injury limiting its prolonged clinical use. Some studies have demonstrated that VPA-induced hepatotoxicity is characterized by microvesicular hepatic steatosis. However, novel detailed mechanisms to explain VPA-induced hepatic steatosis and experimentally rigorously validated protective agents are still lacking. In this study, 8-week-old C57BL/6J mice were gavaged with VPA (500 mg/kg/d) for 4 weeks to establish an in vivo model of VPA-induced chronic liver injury. Quantitative proteomic and non-targeted lipidomic analyses were performed to explore the underlying mechanisms of VPA-induced hepatotoxicity. As a result, VPA-induced hepatotoxicity is associated with impaired autophagic flux, which is attributed to lysosomal dysfunction. Further studies revealed that VPA-induced lysosomal membrane permeabilization (LMP), allows soluble lysosomal enzymes to leak into the cytosol, which subsequently led to impaired lysosomal acidification. A lower abundance of glycerophospholipids and an increased abundance of lysophospholipids in liver tissues of mice in the VPA group strongly indicated that VPA-induced LMP may be mediated by the activation of phospholipase PLA2G4A. Metformin (Met) acted as a potential protective agent attenuating VPA-induced liver dysfunction and excessive lipid accumulation. Molecular docking and cellular thermal shift assays demonstrated that Met inhibited the activity of PLA2G4A by directly binding to it, thereby ameliorating VPA-induced LMP and autophagic flux impairment. In conclusion, this study highlights the therapeutic potential of targeting PLA2G4A-mediated lysosomal dysfunction in VPA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ming-Lu Wang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu-Jia Zhang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Da-Long He
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Tong Li
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ming-Ming Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Li-Mei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
Jiang Z, Yang L, Liu Q, Qiu M, Chen Y, Qu F, Crabbe MJC, Wang H, Andersen ME, Zheng Y, Qu W. Haloacetamides disinfection by-products, a potential risk factor for nonalcoholic fatty liver disease. WATER RESEARCH 2024; 261:122008. [PMID: 38944971 DOI: 10.1016/j.watres.2024.122008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder characterized by abnormal lipid deposition, with oxidative stress being a risk factor in its onset and progression. Haloacetamides (HAcAms), as unregulated disinfection by-products in drinking water, may alter the incidence and severity of NAFLD through the production of oxidative stress. We explored whether HAcAms at 1, 10, and 100-fold concentrations in Shanghai drinking water perturbed lipid metabolism in normal human liver LO-2 cells. CRISPR/Cas9 was used to construct a LO-2 line with stable NRF2 knock-down (NRF2-KD) to investigate the mechanism underlying abnormal lipid accumulation and hepatocyte damage caused by mixed exposure to HAcAms. At 100-fold real-world concentration, HAcAms caused lipid deposition and increased triglyceride accumulation in LO-2 cells, consistent with altered de novo lipogenesis. Differences in responses to HAcAms in normal and NRF2-KD LO-2 cells indicated that HAcAms caused hepatocyte lipid deposition and triglyceride accumulation by activation of the NRF2/PPARγ pathway and aggravated liver cell toxicity by inducing ferroptosis. These results indicate that HAcAms are important risk factors for NAFLD. Further observations and verifications of the effect of HAcAms on NAFLD in the population are warranted in the future.
Collapse
Affiliation(s)
- Zhiqiang Jiang
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University Shanghai, 200032, China
| | - Lili Yang
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University Shanghai, 200032, China
| | - Qinxin Liu
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University Shanghai, 200032, China
| | - Meiyue Qiu
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University Shanghai, 200032, China
| | - Yu Chen
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University Shanghai, 200032, China
| | - Fei Qu
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University Shanghai, 200032, China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford OX2 6UD, United Kingdom
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| | - Melvin E Andersen
- ScitoVation LLC. 6 Davis Drive, Suite 146, Research Triangle Park, NC 27713, United States
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, No.308 Ningxia Road, Qingdao 266071, China
| | - Weidong Qu
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University Shanghai, 200032, China.
| |
Collapse
|
4
|
Zhu J, Wang Z, Sun X, Wang D, Xu X, Yang L, Du J, Zhou Z, Qi Y, Ma L. Associations between one-carbon metabolism and valproic acid-induced liver dysfunction in epileptic patients. Front Pharmacol 2024; 15:1358262. [PMID: 38464726 PMCID: PMC10924308 DOI: 10.3389/fphar.2024.1358262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Valproic acid (VPA) has been widely used as an antiepileptic drug for decades. Although VPA is effective and well-tolerated, long-term VPA treatment is usually associated with hepatotoxicity. However, the underlying mechanisms of VPA-caused hepatotoxicity remain unclear. In this study, a total of 157 pediatric patients with epilepsy were recruited and divided into normal liver function (NLF, 112 subjects) group and abnormal liver function (ABLF, 45 subjects) group. We observed that MTHFR A1298C and MTHFR C677T variants may be linked to VPA-induced liver dysfunction (p = 0.001; p = 0.023, respectively). We also found that the MTHFR A1298C polymorphism was associated with a higher serum Hcy level (p = 0.001) and a lower FA level (p = 0.001). Moreover, the serum Hcy levels was strongly correlated with the GSH and TBARS concentrations (r = -0.6065, P < 0.001; r = 0.6564, P < 0.001, respectively). Furthermore, logistic analysis indicated that MTHFR A1298C/C677T polymorphisms and increased Hcy concentrations may be risk factors for VPA-induced liver dysfunction. These results suggested that individual susceptibility to VPA-induced liver dysfunction may result from MTHFR A1298C/C677T polymorphisms and increased Hcy levels. This study may be helpful for the prevention and guidance of VPA-induced liver dysfunction.
Collapse
Affiliation(s)
- Jingwei Zhu
- Department of Clinical Laboratory, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Zhe Wang
- Department of Clinical Laboratory, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Xiaotong Sun
- Department of Clinical Laboratory, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Dan Wang
- School of Life Science, Jilin University, Changchun, China
| | - Xinbo Xu
- Department of Clinical Laboratory, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Liping Yang
- Department of Clinical Laboratory, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Jiangdong Du
- Department of Clinical Laboratory, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Zhimei Zhou
- Department of Clinical Laboratory, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Yanhua Qi
- Department of Clinical Laboratory, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Linfeng Ma
- Department of Clinical Laboratory, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
5
|
Ma L, Wang D. Sex differences in the susceptibility to valproic acid-associated liver injury in epileptic patients. Clin Toxicol (Phila) 2024; 62:101-106. [PMID: 38512019 DOI: 10.1080/15563650.2024.2316144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/03/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Valproic acid has been widely used as an antiepileptic drug for several decades. Long-term valproic acid treatment is usually accompanied by liver injury. Although both men and women are susceptible to valproic acid-associated liver injury, hepatotoxicity differs between the sexes. However, the mechanisms underlying sex differences in valproic acid-associated liver injury remain unclear. METHODS To explore potential risk factors for the susceptibility to valproic acid-associated liver injury, 231 pediatric patients with epilepsy (119 males, 112 females) were enrolled for laboratory and genetic analysis. RESULTS Heterozygous genotype of catalase C-262T (P = 0.045) and the concentrations of glutathione (P = 0.002) and thiobarbituric acid-reactive substances (P = 0.011) were associated with the sex-specific susceptibility to valproic acid-associated liver injury. Meanwhile, logistic regression analysis revealed that carriers of heterozygous genotype of catalase C-262T (P = 0.010, odds ratio: 4.163; 95 percent confidence interval 1.400 - 7.378), glutathione concentration (P = 0.001, odds ratio: 2.421; 95 percent confidence interval 2.262 - 2.591) and male patients (P = 0.005, odds ratio: 1.344; 95% confidence interval 0.782 - 2.309) had a higher risk for valproic acid-associated liver injury. DISCUSSION The mechanism underlying valproic acid-induced hepatotoxicity remains unclear. Additionally, factors that may contribute to the observed differences in the incidence of hepatotoxicity between males and females have yet to be defined. This study identifies several genetic factors that may predispose patients to valproic acid-associated hepatotoxicity. LIMITATIONS This relatively small sample size of children with one ethnicity some of whom were taking other antiepileptics that are potentially hepatotoxic. CONCLUSION Catalase C-262T genotype, glutathione concentration and gender (male) are potential risk factors for the susceptibility to valproic acid-associated liver injury.
Collapse
Affiliation(s)
- Linfeng Ma
- Department of Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Dan Wang
- School of life science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Song W, Yan X, Zhai Y, Ren J, Wu T, Guo H, Song Y, Li X, Guo Y. Probiotics attenuate valproate-induced liver steatosis and oxidative stress in mice. PLoS One 2023; 18:e0294363. [PMID: 37971986 PMCID: PMC10653412 DOI: 10.1371/journal.pone.0294363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Valproate (valproic acid, VPA), a drug for the treatment of epilepsy and bipolar disorder, causes liver steatosis with enhanced oxidative stress. Accumulating evidences exhibite that gut microbiota plays an important role in progression of nonalcoholic fatty liver disease (NAFLD). However, whether gut microbiota contributes to VPA-caused hepatic steatosis needs to be elucidated. A mixture of five probiotics was selected to investigate their effects on liver steatosis and oxidative stress in mice orally administered VPA for 30 days. Probiotics treatment significantly attenuated the hepatic lipid accumulation in VPA-treated mice via inhibiting the expression of cluster of differentiation 36 (CD36) and distinct diacylglycerol acyltransferase 2 (DGAT2). Meanwhile, probiotics exerted a protective effect against VPA-induced oxidative stress by decreasing the pro-oxidant cytochrome P450 2E1 (CYP2E1) level and activating the Nrf2/antioxidant enzyme pathway. Moreover, VPA treatment altered the relative abundance of gut microbiota at the phylum, family and genera levels, while probiotics partially restored these changes. Spearman's correlation analysis showed that several specific genera and family were significantly correlated with liver steatosis and oxidative stress-related indicators. These results suggest that probiotics exert their health benefits in the abrogation of liver steatosis and oxidative stress in VPA-treated mice by manipulating the microbial homeostasis.
Collapse
Affiliation(s)
- Wenfang Song
- School of Life Sciences, Jilin University, Changchun, China
| | - Xinrui Yan
- School of Life Sciences, Jilin University, Changchun, China
| | - Yu Zhai
- School of Life Sciences, Jilin University, Changchun, China
| | - Jing Ren
- School of Life Sciences, Jilin University, Changchun, China
| | - Ting Wu
- School of Life Sciences, Jilin University, Changchun, China
| | - Han Guo
- School of Life Sciences, Jilin University, Changchun, China
| | - Yu Song
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Ministry of Education, Key Laboratory for Protection and Utilization of Tropical Marine Fishery Resources, College of Fishery and Life Science, Hainan Tropical Ocean University, Sanya, China
| | - Xiaojiao Li
- Phase I Clinical Trial Center, The First Hospital of Jilin University, Changchun, China
| | - Yingjie Guo
- School of Life Sciences, Jilin University, Changchun, China
- National Engineering Laboratory of AIDS Vaccine, Jilin University, Changchun, China
| |
Collapse
|
7
|
Yang K, Kim HH, Shim YR, Ryu T, Kim CW. Comprehensive transcriptomic analysis and meta-analysis identify therapeutic effects of N-acetylcysteine in nonalcoholic fatty liver disease. Front Pharmacol 2023; 14:1186582. [PMID: 37256235 PMCID: PMC10225598 DOI: 10.3389/fphar.2023.1186582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction: The continuous rise in the prevalence of nonalcoholic fatty liver disease (NAFLD) is emerging as a global health issue. Although the protective effects of N-acetylcysteine (NAC), an antioxidant, against various diseases have been reported, it is still unclear whether NAC has therapeutic potential in NAFLD. Thus, the present meta-analysis aimed to investigate the efficacy of NAC on NAFLD in preclinical studies. Methods: By searching PubMed, Web of Science, and Cochrane Library, 13 studies were included. The methodological quality was assessed based on the SYstematic Review Centre for Laboratory animal Experimentation guideline, and heterogeneity was evaluated with I 2 and p values. Publication bias was assessed by Egger's test and sensitivity analysis was performed. Results: The results showed that NAC treatment significantly improved systemic and hepatic lipid metabolism (p < 0.01), inflammation-related liver injury (p < 0.01), glucose intolerance (p < 0.05), and hepatic steatosis (p < 0.01) by restoring hepatic glutathione (GSH) (p < 0.05) and GSH reductase (p < 0.05) levels compared to controls in NAFLD-induced animals. Consistently, in bulk, single-cell, and spatial transcriptomics data, the abovementioned target pathways of NAC were strongly associated with NAFLD development in mice and patients. Conclusion: Our study suggests that NAC has therapeutic potential for NAFLD and should be considered for future clinical trials.
Collapse
Affiliation(s)
- Keungmo Yang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee-Hoon Kim
- Life Science Research Institute, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Young-Ri Shim
- Life Science Research Institute, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Tom Ryu
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Chang Wook Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
8
|
Shnayder NA, Grechkina VV, Khasanova AK, Bochanova EN, Dontceva EA, Petrova MM, Asadullin AR, Shipulin GA, Altynbekov KS, Al-Zamil M, Nasyrova RF. Therapeutic and Toxic Effects of Valproic Acid Metabolites. Metabolites 2023; 13:metabo13010134. [PMID: 36677060 PMCID: PMC9862929 DOI: 10.3390/metabo13010134] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Valproic acid (VPA) and its salts are psychotropic drugs that are widely used in neurological diseases (epilepsy, neuropathic pain, migraine, etc.) and psychiatric disorders (schizophrenia, bipolar affective disorder, addiction diseases, etc.). In addition, the indications for the appointment of valproate have been expanding in recent years in connection with the study of new mechanisms of action of therapeutic and toxic metabolites of VPA in the human body. Thus, VPA is considered a component of disease-modifying therapy for multiple tumors, neurodegenerative diseases (Huntington's disease, Parkinson's disease, Duchenne progressive dystrophy, etc.), and human immunodeficiency syndrome. The metabolism of VPA is complex and continues to be studied. Known pathways of VPA metabolism include: β-oxidation in the tricarboxylic acid cycle (acetylation); oxidation with the participation of cytochrome P-450 isoenzymes (P-oxidation); and glucuronidation. The complex metabolism of VPA explains the diversity of its active and inactive metabolites, which have therapeutic, neutral, or toxic effects. It is known that some active metabolites of VPA may have a stronger clinical effect than VPA itself. These reasons explain the relevance of this narrative review, which summarizes the results of studies of blood (serum, plasma) and urinary metabolites of VPA from the standpoint of the pharmacogenomics and pharmacometabolomics. In addition, a new personalized approach to assessing the cumulative risk of developing VPA-induced adverse reactions is presented and ways for their correction are proposed depending on the patient's pharmacogenetic profile and the level of therapeutic and toxic VPA metabolites in the human body fluids (blood, urine).
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0222 (N.A.S. & R.F.N.)
| | - Violetta V. Grechkina
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Aiperi K. Khasanova
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, 125993 Moscow, Russia
| | - Elena N. Bochanova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Evgenia A. Dontceva
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Azat R. Asadullin
- Department of Psychiatry and Addiction, Bashkir State Medical University, 45000 Ufa, Russia
| | - German A. Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks, 119121 Moscow, Russia
| | - Kuanysh S. Altynbekov
- Republican Scientific and Practical Center of Mental Health, Almaty 050022, Kazakhstan
- Department of Psychiatry and Narcology, S.D. Asfendiarov Kazakh National Medical University, Almaty 050022, Kazakhstan
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 11798 Moscow, Russia
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0222 (N.A.S. & R.F.N.)
| |
Collapse
|
9
|
Ezhilarasan D, Mani U. Valproic acid induced liver injury: An insight into molecular toxicological mechanism. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103967. [PMID: 36058508 DOI: 10.1016/j.etap.2022.103967] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Valproic acid (VPA) is an anti-seizure drug that causes idiosyncratic liver injury. 2-propyl-4-pentenoic acid (Δ4VPA), a metabolite of VPA, has been implicated in VPA-induced hepatotoxicity. This review summarizes the pathogenesis involved in VPA-induced liver injury. The VPA induce liver injury mainly by i) liberation of Δ4VPA metabolites; ii) decrease in glutathione stores and antioxidants, resulting in oxidative stress; iii) inhibition of fatty acid β-oxidation, inducing mitochondrial DNA depletion and hypermethylation; a decrease in proton leak; oxidative phosphorylation impairment and ATP synthesis decrease; iv) induction of fatty liver via inhibition of carnitine palmitoyltransferase I, enhancing nuclear receptor peroxisome proliferator-activated receptor-gamma and acyl-CoA thioesterase 1, and inducing long-chain fatty acid uptake and triglyceride synthesis. VPA administration aggravates liver injury in individuals with metabolic syndromes. Therapeutic drug monitoring, routine serum levels of transaminases, ammonia, and lipid parameters during VPA therapy may thus be beneficial in improving the safety profile or preventing the progression of DILI.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600 077, India.
| | - Uthirappan Mani
- Animal House Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
| |
Collapse
|
10
|
Guan Q, Wang Z, Cao J, Dong Y, Chen Y. Monochromatic blue light not green light exposure is associated with continuous light-induced hepatic steatosis in high fat diet fed-mice via oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113625. [PMID: 35588616 DOI: 10.1016/j.ecoenv.2022.113625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Irregular light exposure is a newly identified environmental factor for the progression of lipid metabolism; however, the specific effect of light color exposure on lipid homeostasis remains unknown. Herein, 4-week-old male C57BL/6 J mice (n = 12) fed a high-fat diet (HFD) were exposed to a standard 12-h light: 12-h dark cycle (LD-WF) and a 24-h continuous monochromatic blue light (LL-BF), green light (LL-GF), or white light (LL-WF) condition for 12 weeks. LL-BF interfered with the expression of circadian genes in the hypothalamus and upregulated the plasma corticosterone (CORT) levels (p < 0.05) compared with LD-WF. Along with elevation of the CORT level, LL-BF enhanced glucocorticoid receptor synthesis, increased the Hsp90 mRNA level, reduced the antioxidant capacity, increased the production of ROS and MDA, and reduced the Pgc-1α mRNA level in the liver (p < 0.05). Furthermore, LL-BF disrupted the hepatic expression levels of genes involved in lipid metabolism, Acc and Hl, which further aggravated the hepatic steatosis status and significantly increased the liver pathological scores, TG, TC, IL-6, and TNF-α levels (p < 0.05). LL-BF consistently increased the body weight and incidence of dyslipidemia and lipid deposition. However, no difference was observed between LL-BF and LL-WF (p > 0.05). Surprisingly, LL-GF did not show any changes induced by LL-BF and LL-WF, and contrary to LL-BF, LL-GF and LD-WF showed no significantly differing changes (p > 0.05). Taken together, exposure to monochromatic blue light but not green light is associated with continuous light-aggravated hepatic steatosis in HFD-fed mice. The effect of continuous blue light exposure may be attributed to the disturbance of biological rhythm, increase in CORT secretion, induction of oxidative stress, and interference of the Acc and Hl levels in the liver.
Collapse
Affiliation(s)
- Qingyun Guan
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
11
|
Mai B, Han L, Zhong J, Shu J, Cao Z, Fang J, Zhang X, Gao Z, Xiao F. Rhoifolin Alleviates Alcoholic Liver Disease In Vivo and In Vitro via Inhibition of the TLR4/NF-κB Signaling Pathway. Front Pharmacol 2022; 13:878898. [PMID: 35685625 PMCID: PMC9171502 DOI: 10.3389/fphar.2022.878898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/13/2022] [Indexed: 01/16/2023] Open
Abstract
Background: Alcoholic liver disease (ALD) is a common chronic liver disorder worldwide, which is detrimental to human health. A preliminary study showed that the total flavonoids within Citrus grandis “Tomentosa” exerted a remarkable effect on the treatment of experimental ALD. However, the active substances of Citrus grandis “Tomentosa” were not elucidated. Rhoifolin (ROF) is a flavonoid component present in high levels. Therefore, this research aimed to evaluate the hepatoprotective effects of ROF and its possible mechanisms. Methods: Molecular docking was performed to analyze the binding energy of ROF to the main target proteins related to ALD. Subsequently, mice were fed ethanol (ETH) for 49 days to establish the chronic alcoholic liver injury models. The liver pathological injury, serum aminotransferase levels, and oxidative stress levels in the liver tissue were measured. Human normal hepatocytes (LO2 cells) were incubated with ETH to construct the alcoholic liver cell model. The inflammatory markers and apoptosis factors were evaluated using real-time PCR and flow cytometry. Finally, the effects of ROF on the CYP2E1 and NF-κB signaling pathways were tested in vitro and in vivo. Results: Molecular docking results demonstrated that ROF was able to successfully dock with the target proteins associated with ALD. In animal studies, ROF attenuated ETH-induced liver damage in mice by decreasing the serum concentrations of AST and ALT, reducing the expression of inflammatory cytokines, and maintaining antioxidant balance in the liver tissue. The in vitro experiments demonstrated that ROF suppressed ETH-induced apoptosis in LO2 cells by promoting Bcl-2 mRNA and inhibiting Bax mRNA and caspase 3 protein expression. ROF decreased the level of LDH, ALT, AST, ROS, and MDA in the supernatant; induced the activity of GSH and SOD; and inhibited TNF-α, IL-6, and IL-1β expression levels. Mechanistically, ROF could significantly downregulate the expression levels of CYP2E1, TLR4, and NF-κB phosphorylation. Conclusion: This study indicates that ROF is the active component within the total flavonoids, which may alleviate ETH-induced liver injury by inhibiting NF-κB phosphorylation. Therefore, ROF may serve as a promising compound for treating ALD.
Collapse
Affiliation(s)
- Baoyu Mai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China
| | - Jiarui Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingqi Shu
- College of Acumox and Tuina, Jiangxi University of Chinese Medicine, Jiangxi, China
| | - Zelin Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Jiangsu Hengrui Medicine Co., Ltd., Jiangsu, China
| | - Jiaqi Fang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoying Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zelin Gao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengxia Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- *Correspondence: Fengxia Xiao,
| |
Collapse
|
12
|
Intermittent Hypoxia Inhibits Hepatic CYP1a2 Expression and Delays Aminophylline Metabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2782702. [PMID: 35529917 PMCID: PMC9076297 DOI: 10.1155/2022/2782702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/17/2021] [Accepted: 04/09/2022] [Indexed: 01/08/2023]
Abstract
Purpose In this study, we aimed to determine the effects of intermittent hypoxia (IH) on hepatic cytochrome P450 1A2 (CYP1A2) expression and the pharmacokinetics of CYP1A2-mediated aminophylline and warfarin in vitro and in a rabbit model of obstructive sleep apnea. Materials Human normal liver (LO-2) cells were exposed to 30 min each of 1%, 1–21%, 21%, and 21–1% O2, and then, CYP1A2 expression and drug concentrations were analyzed. We compared the pharmacokinetic parameters of drugs administered to normoxic rabbits and those exposed to 10 min of IH during which the oxygen level fluctuated from 21% to 8%–10% (n = 10 per group). Result s. The expression of CYP1A2 protein in vitro was significantly reduced in the IH compared with the normoxic cells (0.56 ± 0.11 vs. 1.27 ± 0.17, p < 0.001). Aminophylline was more abundant in cell culture supernatants after 48 h of IH than in those under normoxia. The T1/2, AUC0–24 h, and Ke values for aminophylline were significantly higher in the IH group. Conclusion Intermittent hypoxia inhibits hepatic CYP1A2 expression and delays aminophylline metabolism, suggesting that the impact of IH on the expression of CYP enzymes should be closely monitored in clinical practice.
Collapse
|
13
|
Effects of naringin and valproate interaction on liver steatosis and dyslipidaemia parameters in male C57BL6 mice. Arh Hig Rada Toksikol 2022; 73:71-82. [PMID: 35390239 PMCID: PMC8999592 DOI: 10.2478/aiht-2022-73-3608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Valproate is a common antiepileptic drug whose adverse effects include liver steatosis and dyslipidaemia. The aim of our study was to see how natural flavonoid antioxidant naringin would interact with valproate and attenuate these adverse effects. For this reason we treated male C57BL6 mice with a combination of 150 mg/kg of valproate and 25 mg/kg naringin every day for 10 days and compared their serum triglycerides, cholesterol, LDL, HDL, VLDL, and liver PPAR-alpha, PGC-1 alpha, ACOX1, Nrf2, SOD, CAT, GSH, and histological signs of steatosis. Valproate increased lipid peroxidation parameters and caused pronounced microvesicular steatosis throughout the hepatic lobule in all acinar zones, but naringin co-administration limited steatosis to the lobule periphery. In addition, it nearly restored total serum cholesterol, LDL, and triglycerides and liver ACOX1 and MDA to control levels. and upregulated PPAR-alpha and PGC-1 alpha, otherwise severely downregulated by valproate. It also increased SOD activity. All these findings suggest that naringin modulates key lipid metabolism regulators and should further be investigated in this model, either alone or combined with other lipid regulating drugs or molecules.
Collapse
|
14
|
Dihydroartemisinin alleviates steatosis and inflammation in nonalcoholic steatohepatitis by decreasing endoplasmic reticulum stress and oxidative stress. Bioorg Chem 2022; 122:105737. [PMID: 35338970 DOI: 10.1016/j.bioorg.2022.105737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/12/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is a severely inflammatory subtype of nonalcoholic fatty liver. Endoplasmic reticulum stress (ERS) and oxidative stress (OS) cause metabolic abnormalities, promote liver steatosis and inflammation, and are central to the development of NASH. Dihydroartemisinin (DHA) is a compound extracted from Artemisia annua that is often used in the treatment of malaria. Recent studies have shown that DHA also has a wide range of pharmacological effects, acting on various organs throughout the body to exert anti-inflammatory, antioxidant, and anti-fibrotic effects. In this study, we demonstrated in vitro that the anti-inflammatory effect of DHA is effective against NASH and reduces liver steatosis. DHA treatment decreased the synthesis of lipids, such as cholesterol and free fatty acids, and the expression of nuclear factor kappa-B. This is accomplished by inhibiting the unfolded protein response and reducing the production of reactive oxygen species, thereby inhibiting OS and ERS. This study reveals DHA's therapeutic effect and potential mechanism in NASH, implying that DHA could be a new and promising candidate for NASH therapy.
Collapse
|
15
|
Wang C, Gao N, Yang L, Guo Y, Fang Y, Wang T, Xu C, Li GF, Zhou J, Zhang Y, Wen Q, Qiao H. Stat4 rs7574865 polymorphism promotes the occurrence and progression of hepatocellular carcinoma via the Stat4/CYP2E1/FGL2 pathway. Cell Death Dis 2022; 13:130. [PMID: 35136014 PMCID: PMC8826371 DOI: 10.1038/s41419-022-04584-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 12/25/2022]
Abstract
Although there are many studies on the relationship between genetic polymorphisms and the incidence of diseases, mechanisms are rarely known. We report the mechanism by which signal transducer and activator of transcription 4 (stat4) rs7574865 promotes the occurrence and progression of hepatocellular carcinoma (HCC). We found that the GG genotype at stat4 rs7574865 was a risk genotype, and STAT4 levels in serum and peritumoral tissue from HCC patients with the GG genotype were significantly higher than those found in TT or TG carriers. Furthermore, HCC patients with the GG genotype or elevated STAT4 levels had poor prognoses. In vitro experiments demonstrated that STAT4 silencing promoted apoptosis and inhibited the invasion and migration of HepG2 and L02 cells. Proteomic analysis of HCC peritumors identified 273 proteins related to STAT4, of which CYP2E1 activity and FGL2 content exhibited the highest positive correlation. The relationship between CYP2E1 and FGL2 was also confirmed in cyp2e1−/− mice and in CYP2E1 inhibitor-treated mice. In conclusion, this study elucidates the mechanism by which the stat4 rs7574865 polymorphism promotes the occurrence and progression of HCC via the Stat4/CYP2E1/FGL2 pathway.
Collapse
Affiliation(s)
- Caie Wang
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China.,Department of Pharmacy, the First Affiliated Hospital of Henan University of Science and Technology, Clinical Medical College of Henan University of Science and Technology, Luoyang, Henan, China
| | - Na Gao
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Lukui Yang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Science and Technology, Clinical Medical College of Henan University of Science and Technology, Luoyang, Henan, China
| | - Yuanyuan Guo
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Fang
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Tong Wang
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Chen Xu
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Gui Fang Li
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Science and Technology, Clinical Medical College of Henan University of Science and Technology, Luoyang, Henan, China
| | - Jun Zhou
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yunfei Zhang
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiang Wen
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Hailing Qiao
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
16
|
Pelechá M, Villanueva-Bádenas E, Timor-López E, Donato MT, Tolosa L. Cell Models and Omics Techniques for the Study of Nonalcoholic Fatty Liver Disease: Focusing on Stem Cell-Derived Cell Models. Antioxidants (Basel) 2021; 11:86. [PMID: 35052590 PMCID: PMC8772881 DOI: 10.3390/antiox11010086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/04/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is now the leading cause of chronic liver disease in western countries. The molecular mechanisms leading to NAFLD are only partially understood, and effective therapeutic interventions are clearly needed. Therefore, preclinical research is required to improve knowledge about NAFLD physiopathology and to identify new therapeutic targets. Primary human hepatocytes, human hepatic cell lines, and human stem cell-derived hepatocyte-like cells exhibit different hepatic phenotypes and have been widely used for studying NAFLD pathogenesis. In this paper, apart from employing the different in vitro cell models for the in vitro assessment of NAFLD, we also reviewed other approaches (metabolomics, transcriptomics, and high-content screening). We aimed to summarize the characteristics of different cell types and methods and to discuss their major advantages and disadvantages for NAFLD modeling.
Collapse
Affiliation(s)
- María Pelechá
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
| | - Estela Villanueva-Bádenas
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain
| | - Enrique Timor-López
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain
| | - María Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
17
|
Liu Z, Wang J, Chen S, Xu C, Zhang Y. Associations of acrylamide with non-alcoholic fatty liver disease in American adults: a nationwide cross-sectional study. Environ Health 2021; 20:98. [PMID: 34461916 PMCID: PMC8407016 DOI: 10.1186/s12940-021-00783-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 08/12/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Acrylamide (AA) is a toxicant to humans, but the association between AA exposure and the risk of non-alcoholic fatty liver disease (NAFLD) remains unclear. In this study, our objective is to examine the cross-sectional association between AA exposure and the risk of NAFLD in American adults. METHODS A total of 3234 individuals who took part in the National Health and Nutrition Examination Survey (NHANES) 2003-2006 and 2013-2016 were enrolled in the study. NAFLD was diagnosed by the U.S. Fatty Liver Index. Multivariable logistic regression models were applied to estimate the association between AA and NAFLD in the whole group and the non-smoking group. RESULTS We discovered that in the whole group, serum hemoglobin adducts of AA (HbAA) were negatively associated with the prevalence of NAFLD after adjustment for various covariables (P for trend < 0.001). Compared with individuals in the lowest HbAA quartiles, the odds ratios (ORs) with 95% confidence intervals (CIs) in the highest HbAA quartiles were 0.61 (0.46-0.81) and 0.57 (0.36-0.88) in the whole group and the non-smoking group, respectively. In contrast, HbGA/HbAA showed a significantly positive correlation with the prevalence of NAFLD in both groups (P for trend < 0.001). In addition, HbGA was not significantly associated with NAFLD in the whole group or the non-smoking group. CONCLUSIONS HbAA is negatively associated with NAFLD whereas HbGA/HbAA is positively associated with NAFLD in adults in the U.S. Further studies are needed to clarify these relationships.
Collapse
Affiliation(s)
- Zhening Liu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
- Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 Zhejiang China
| | - Jinghua Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Shenghui Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Yu Zhang
- Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 Zhejiang China
| |
Collapse
|
18
|
Cataldi M, Citro V, Resnati C, Manco F, Tarantino G. New Avenues for Treatment and Prevention of Drug-Induced Steatosis and Steatohepatitis: Much More Than Antioxidants. Adv Ther 2021; 38:2094-2113. [PMID: 33761100 PMCID: PMC8107075 DOI: 10.1007/s12325-021-01669-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Drug-induced lipid accumulation in the liver may induce two clinically relevant conditions, drug-induced steatosis (DIS) and drug-induced steatohepatitis (DISH). The list of drugs that may cause DIS or DISH is long and heterogeneous and includes therapeutically relevant molecules that cannot be easily replaced by less hepatotoxic medicines, therefore making specific strategies necessary for DIS/DISH prevention or treatment. For years, the only available tools to achieve these goals have been antioxidant drugs and free radical scavengers, which counteract drug-induced mitochondrial dysfunction but, unfortunately, have only limited efficacy. In the present review we illustrate how in vitro preclinical research unraveled new key players in the pathogenesis of specific forms of DISH, and how, in a few cases, proof of concept of the beneficial effects of their pharmacological modulation has been obtained in vivo in animal models of this condition. The key issue emerging from these studies is that, in selected cases, liver toxicity depends on mechanisms unrelated to those responsible for the desired, primary pharmacological effects of the toxic drug and, therefore, specific strategies can be designed to overcome steatogenicity without making the drug ineffective. In particular, the hepatotoxic drug could be given in combination with a second molecule intended to selectively antagonize its liver toxicity whilst, ideally, potentiating its desired pharmacological activity. Although most of the evidence that we discuss is from in vitro or animal models and will need to be further explored and validated in humans, it highlights new avenues to be pursued in order to improve the safety of steatogenic drugs.
Collapse
|
19
|
Gómez-Zorita S, Milton-Laskibar I, Macarulla MT, Biasutto L, Fernández-Quintela A, Miranda J, Lasa A, Segues N, Bujanda L, Portillo MP. Pterostilbene modifies triglyceride metabolism in hepatic steatosis induced by high-fat high-fructose feeding: a comparison with its analog resveratrol. Food Funct 2021; 12:3266-3279. [PMID: 33877249 DOI: 10.1039/d0fo03320k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The use of phenolic compounds as a new therapeutic approach against NAFLD has emerged recently. In the present study, we aim to study the effect of pterostilbene in the prevention of liver steatosis developed as a consequence of high-fat (saturated) high-fructose feeding, by analysing the changes induced in metabolic pathways involved in triglyceride accumulation. Interestingly, a comparison with the anti-steatotic effect of its parent compound resveratrol will be made for the first time. Rats were distributed into 5 experimental groups and fed either a standard laboratory diet or a high-fat high-fructose diet supplemented with or without pterostilbene (15 or 30 mg per kg per d) or resveratrol (30 mg per kg per d) for 8 weeks. Serum triglyceride, cholesterol, NEFA and transaminase levels were quantified. Liver histological analysis was carried out by haematoxylin-eosin staining. Different pathways involved in liver triglyceride metabolism, including fatty acid synthesis, uptake and oxidation, triglyceride assembly and triglyceride release, were studied. Pterostilbene was shown to partially prevent high-fat high-fructose feeding induced liver steatosis in rats, demonstrating a dose-response pattern. In this dietary model, it acts mainly by reducing de novo lipogenesis and increasing triglyceride assembly and release. Improvement in mitochondrial functionality was also appreciated. At the same dose, the magnitude of pterostilbene and resveratrol induced effects, as well as the involved mechanisms of action, were similar.
Collapse
Affiliation(s)
- S Gómez-Zorita
- Nutrition and Obesity group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Center, 01006 Vitoria-Gasteiz, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|