1
|
Mesquita AF, Gonçalves FJM, Gonçalves AMM. Toxicity of two pesticides in binary mixture on survival and enzymatic response of Cerastoderma edule - The warming influence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169676. [PMID: 38160819 DOI: 10.1016/j.scitotenv.2023.169676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Pesticide application increased by about 1 million tonnes in the last 3 decades. Pesticides' overuse, coupled with the need for several pesticides to control different pests in the same crop, and its application many times per year, results in dangerous chemical cocktails that enter in aquatic systems, with impacts to the ecosystems and its communities. Climatic changes are currently another great concern, is predicted by the end of the 21st century, the earth's surface temperature will increase by about 4 °C. Bivalve species are reported as essential to the ecosystems' balance. However, they are also indicated as the organisms that will suffer the most serious effects of the temperature increase. So, this work intends to: a) verify the harm of the sub-lethal concentrations of two worldwide used pesticides, oxyfluorfen and copper (Cu), when combined, to Cerastoderma edule at 15 °C and 20 °C; b) assess the changes in the antioxidant defence system, the activity of the neurological enzyme acetylcholinesterase and the nutritive value of C. edule, after exposure to sub-lethal concentrations of oxyfluorfen and Cu, single and in the mixture, at 15 °C and 20 °C; c) observe the interaction between Cu and oxyfluorfen, considering the different biomarkers. Bivalves were exposed to oxyfluorfen and Cu, single and combined, for 96 h, at 15 °C and 20 °C. Results showed lethal effects to the organisms exposed at 20 °C when exposed to the highest binary mixture concentrations. Biochemical effects were observed on the organisms exposed to 15 °C, despite not observing any lethal effects. Briefly, there was a reported increase in oxidative stress and a decrease in protein content, regardless of the increase in the activity of antioxidant enzymes. These results suggest the potentially dangerous effects of the chemicals' mixture combined with the temperature, on this species and its consumers, impacting the trophic chain, and consequently, the community structure and function.
Collapse
Affiliation(s)
- Andreia F Mesquita
- Department of Biology, CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Fernando J M Gonçalves
- Department of Biology, CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana M M Gonçalves
- Department of Biology, CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal; University of Coimbra, MARE-Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
2
|
Peslalz P, Grieshober M, Kraus F, Bleisch A, Izzo F, Lichtenstein D, Hammer H, Vorbach A, Momoi K, Zanger UM, Brötz-Oesterhelt H, Braeuning A, Plietker B, Stenger S. Unnatural Endotype B PPAPs as Novel Compounds with Activity against Mycobacterium tuberculosis. J Med Chem 2023; 66:15073-15083. [PMID: 37822271 DOI: 10.1021/acs.jmedchem.3c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Pre-SARS-CoV-2, tuberculosis was the leading cause of death by a single pathogen. Repetitive exposure of Mycobacterium tuberculosis(Mtb) supported the development of multidrug- and extensively drug-resistant strains, demanding novel drugs. Hyperforin, a natural type A polyprenylated polycyclic acylphloroglucinol from St. John's wort, exhibits antidepressant and antibacterial effects also against Mtb. Yet, Hyperforin's instability limits the utility in clinical practice. Here, we present photo- and bench-stable type B PPAPs with enhanced antimycobacterial efficacy. PPAP22 emerged as a lead compound, further improved as the sodium salt PPAP53, drastically enhancing solubility. PPAP53 inhibits the growth of virulent extracellular and intracellular Mtb without harming primary human macrophages. Importantly, PPAP53 is active against drug-resistant strains of Mtb. Furthermore, we analyzed the in vitro properties of PPAP53 in terms of CYP induction and the PXR interaction. Taken together, we introduce type PPAPs as a new class of antimycobacterial compounds, with remarkable antibacterial activity and favorable biophysical properties.
Collapse
Affiliation(s)
- Philipp Peslalz
- Chair of Organic Chemistry, Faculty of Chemistry and Food Chemistry, Technical University Dresden, Bergstr. 66, Dresden01069 ,Germany
| | - Mark Grieshober
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| | - Frank Kraus
- Institut für Organische Chemie, Universität Stuttgart,Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Anton Bleisch
- Chair of Organic Chemistry, Faculty of Chemistry and Food Chemistry, Technical University Dresden, Bergstr. 66, Dresden01069 ,Germany
| | - Flavia Izzo
- Institut für Organische Chemie, Universität Stuttgart,Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Dajana Lichtenstein
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin 10589, Germany
| | - Helen Hammer
- SIGNATOPE GmbH, Markwiesenstr. 55, Reutlingen 72770, Germany
| | - Andreas Vorbach
- Interfaculty Institute of Microbiology and Infection Medicine, Tübingen 72076, Germany
| | - Kyoko Momoi
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology Auerbachstr. 112, University of Tübingen, 70376 Stuttgart, Tübingen 72076, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology Auerbachstr. 112, University of Tübingen, 70376 Stuttgart, Tübingen 72076, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Tübingen 72076, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen 72076, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin 10589, Germany
| | - Bernd Plietker
- Chair of Organic Chemistry, Faculty of Chemistry and Food Chemistry, Technical University Dresden, Bergstr. 66, Dresden01069 ,Germany
- Institut für Organische Chemie, Universität Stuttgart,Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| |
Collapse
|
3
|
Mesquita AF, Gonçalves FJM, Gonçalves AMM. Effects of Inorganic and Organic Pollutants on the Biomarkers' Response of Cerastoderma edule under Temperature Scenarios. Antioxidants (Basel) 2023; 12:1756. [PMID: 37760058 PMCID: PMC10525251 DOI: 10.3390/antiox12091756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Currently, there is increased chemical pollution, and climate change is a major concern to scientific, political and social communities globally. Marine systems are very susceptible to changes, and considering the ecological and economic roles of bivalve species, like Cerastoderma edule, studies evaluating the effects of both stressors are of great importance. This study intends to (a) determine the toxicity of copper (Cu) and oxyfluorfen at the lethal level, considering the temperature; (b) assess the changes in the antioxidant defence enzymes as a consequence of the simultaneous exposure to chemical and warming pressures; and (c) determine if lipid peroxidation (LPO) and neurotoxic effects occur after the exposure to chemical and temperature stressors. C. edule was exposed to Cu and oxyfluorfen at different temperatures (15 °C, 20 °C and 25 °C) for 96 h. The ecotoxicological results reveal a higher tolerance of C. edule to oxyfluorfen than to Cu, regardless of the temperature. The antioxidant defence system revealed efficiency in fighting the chemicals' action, with no significant changes in the thiobarbituric reactive species (TBARS) levels to 15 °C and 20 °C. However, a significant inhibition of acetylcholinesterase (AChE) was observed on the organisms exposed to oxyfluorfen at 20 °C, as well as a decreasing trend on the ones exposed to Cu at this temperature. Moreover, the catalase (CAT) showed a significant increase in the organisms exposed to the two highest concentrations of Cu at 15 °C and in the ones exposed to the highest concentration of oxyfluorfen at 20 °C. Looking at the temperature as a single stressor, the organisms exposed to 25 °C revealed a significant increase in the TBARS level, suggesting potential LPO and explaining the great mortality at this condition.
Collapse
Affiliation(s)
- Andreia F. Mesquita
- Department of Biology and CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal; (A.F.M.); (F.J.M.G.)
| | - Fernando J. M. Gonçalves
- Department of Biology and CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal; (A.F.M.); (F.J.M.G.)
| | - Ana M. M. Gonçalves
- Department of Biology and CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal; (A.F.M.); (F.J.M.G.)
- University of Coimbra, MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
4
|
Mesquita AF, Jesus F, Gonçalves FJM, Gonçalves AMM. Ecotoxicological and biochemical effects of a binary mixture of pesticides on the marine diatom Thalassiosira weissflogii in a scenario of global warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162737. [PMID: 36907391 DOI: 10.1016/j.scitotenv.2023.162737] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Under the current scenario of global warming, it is ecologically relevant to understand how increased temperature influences the combined toxicity of pesticides to aquatic species. Hence, this work aims to: a) determine the temperature effect (15 °C, 20 °C and 25 °C) on the toxicity of two pesticides (oxyfluorfen and Copper (Cu)), on the growth of Thalassiosira weissflogii; b) assess whether temperature affects the type of toxicity interaction between these chemicals; and c) assess the temperature effect on biochemical responses (fatty acids (FA) and sugar profiles) of the pesticides on T. weissflogii. Temperature increased the tolerance of the diatoms to the pesticides with EC50 values between 3.176 and 9.929 μg L-1 for oxyfluorfen and 42.50-230.75 μg L-1 for Cu, respectively, at 15 °C and 25 °C. The mixtures toxicity was better described by the IA model, but temperature altered the type of deviation from dose ratio (15 °C and 20 °C) to antagonism (25 °C). Temperature, as well as the pesticide concentrations, affected the FA and sugar profiles. Increased temperature increased saturated FA and decreased unsaturated FA; it also affected the sugar profiles with a pronounced minimum at 20 °C. Results highlight effects on the nutritional value of these diatoms, with potential repercussion on food webs.
Collapse
Affiliation(s)
- Andreia F Mesquita
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Fátima Jesus
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando J M Gonçalves
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana M M Gonçalves
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
5
|
Jacobs MN, Kubickova B, Boshoff E. Candidate Proficiency Test Chemicals to Address Industrial Chemical Applicability Domains for in vitro Human Cytochrome P450 Enzyme Induction. FRONTIERS IN TOXICOLOGY 2022; 4:880818. [PMID: 35795225 PMCID: PMC9252529 DOI: 10.3389/ftox.2022.880818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Cytochrome P450 (CYP) enzymes play a key role in the metabolism of both xenobiotics and endogenous chemicals, and the activity of some CYP isoforms are susceptible to induction and/or inhibition by certain chemicals. As CYP induction/inhibition can bring about significant alterations in the level of in vivo exposure to CYP substrates and metabolites, CYP induction/inhibition data is needed for regulatory chemical toxicity hazard assessment. On the basis of available human in vivo pharmaceutical data, a draft Organisation for Economic Co-operation and Development Test Guideline (TG) for an in vitro CYP HepaRG test method that is capable of detecting the induction of four human CYPs (CYP1A1/1A2, 2B6, and 3A4), has been developed and validated for a set of pharmaceutical proficiency chemicals. However to support TG adoption, further validation data was requested to demonstrate the ability of the test method to also accurately detect CYP induction mediated by industrial and pesticidal chemicals, together with an indication on regulatory uses of the test method. As part of "GOLIATH", a European Union Horizon-2020 funded research project on metabolic disrupting chemical testing approaches, work is underway to generate supplemental validated data for an additional set of chemicals with sufficient diversity to allow for the approval of the guideline. Here we report on the process of proficiency chemical selection based on a targeted literature review, the selection criteria and considerations required for acceptance of proficiency chemical selection for OECD TG development (i.e. structural diversity, range of activity, relevant chemical sectors, global restrictions etc). The following 13 proposed proficiency chemicals were reviewed and selected as a suitable set for use in the additional validation experiments: tebuconazole, benfuracarb, atrazine, cypermethrin, chlorpyrifos, perfluorooctanoic acid, bisphenol A, N,N-diethyl-m-toluamide, benzo-[a]-pyrene, fludioxonil, malathion, triclosan, and caffeine. Illustrations of applications of the test method in relation to endocrine disruption and non-genotoxic carcinogenicity are provided.
Collapse
Affiliation(s)
- Miriam Naomi Jacobs
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Department of Toxicology, Public Health England (PHE), Harwell Science and Innovation Campus, Chilton, United Kingdom
| | - Barbara Kubickova
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Department of Toxicology, Public Health England (PHE), Harwell Science and Innovation Campus, Chilton, United Kingdom
| | - Eugene Boshoff
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Department of Toxicology, Public Health England (PHE), Harwell Science and Innovation Campus, Chilton, United Kingdom
| |
Collapse
|
6
|
Lu Y, Rao Q, Zhang Q, Liu X, Song W, Guan S, Chen S, Song W. Study on the Dynamic Difference between Single and Mixed Residues of Three Neonicotinoids in Brassica chinensis L. Molecules 2021; 26:molecules26216495. [PMID: 34770902 PMCID: PMC8588522 DOI: 10.3390/molecules26216495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
Multiple insecticides’ residues after the mixed application of several neonicotinoids cause combined pollution and bring new challenges to food safety and pest control during agricultural production. In this study, three neonicotinoid insecticides, namely imidacloprid (IMI), acetamiprid (ACE), and thiamethoxam (TMX), were mixed and evenly sprayed on Brassica chinensis L. in the field. Then, the insecticides’ residues were dynamically monitored to determine the differences in their rates of dissipation and final residues after 10 days. The results showed that the dissipation kinetics of neonicotinoids still conformed to the first-order kinetic model for binary or ternary application of neonicotinoid mixtures, with all determination coefficients (R2) being above 0.9 and the dissipation half-life (DT50) being 2.87–6.74 d. For treatment groups with five times the recommended dosages (IMI 300 g·hm−2, ACE 900 g·hm−2, and TMX 600 g·hm−2), mixed insecticides had a slower dissipation rate, and the DT50 values of mixtures were longer than those of single insecticides. Moreover, the final insecticide residues with mixed application were higher than those of single compounds at 10 d after spraying. Thus, mixed applications of neonicotinoids may increase food safety risks as they increase the final insecticide residues in Brassica chinensis L., and care should therefore be taken when considering the combined use of such compounds.
Collapse
Affiliation(s)
- Yangyang Lu
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.L.); (Q.R.); (Q.Z.); (X.L.); (W.S.); (S.G.); (S.C.)
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
| | - Qinxiong Rao
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.L.); (Q.R.); (Q.Z.); (X.L.); (W.S.); (S.G.); (S.C.)
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
| | - Qicai Zhang
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.L.); (Q.R.); (Q.Z.); (X.L.); (W.S.); (S.G.); (S.C.)
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
| | - Xing Liu
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.L.); (Q.R.); (Q.Z.); (X.L.); (W.S.); (S.G.); (S.C.)
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
| | - Wei Song
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.L.); (Q.R.); (Q.Z.); (X.L.); (W.S.); (S.G.); (S.C.)
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
| | - Shuhui Guan
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.L.); (Q.R.); (Q.Z.); (X.L.); (W.S.); (S.G.); (S.C.)
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
| | - Shanshan Chen
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.L.); (Q.R.); (Q.Z.); (X.L.); (W.S.); (S.G.); (S.C.)
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
| | - Weiguo Song
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.L.); (Q.R.); (Q.Z.); (X.L.); (W.S.); (S.G.); (S.C.)
- Shanghai Service Platform of Agro-Products Quality and Safety Evaluation Technology, Shanghai 201403, China
- Correspondence:
| |
Collapse
|
7
|
Lichtenstein D, Mentz A, Sprenger H, Schmidt FF, Albaum SP, Kalinowski J, Planatscher H, Joos TO, Poetz O, Braeuning A. A targeted transcriptomics approach for the determination of mixture effects of pesticides. Toxicology 2021; 460:152892. [PMID: 34371104 DOI: 10.1016/j.tox.2021.152892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
While real-life exposure occurs to complex chemical mixtures, toxicological risk assessment mostly focuses on individual compounds. There is an increasing demand for in vitro tools and strategies for mixture toxicity analysis. Based on a previously established set of hepatotoxicity marker genes, we analyzed mixture effects of non-cytotoxic concentrations of different pesticides in exposure-relevant binary mixtures in human HepaRG hepatocarcinoma cells using targeted transcriptomics. An approach for mixture analysis at the level of a complex endpoint such as a transcript pattern is presented, including mixture design based on relative transcriptomic potencies and similarities. From a mechanistic point of view, goal of the study was to evaluate combinations of chemicals with varying degrees of similarity in order to determine whether differences in mechanisms of action lead to different mixtures effects. Using a model deviation ratio-based approach for assessing mixture effects, it was revealed that most data points are consistent with the assumption of dose addition. A tendency for synergistic effects was only observed at high concentrations of some combinations of the test compounds azoxystrobin, cyproconazole, difenoconazole, propiconazole and thiacloprid, which may not be representative of human real-life exposure. In summary, the findings of our study suggest that, for the pesticide mixtures investigated, risk assessment based on the general assumption of dose addition can be considered sufficiently protective for consumers. The way of data analysis presented in this paper can pave the way for a more comprehensive use of multi-gene expression data in experimental studies related to mixture toxicity.
Collapse
Affiliation(s)
- Dajana Lichtenstein
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany
| | - Almut Mentz
- University of Bielefeld, CeBiTec, Bielefeld, Germany
| | - Heike Sprenger
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany
| | - Felix F Schmidt
- NMI Natural and Medical Sciences Institute at the University of Tuebingen/Reutlingen, Germany; Signatope GmbH, 72770, Reutlingen, Germany
| | | | | | | | - Thomas O Joos
- NMI Natural and Medical Sciences Institute at the University of Tuebingen/Reutlingen, Germany; Signatope GmbH, 72770, Reutlingen, Germany
| | - Oliver Poetz
- NMI Natural and Medical Sciences Institute at the University of Tuebingen/Reutlingen, Germany; Signatope GmbH, 72770, Reutlingen, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany.
| |
Collapse
|