1
|
Gu N, Shen Y, He Y, Li C, Xiong W, Hu Y, Qiu Z, Peng F, Han W, Li C, Long X, Zhao R, Zhao Y, Shi B. Loss of m6A demethylase ALKBH5 alleviates hypoxia-induced pulmonary arterial hypertension via inhibiting Cyp1a1 mRNA decay. J Mol Cell Cardiol 2024; 194:16-31. [PMID: 38821243 DOI: 10.1016/j.yjmcc.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Hypoxia-induced pulmonary artery hypertension (HPH) is a complication of chronic hypoxic lung disease and the third most common type of pulmonary artery hypertension (PAH). Epigenetic mechanisms play essential roles in the pathogenesis of HPH. N6-methyladenosine (m6A) is an important modified RNA nucleotide involved in a variety of biological processes and an important regulator of epigenetic processes. To date, the precise role of m6A and regulatory molecules in HPH remains unclear. METHODS HPH model and pulmonary artery smooth muscle cells (PASMCs) were constructed from which m6A changes were observed and screened for AlkB homolog 5 (Alkbh5). Alkbh5 knock-in (KI) and knock-out (KO) mice were constructed to observe the effects on m6A and evaluate right ventricular systolic pressure (RVSP), left ventricular and septal weight [RV/(LV + S)], and pulmonary vascular remodeling in the context of HPH. Additionally, the effects of Alkbh5 knockdown using adenovirus were examined in vitro on m6A, specifically in PASMCs with regard to proliferation, migration and cytochrome P450 1A1 (Cyp1a1) mRNA stability. RESULTS In both HPH mice lung tissues and hypoxic PASMCs, a decrease in m6A was observed, accompanied by a significant up-regulation of Alkbh5 expression. Loss of Alkbh5 attenuated the proliferation and migration of hypoxic PASMCs in vitro, with an associated increase in m6A modification. Furthermore, Alkbh5 KO mice exhibited reduced RVSP, RV/(LV + S), and attenuated vascular remodeling in HPH mice. Mechanistically, loss of Alkbh5 inhibited Cyp1a1 mRNA decay and increased its expression through an m6A-dependent post-transcriptional mechanism, which hindered the proliferation and migration of hypoxic PASMCs. CONCLUSION The current study highlights the loss of Alkbh5 impedes the proliferation and migration of PASMCs by inhibiting post-transcriptional Cyp1a1 mRNA decay in an m6A-dependent manner.
Collapse
Affiliation(s)
- Ning Gu
- College of Medicine, Soochow University, Suzhou, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Youcheng Shen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuanjie He
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Zhimei Qiu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fengli Peng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Weiyu Han
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chaozhong Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xianping Long
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ranzun Zhao
- College of Medicine, Soochow University, Suzhou, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| | - Bei Shi
- College of Medicine, Soochow University, Suzhou, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Jia Z, Huang J, Yang Y, Yang Y, Lin W, Qu S, Sun N, Zhang W, Han L, Huang J. Establishing national reference materials for genetic testing of cytochrome P450. Pharmacogenet Genomics 2024; 34:175-183. [PMID: 38640061 PMCID: PMC11221791 DOI: 10.1097/fpc.0000000000000532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/04/2024] [Indexed: 04/21/2024]
Abstract
OBJECTIVES Reference materials for in-vitro diagnostic reagents play a critical role in determining the quality of reagents and ensuring the accuracy of clinical test results. This study aimed to establish a national reference material (NRM) for detecting cytochrome P450 (CYP) genes related to drug metabolism by screening databases on the Chinese population to identify CYP gene polymorphism characteristics. METHODS To prepare the NRM, we used DNA extracted from healthy human immortalized B lymphoblastoid cell lines as the raw material. Samples of these cell lines were obtained from the Chinese Population PGx Gene Polymorphism Biobank. Further, we used Sanger sequencing, next-generation sequencing, and commercial assay kits to validate the polymorphic genotypes. RESULTS Among the CYP superfamily genes, we confirmed 24 riboswitch loci related to drug metabolism, with evidence levels of 1A, 2A, 3, and 4. We confirmed the polymorphic loci and validated their genotypes using various sequencing techniques. Our results were consistent with the polymorphism information of samples obtained from the biobank, thus demonstrating high precision and stability of the established NRM. CONCLUSION An NRM (360 056-202 201) for CYP genetic testing covering 24 loci related to drug metabolism was established and approved to assess in-vitro diagnostic reagents containing CYP family gene polymorphisms and perform clinical inter-room quality evaluations.
Collapse
Affiliation(s)
- Zheng Jia
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control, Beijing
| | - Junju Huang
- Department of Academic Collaboration, Research Institute, DAAN Gene Co., Ltd., Guangzhou
| | - Ying Yang
- Research and Development Department, Beijing Anngeen Technologies Co., Ltd., Beijing, China
| | - Yong Yang
- Department of Academic Collaboration, Research Institute, DAAN Gene Co., Ltd., Guangzhou
| | - Wei Lin
- Research and Development Department, Beijing Anngeen Technologies Co., Ltd., Beijing, China
| | - Shoufang Qu
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control, Beijing
| | - Nan Sun
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control, Beijing
| | - Wenxin Zhang
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control, Beijing
| | - Lulu Han
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control, Beijing
| | - Jie Huang
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control, Beijing
| |
Collapse
|
3
|
Scatozza F, Giardina MM, Valente C, Vigiano Benedetti V, Facchiano A. Anti-Melanoma Effects of Miconazole: Investigating the Mitochondria Involvement. Int J Mol Sci 2024; 25:3589. [PMID: 38612401 PMCID: PMC11011910 DOI: 10.3390/ijms25073589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Miconazole is an antimycotic drug showing anti-cancer effects in several cancers. However, little is known on its effects in melanoma. A375 and SK-MEL-28 human melanoma cell lines were exposed to miconazole and clotrimazole (up to 100 mM). Proliferation, viability with MTT assay and vascular mimicry were assayed at 24 h treatment. Molecular effects were measured at 6 h, namely, ATP-, ROS-release and mitochondria-related cytofluorescence. A metabolomic profile was also investigated at 6 h treatment. Carnitine was one of the most affected metabolites; therefore, the expression of 29 genes involved in carnitine metabolism was investigated in the public platform GEPIA2 on 461 melanoma patients and 558 controls. After 24 h treatments, miconazole and clotrimazole strongly and significantly inhibited proliferation in the presence of 10% serum on either melanoma cell lines; they also strongly reduced viability and vascular mimicry. After 6 h treatment, ATP reduction and ROS increase were observed, as well as a significant reduction in mitochondria-related fluorescence. Further, in A375, miconazole strongly and significantly altered expression of several metabolites including carnitines, phosphatidyl-cholines, all amino acids and several other small molecules, mostly metabolized in mitochondria. The expression of 12 genes involved in carnitine metabolism was found significantly modified in melanoma patients, 6 showing a significant impact on patients' survival. Finally, miconazole antiproliferation activity on A375 was found completely abrogated in the presence of carnitine, supporting a specific role of carnitine in melanoma protection toward miconazole effect, and was significantly reversed in the presence of caspases inhibitors such as ZVAD-FMK and Ac-DEVD-CHO, and a clear pro-apoptotic effect was observed in miconazole-treated cells, by FACS analysis of Annexin V-FITC stained cells. Miconazole strongly affects proliferation and other biological features in two human melanoma cell lines, as well as mitochondria-related functions such as ATP- and ROS-release, and the expression of several metabolites is largely dependent on mitochondria function. Miconazole, likely acting via carnitine and mitochondria-dependent apoptosis, is therefore suggested as a candidate for further investigations in melanoma treatments.
Collapse
|
4
|
Yang H, Rothenberger E, Zhao T, Fan W, Kelly A, Attaya A, Fan D, Panigrahy D, Deng J. Regulation of inflammation in cancer by dietary eicosanoids. Pharmacol Ther 2023:108455. [PMID: 37257760 DOI: 10.1016/j.pharmthera.2023.108455] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cancer is a major burden of disease worldwide and increasing evidence shows that inflammation contributes to cancer development and progression. Eicosanoids are derived from dietary polyunsaturated fatty acids, such as arachidonic acid (AA), and are mainly produced by a series of enzymatic pathways that include cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P-450 epoxygenase (CYP). Eicosanoids consist of at least several hundred individual molecules and play important roles in the inflammatory response and inflammation-related cancers. SCOPE AND APPROACH Dietary sources of AA and biosynthesis of eicosanoids from AA through different metabolic pathways are summarized. The bioactivities of eicosanoids and their potential molecular mechanisms on inflammation and cancer are revealed. Additionally, current challenges and limitations in eicosanoid research on inflammation-related cancer are discussed. KEY FINDINGS AND CONCLUSIONS Dietary AA generates a large variety of eicosanoids, including prostaglandins, thromboxane A2, leukotrienes, cysteinyl leukotrienes, lipoxins, hydroxyeicosatetraenoic acids (HETEs), and epoxyeicosatrienoic acids (EETs). Eicosanoids exert different bioactivities and mechanisms involved in the inflammation and related cancer developments. A deeper understanding of eicosanoid biology may be advantageous in cancer treatment and help to define cellular targets for further therapeutic development.
Collapse
Affiliation(s)
- Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Eva Rothenberger
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wendong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Abigail Kelly
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ahmed Attaya
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Grishanova AY, Klyushova LS, Perepechaeva ML. AhR and Wnt/β-Catenin Signaling Pathways and Their Interplay. Curr Issues Mol Biol 2023; 45:3848-3876. [PMID: 37232717 DOI: 10.3390/cimb45050248] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
As evolutionarily conserved signaling cascades, AhR and Wnt signaling pathways play a critical role in the control over numerous vital embryonic and somatic processes. AhR performs many endogenous functions by integrating its signaling pathway into organ homeostasis and into the maintenance of crucial cellular functions and biological processes. The Wnt signaling pathway regulates cell proliferation, differentiation, and many other phenomena, and this regulation is important for embryonic development and the dynamic balance of adult tissues. AhR and Wnt are the main signaling pathways participating in the control of cell fate and function. They occupy a central position in a variety of processes linked with development and various pathological conditions. Given the importance of these two signaling cascades, it would be interesting to elucidate the biological implications of their interaction. Functional connections between AhR and Wnt signals take place in cases of crosstalk or interplay, about which quite a lot of information has been accumulated in recent years. This review is focused on recent studies about the mutual interactions of key mediators of AhR and Wnt/β-catenin signaling pathways and on the assessment of the complexity of the crosstalk between the AhR signaling cascade and the canonical Wnt pathway.
Collapse
Affiliation(s)
- Alevtina Y Grishanova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| | - Lyubov S Klyushova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| | - Maria L Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| |
Collapse
|
6
|
Vorontsova JE, Akishina AA, Cherezov RO, Simonova OB. A new insight into the aryl hydrocarbon receptor/cytochrome 450 signaling pathway in MG63, HOS, SAOS2, and U2OS cell lines. Biochimie 2023; 207:102-112. [PMID: 36332717 DOI: 10.1016/j.biochi.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Osteosarcoma is the most common malignant tumor of bone, with rapid progressive growth, early distant metastases, and frequent recurrence after surgical treatment. Osteosarcoma is characterized by changes in the ratio and expression of different cytochrome P450 (CYP) isoforms that can affect the effectiveness of anticancer therapies. The inducible expression of CYP1 genes depends on the ligand-dependent functionality of the aryl hydrocarbon receptor (AHR). In this study, we examined the AHR/CYP1 signaling pathway in four osteosarcoma cell lines (MG63, HOS, SAOS2, and U2OS) induced by the known AHR ligands: indirubin, indole-3-carbinol, and beta-naphthoflavone. Using qPCR and Western blot analysis, we explored the effects of these ligands on the expression of the CYP1 genes and studied the correlation between these responses and the changes in the mRNA and protein levels of AHR and the AHR nuclear translocator (ARNT) in these osteosarcoma cell lines. The results show that the AHR/CYP1 signaling pathway retains its function only in MG63 and HOS cells, and is impaired in SAOS2 and U2OS cells. Our data should be taken into account when recommending new strategies for the treatment of osteosarcoma and when evaluating new drugs against osteosarcoma in vitro.
Collapse
Affiliation(s)
- Julia E Vorontsova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Angelina A Akishina
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Roman O Cherezov
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga B Simonova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Cytochrome P450 Enzymes and Drug Metabolism in Humans. Int J Mol Sci 2021; 22:ijms222312808. [PMID: 34884615 PMCID: PMC8657965 DOI: 10.3390/ijms222312808] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 01/07/2023] Open
Abstract
Human cytochrome P450 (CYP) enzymes, as membrane-bound hemoproteins, play important roles in the detoxification of drugs, cellular metabolism, and homeostasis. In humans, almost 80% of oxidative metabolism and approximately 50% of the overall elimination of common clinical drugs can be attributed to one or more of the various CYPs, from the CYP families 1–3. In addition to the basic metabolic effects for elimination, CYPs are also capable of affecting drug responses by influencing drug action, safety, bioavailability, and drug resistance through metabolism, in both metabolic organs and local sites of action. Structures of CYPs have recently provided new insights into both understanding the mechanisms of drug metabolism and exploiting CYPs as drug targets. Genetic polymorphisms and epigenetic changes in CYP genes and environmental factors may be responsible for interethnic and interindividual variations in the therapeutic efficacy of drugs. In this review, we summarize and highlight the structural knowledge about CYPs and the major CYPs in drug metabolism. Additionally, genetic and epigenetic factors, as well as several intrinsic and extrinsic factors that contribute to interindividual variation in drug response are also reviewed, to reveal the multifarious and important roles of CYP-mediated metabolism and elimination in drug therapy.
Collapse
|