1
|
Mandelli WG, Alves AV, Abreu FEL, Morais BSD, Zanardi-Lamardo E, Castro ÍB, Choueri RB, Moreira LB. Biomarkers responses in the amphipod Tiburonella viscana exposed to the biocide DCOIT and CO 2-induced ocean acidification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126018. [PMID: 40057164 DOI: 10.1016/j.envpol.2025.126018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/15/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Anthropogenic carbon dioxide emissions (CO2) have led to climate change and marine acidification, with an estimated decrease in ocean surface pH of 0.3-0.4 units by the end of the current century. Chemical pollution also contributes to biodiversity loss in marine environments. This issue is particularly critical in areas under pressure from shipping activities, where the introduction of new antifouling system formulations poses a major threat to non-target species. The biocide DCOIT is the most widely used alternative to organotin compounds due to its rapid degradation in seawater. The toxicity of waterborne DCOIT to marine organisms has been documented, but sediment-bound effects are limited to apical responses and pH scenarios corresponding to current levels. In this study, we determine in a combined way, the toxicity of DCOIT under marine acidification scenarios assessing biomarker responses in the burrowing amphipod Tiburonella viscana as a parameter of sublethal effects in solid phase exposures. Environmental relevant concentrations of DCOIT caused inhibition of the enzyme glutathione S-transferases (GST), changed acetylcholinesterase-like activity (AChE), and increased DNA damage at pHs of 7.7 and 7.4. For lipid peroxidation (LPO), increased levels caused by DCOIT were found for both control (8.1) and intermediate (7.7) conditions of pH. Our data provides evidence of oxidative and genotoxic effects induced by DCOIT, with activation of detoxification and defense mechanisms in T. viscana. These results are important for ecological risk assessment and managing of antifouling paint biocides in multiple stressors scenarios.
Collapse
Affiliation(s)
- Wanessa Gentil Mandelli
- Instituto Do Mar, Universidade Federal de São Paulo (IMar UNIFESP), Rua Maria Máximo 168, Ponta da Praia, Santos, SP, 11030-100, Brazil
| | - Aline Vecchio Alves
- Instituto Do Mar, Universidade Federal de São Paulo (IMar UNIFESP), Rua Maria Máximo 168, Ponta da Praia, Santos, SP, 11030-100, Brazil
| | - Fiamma Eugênia Lemos Abreu
- Centro de Tecnologia e Geociências, Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura, Cidade Universitária, Recife, PE, 50740-550, Brazil
| | - Bruna Santana de Morais
- Centro de Tecnologia e Geociências, Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura, Cidade Universitária, Recife, PE, 50740-550, Brazil
| | - Eliete Zanardi-Lamardo
- Centro de Tecnologia e Geociências, Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura, Cidade Universitária, Recife, PE, 50740-550, Brazil
| | - Ítalo Braga Castro
- Instituto Do Mar, Universidade Federal de São Paulo (IMar UNIFESP), Rua Maria Máximo 168, Ponta da Praia, Santos, SP, 11030-100, Brazil
| | - Rodrigo Brasil Choueri
- Instituto Do Mar, Universidade Federal de São Paulo (IMar UNIFESP), Rua Maria Máximo 168, Ponta da Praia, Santos, SP, 11030-100, Brazil
| | - Lucas Buruaem Moreira
- Instituto Do Mar, Universidade Federal de São Paulo (IMar UNIFESP), Rua Maria Máximo 168, Ponta da Praia, Santos, SP, 11030-100, Brazil.
| |
Collapse
|
2
|
Perobelli JE. Pesticides and public health: discussing risks in Brazilian agro-industrial growth. FRONTIERS IN TOXICOLOGY 2025; 7:1442801. [PMID: 40151620 PMCID: PMC11947944 DOI: 10.3389/ftox.2025.1442801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/08/2025] [Indexed: 03/29/2025] Open
Abstract
The benefits of pesticides in enhancing agricultural yields are widely accepted by the general public. However, it is essential to address the limitations of the current agricultural model to develop more sustainable practices that prioritize environmental and human health. Brazil, a major global agricultural player, ranks among the top five agro-food producers and exporters, making it one of the largest consumers of pesticides worldwide. Notably, approximately 30% of pesticides used in Brazil are banned in the European Union. Paradoxically, some of these banned agrochemicals re-enter Northern markets through imported agro-food products. Addressing the regulatory disparities between Northern and Southern countries necessitates global initiatives and research to better understand the real biological risks associated with pesticide exposure, particularly concerning reproductive health, endocrine disruption, and carcinogenesis-key targets of these chemicals. Since 2001, the Brazilian Health Regulatory Agency (ANVISA) has operated the "Reports on Pesticide Residue Analysis in Food (RPRAF)" program to evaluate pesticide residues in food samples collected across Brazil. Despite its limitations, the program has been crucial in identifying the chemical exposome related to Brazilian agro-foods, facilitating studies on relevant pesticides, their doses, routes, and exposure schedules, and enabling the development of pre-clinical studies based on real-life exposure scenarios. A thorough understanding of the main mechanism of toxicity is crucial for raising awareness about the health risks associated with pesticide exposure, fostering tailored health strategies and guiding informed regulatory policies.
Collapse
Affiliation(s)
- Juliana E. Perobelli
- Laboratory of Experimental Toxicology, Marine Institute, Universidade Federal de São Paulo, UNIFESP, Santos, São Paulo, Brazil
| |
Collapse
|
3
|
Alhazmi A, Nahdi S, Alwasel S, Harrath AH. Acephate Exposure Induces Transgenerational Ovarian Developmental Toxicity by Altering the Expression of Follicular Growth Markers in Female Rats. BIOLOGY 2024; 13:1075. [PMID: 39765742 PMCID: PMC11673910 DOI: 10.3390/biology13121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Acephate is an organophosphate foliar and soil insecticide that is used worldwide. In this study, the transgenerational ovarian developmental toxicity caused by acephate, along with its in utero reprogramming mechanisms, were explored. Thirty female virgin Wistar albino rats were randomly assigned to three groups: one control group and two acephate treatment groups. The treatment groups received daily low or high doses of acephate (34.2 mg/kg or 68.5 mg/kg body weight, respectively) from gestational day 6 until spontaneous labor, resulting in F1 offspring. At 28 days, a subgroup of F1 females were euthanized. The ovaries were extracted, thoroughly cleaned, and weighed before being fixed for further analysis. The remaining F1 females were mated with normal males to produce the F2 generation. The F1 female offspring presented reduced fertility and body weight, whereas the ovarian weight index and sex ratio increased in a dose-dependent manner. Structural analysis revealed altered follicular abnormalities with ovarian cells displaying pyknotic nuclei. Additionally, the gene and protein expression of Cyp19 decreased, whereas that of Gdf-9 increased in the high-dose treatment group (68.5 mg/kg). We also observed significantly increased expression levels of ovarian estrogen receptor 1 (Esr1) and insulin-like growth factor 1 (Igf1), whereas Insl3 expression was significantly decreased. The F2 female offspring presented reproductive phenotype alterations similar to those of F1 females including decreased fertility, reduced Cyp19 gene and protein expression, and structural ovarian abnormalities similar to those of polycystic ovary syndrome (PCOS). In conclusion, acephate induced ovarian developmental toxicity across two generations of rats, which may be linked to changes in the ovarian Cyp19, Gdf9, Insl3, and Igf1 levels.
Collapse
Affiliation(s)
| | | | | | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia
| |
Collapse
|
4
|
Mufti A, Feriani A, Contreras MDM, Nehdi S, Hfaeidh N, Tlili N, Harrath AH. Ephedra alata Seeds Confer Kidney Protection against Early Life Exposure to Acephate by Regulating Oxidative Insult and Activating Autophagy. Life (Basel) 2023; 13:2254. [PMID: 38137855 PMCID: PMC10745092 DOI: 10.3390/life13122254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of the current work was to examine for the first time the nephropreventive capacity of Ephedra alata seed extract (E) against maternal exposure to acephate in rat offspring. The in vivo results revealed that E. alata supplementation for 28 days (40 mg/kg b.w.) significantly attenuated the nephrotoxicity in adult offspring induced by acephate. In fact, it decreased the levels of creatinine and uric acid and increased the albumin content compared to the intoxicated group. The in utero studies showed that E. alata inhibited the renal oxidative stress generated by acephate exposure by reducing lipid peroxidation and enhancing antioxidant biomarker activities (GSH, CAT, and SOD). The inhibition of DNA fragmentation and the improvement of the ultrastructural changes highlighted the prophylactic effect of E. alata in renal tissue. Additionally, the immunofluorescence study showed the upregulation of LC3 gene expression, suggesting the capacity of E. alata extract to stimulate autophagic processes as a protective mechanism. Molecular docking analysis indicated that hexadecasphinganine, the major compound in E. alata, has a higher affinity toward the Na+/K+-ATPase, epithelial sodium channel (ENaC), and sodium hydrogen exchanger 3 (NHE3) genes than acephate. Hexadecasphinganine could be considered a potential inhibitor of the activity of these genes and therefore exerted its preventive capacity. The obtained findings confirmed that E. alata seed extract exerted nephropreventive capacities, which could be related to its bioactive compounds, which possess antioxidant activities.
Collapse
Affiliation(s)
- Afoua Mufti
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia; (A.M.); (A.F.); (N.H.)
| | - Anouar Feriani
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia; (A.M.); (A.F.); (N.H.)
| | - María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering and Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain;
| | - Saber Nehdi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Najla Hfaeidh
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia; (A.M.); (A.F.); (N.H.)
| | - Nizar Tlili
- Institut Supérieur des Sciences et Technologies de l’Environnement Borj Cédria, Université de Carthage, Hammam chat 2050, Ben Arous, Tunis 1073, Tunisia;
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
5
|
Fernandes Mendonça Mota T, Lima Oliveira W, Gonçalves S, Wust Vasconcelos M, Silvia Beatriz Miglioranza K, Castilhos Ghisi N. Are the issues involving acephate already resolved? A scientometric review. ENVIRONMENTAL RESEARCH 2023; 237:117034. [PMID: 37673123 DOI: 10.1016/j.envres.2023.117034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Acephate is a pesticide classified as moderately toxic, and its metabolite methamidophos is highly toxic for mammals and birds; even so, it is one of the most used insecticides in pest control for agricultural and domestic use. Acephate toxicity affects both target and non-target organisms and causes serious damage to the environment. There are several studies on different perspectives of acephate, such as monitoring, toxicity, and modeling. In this sense, this research aims to identify the structure of intellectual production on acephate and analyze the gaps and trends of scientific production on acephate through a scientometric analysis. The data was obtained from the Web of Science database, and after the refinement, 1.085 documents were used. A temporal pattern of the main research objectives is displayed. Most selected studies evaluated acephate efficiency, followed by toxicity and residue detection methods. The USA, China, India, Brazil, and Japan had the highest number of publications on acephate. The keywords most utilized were pesticides, toxicity, insecticide resistance, and residue. Research involving acephate requires greater attention from areas such as ecotoxicology, biochemistry, genetics, and biotechnology. There needed to be more discussions on chronic toxicity, genotoxicity, and cytotoxicity. Moreover, few studies about metabolic and biochemical pathways and genes related to acephate action and biodegradation were scarce.
Collapse
Affiliation(s)
- Thaís Fernandes Mendonça Mota
- Graduate Program in Biotechnology (PPGBIOTEC), Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança S/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000, Dois Vizinhos, Paraná, Brazil; Collegiate of Biological Sciences, Universidade Estadual Do Paraná (UNESPAR), Campus Paranavaí, Avenida Gabriel Esperidião, S/n, Jardim Morumbi, 87703-000, Paranavaí, Paraná, Brazil
| | - Wesley Lima Oliveira
- Multiuser Core Laboratory of Biological Analysis and Molecular Biology (BioMol) at Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança S/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil; Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Sandrieli Gonçalves
- Graduate Program in Biotechnology (PPGBIOTEC), Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança S/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000, Dois Vizinhos, Paraná, Brazil; Multiuser Core Laboratory of Biological Analysis and Molecular Biology (BioMol) at Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança S/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil
| | - Marina Wust Vasconcelos
- Graduate Program in Biotechnology (PPGBIOTEC), Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança S/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000, Dois Vizinhos, Paraná, Brazil; Multiuser Core Laboratory of Biological Analysis and Molecular Biology (BioMol) at Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança S/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil
| | - Karina Silvia Beatriz Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental. Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMDP-CONICET. Funes 3350, 7600, Mar Del Plata, Argentina
| | - Nédia Castilhos Ghisi
- Graduate Program in Biotechnology (PPGBIOTEC), Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança S/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000, Dois Vizinhos, Paraná, Brazil; Multiuser Core Laboratory of Biological Analysis and Molecular Biology (BioMol) at Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança S/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil.
| |
Collapse
|
6
|
Chanu KR, Mangang YA, Debbarma S, Pandey PK. Effect of glyphosate-based herbicide roundup on hemato-biochemistry of Labeo rohita (Hamilton, 1822) and susceptibility to Aeromonas hydrophila infection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110298-110311. [PMID: 37783989 DOI: 10.1007/s11356-023-29967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
In the present study, comprehensive research was executed to investigate the salient toxic effects of glyphosate herbicide in static water system by evaluating the haemato-biochemical profiles of Labio rohita. A challenge study against Aeromonas hydrophila was conducted to determine disease susceptibility of the fish, treated to varying concentrations of commercial-grade glyphosate herbicide. A static range finding bioassay and definitive test revealed that the 96-h LC50 value of glyphosate was 10.16 mg L-1. The experimental fish were subjected to three sub-lethal concentrations of 2.06, 1.03, and 0.63 mg l-1 for 28 days and changes were documented bi-fortnightly to study haemato-biochemical alterationsin the fish. Significantly (p < 0.05) low values in red blood corpuscles (RBC), hemoglobin (Hb), and hematocrit value (Hct) were documented. In contrast, a significant (p < 0.05) escalation in white blood corpuscles (WBC) was documented in comparison to the control. Biochemical and stress markers such as blood glucose, total protein, and alkaline phosphatase (ALP) were significantly (p < 0.05) low, whereas serum glutamate pyruvate transaminase (SGPT) and serum glutamate oxaloacetate transaminase (SGOT) escalated significantly (p < 0.05). Chronic exposure to glyphosate, on the other hand, had the least effect on the Na+ and K+ ions. Further, a challenge assay against A. hydrophila at three sub-lethal glyphosate concentrations demonstrated a synergistic impact that reduced the fish survivability. The findings conclude that persistent low glyphosate concentrations in aquatic ecosystems show significant pathophysiological changes in L. rohita, with increased vulnerability to infections. Altogether, our findings indicate the need to further study the possible assessment for a sustainable bio-remediation technique, mitigation of the detrimental effects of glyphosate exposure in fish, and recommendation of an acceptable residue concentration of the glyphosate in aquatic ecosystem.
Collapse
Affiliation(s)
- Khaidem Rabina Chanu
- College of Fisheries, Central Agricultural University (I), Lembucherra, Tripura, 799210, India
| | - Yumnam Abungcha Mangang
- College of Fisheries, Central Agricultural University (I), Lembucherra, Tripura, 799210, India
| | - Sourabh Debbarma
- College of Fisheries, Central Agricultural University (I), Lembucherra, Tripura, 799210, India
| | - Pramod Kumar Pandey
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Uttarakhand, 263136, India.
| |
Collapse
|
7
|
Maternal Exposure to Acephate Caused Nephrotoxicity in Adult Offspring Rats Mediated by Excessive Autophagy Activation, Oxidative Stress Induction, and Altered Epithelial Sodium Channel and Na +/K +-ATPase Gene Expression. BIOLOGY 2023; 12:biology12020162. [PMID: 36829441 PMCID: PMC9952565 DOI: 10.3390/biology12020162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
This study examined how maternal exposure to acephate-an organophosphate-based insecticide-affected the renal development in rat offspring during adulthood. Virgin female Wistar rats were randomly allocated to three groups: group 1 (control) received sterile water; groups 2 and 3 were intragastrically exposed to low (14 mg/kg) and high (28 mg/kg) doses of acephate from day 6 of pregnancy until delivery, respectively. Further, the offspring of the adult female rats were euthanized in postnatal week 8. Compared with the controls, the adult rat offspring with exposure to low and high doses of acephate exhibited elevated plasma creatinine and blood urea nitrogen levels. Additionally, immunofluorescence analysis revealed the upregulation of autophagic marker genes (Beclin-1 and LC-3) in the acephate-treated rat offspring, thereby suggesting the induction of an autophagic mechanism. Notably, the increased malondialdehyde level, decreased glutathione level, and decreased superoxide dismutase and catalase activities confirmed the ability of acephate to induce oxidative stress and apoptosis in the kidneys of the rat offspring. This may explain the renal histopathological injury detected using hematoxylin and eosin staining. Furthermore, a reverse transcription polymerase chain reaction revealed that the mRNA expression levels of the Na+/K+-ATPase and the epithelial sodium channel (ENaC) genes were significantly higher in the kidney of female offspring than that of controls owing to acephate toxicity. However, there was no significant effect of acephate on the expression of NHE3 in the treatment group compared with the control group. Overall, the present findings suggest that oxidative stress caused by prenatal exposure to acephate causes nephrotoxicity and histopathological alterations in adult rat offspring, likely by actions on renal ENaC and Na+/K+-ATPase genes as well as the autophagic markers Beclin-1 and LC-3.
Collapse
|
8
|
Wang X, Li F, Chen J, Teng Y, Ji C, Wu H. Critical features identification for chemical chronic toxicity based on mechanistic forecast models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119584. [PMID: 35688391 DOI: 10.1016/j.envpol.2022.119584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Facing billions of tons of pollutants entering the ocean each year, aquatic toxicity is becoming a crucial endpoint for evaluating chemical adverse effects on ecosystems. Notably, huge amount of toxic chemicals at environmental relevant doses can cause potential adverse effects. However, chronic aquatic toxicity effects of chemicals are much scarcer, especially at population level. Rotifers are highly sensitive to toxicants even at chronic low-doses and their communities are usually considered as effective indicators for assessing the status of aquatic ecosystems. Therefore, the no observed effect concentration (NOEC) for population abundance of rotifers were selected as endpoints to develop machine learning models for the prediction of chemical aquatic chronic toxicity. In this study, forty-eight binary models were built by eight types of chemical descriptors combined with six machine learning algorithms. The best binary model was 1D & 2D molecular descriptors - random trees model (RT) with high balanced accuracy (BA) (0.83 for training and 0.83 for validation set), and Matthews correlation coefficient (MCC) (0.72 for training set and 0.67 for validation set). Moreover, the optimal model identified the primary factors (SpMAD_Dzp, AMW, MATS2v) and filtered out three high alerting substructures [c1cc(Cl)cc1, CNCO, CCOP(=S)(OCC)O] influencing the chronic aquatic toxicity. These results showed that the compounds with low molecular volume, high polarity and molecular weight could contribute to adverse effects on rotifers, facilitating the deeper understanding of chronic toxicity mechanisms. In addition, forecast models had better performances than the common models embedded into ECOSAR software. This study provided insights into structural features responsible for the toxicity of different groups of chemicals and thereby allowed for the rational design of green and safer alternatives.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Yuefa Teng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| |
Collapse
|
9
|
Mahmood Y, Hussain R, Ghaffar A, Ali F, Nawaz S, Mehmood K, Khan A. Acetochlor Affects Bighead Carp ( Aristichthys Nobilis) by Producing Oxidative Stress, Lowering Tissue Proteins, and Inducing Genotoxicity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9140060. [PMID: 35655481 PMCID: PMC9152400 DOI: 10.1155/2022/9140060] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022]
Abstract
Acetochlor is persistently used in the agroproduction sector to control broadleaf weeds. Due to frequent and continuous applications, this herbicide can reach nearby water bodies and may induce deleterious changes in aquatic life. Therefore, investigation of harmful impacts of different environmental pollutants, including herbicides, is vital to knowing the mechanisms of toxicity and devising control strategies. The current experiment included bighead carp (n = 80) to estimate adverse impacts. Fish were randomly placed in 4 different experimental groups (T0-T3) and were treated for 36 days with acetochlor at 0, 300, 400, and 500 μg/L. Fresh blood without any anticoagulant was obtained and processed for nuclear and morphological changes in erythrocytes. At the same time, various visceral organs, including the gills, liver, brain, and kidneys, were removed and processed on days 12, 24, and 36 to determine oxidative stress and various antioxidant biomarkers. Comet assays revealed significantly increased DNA damage in isolated cells of the liver, kidneys, brain, and gills of treated fish. We recorded increased morphological and nuclear changes (P ≤ 0.05) in the erythrocyte of treated fish. The results on oxidative stress showed a higher quantity of oxidative biomarkers and a significantly (P ≤ 0.05) low concentration of cellular proteins in the gills, liver, brain, and kidneys of treated fish compared to unexposed fish. Our research findings concluded that acetochlor renders oxidative stress in bighead carp.
Collapse
Affiliation(s)
- Yasir Mahmood
- Department of Zoology, Islamia University of Bahawalpur, 63100, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur-63100, Pakistan
| | - Abdul Ghaffar
- Department of Zoology, Islamia University of Bahawalpur, 63100, Pakistan
| | - Farah Ali
- Department of Theriogenology, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur-63100, Pakistan
| | - Sadia Nawaz
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur-63100, Pakistan
| | - Ahrar Khan
- Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
- Shandong Vocational Animal Science and Veterinary College, Weifang 261061, China
| |
Collapse
|