1
|
Yousuf A, Sadeghi M, Adams DJ. Venom-Derived Peptides Inhibiting Voltage-Gated Sodium and Calcium Channels in Mammalian Sensory Neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:3-19. [DOI: 10.1007/978-981-16-4254-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
Mass Spectrometry- and Computational Structural Biology-Based Investigation of Proteins and Peptides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:265-287. [PMID: 31347053 DOI: 10.1007/978-3-030-15950-4_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent developments of mass spectrometry (MS) allow us to identify, estimate, and characterize proteins and protein complexes. At the same time, structural biology helps to determine the protein structure and its structure-function relationship. Together, they aid to understand the protein structure, property, function, protein-complex assembly, protein-protein interaction, and dynamics. The present chapter is organized with illustrative results to demonstrate how experimental mass spectrometry can be combined with computational structural biology for detailed studies of protein's structures. We have used tumor differentiation factor protein/peptide as ligand and Hsp70/Hsp90 as receptor protein as examples to study ligand-protein interaction. To investigate possible protein conformation, we will describe two proteins-lysozyme and myoglobin. As an application of MS-based assignment of disulfide bridges, the case of the spider venom polypeptide Phα1β will also be discussed.
Collapse
|
3
|
Wormwood KL, Ngounou Wetie AG, Gomez MV, Ju Y, Kowalski P, Mihasan M, Darie CC. Structural Characterization and Disulfide Assignment of Spider Peptide Phα1β by Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:827-841. [PMID: 29663255 DOI: 10.1007/s13361-018-1904-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
Native Phα1β is a peptide purified from the venom of the armed spider Phoneutria nigriventer that has been shown to have an extensive analgesic effect with fewer side effects than ω-conotoxin MVIIA. Recombinant Phα1β mimics the effects of the native Phα1β. Because of this, it has been suggested that Phα1β may have potential to be used as a therapeutic for controlling persistent pathological pain. The amino acid sequence of Phα1β is known; however, the exact structure and disulfide arrangement has yet to be determined. Determination of the disulfide linkages and exact structure could greatly assist in pharmacological analysis and determination of why this peptide is such an effective analgesic. Here, we used biochemical and mass spectrometry approaches to determine the disulfide linkages present in the recombinant Phα1β peptide. Using a combination of MALDI-MS, direct infusion ESI-MS, and nanoLC-MS/MS analysis of the undigested recombinant Phα1β peptide and digested with AspN, trypsin, or AspN/trypsin, we were able to identify and confirm all six disulfide linkages present in the peptide as Cys1-2, Cys3-4, Cys5-6, Cys7-8, Cys9-10, and Cys11-12. These results were also partially confirmed in the native Phα1β peptide. These experiments provide essential structural information about Phα1β and may assist in providing insight into the peptide's analgesic effect with very low side effects. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Kelly L Wormwood
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Ave., Box 5810, Potsdam, NY, 13699, USA
| | - Armand Gatien Ngounou Wetie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Ave., Box 5810, Potsdam, NY, 13699, USA
| | - Marcus Vinicius Gomez
- Institute of Education and Research Santa Casa Belo Horizonte-Laboratory of Toxins, Rua Domingos Vieira 590, Belo Horizonte, Minas Gerais, 30150-240, Brazil
| | - Yue Ju
- Bruker Daltonics, 40 Manning Road Manning Park, Billerica, MA, 01821, USA
| | - Paul Kowalski
- Bruker Daltonics, 40 Manning Road Manning Park, Billerica, MA, 01821, USA
| | - Marius Mihasan
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Ave., Box 5810, Potsdam, NY, 13699, USA
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Bvd. no 11, 700506, Iasi, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Ave., Box 5810, Potsdam, NY, 13699, USA.
| |
Collapse
|
4
|
Titaux-Delgado G, Carrillo E, Mendoza A, Mayorga-Flores M, Escobedo-González FC, Cano-Sánchez P, López-Vera E, Corzo G, Del Rio-Portilla F. Successful refolding and NMR structure of rMagi3: A disulfide-rich insecticidal spider toxin. Protein Sci 2018; 27:692-701. [PMID: 29247580 DOI: 10.1002/pro.3363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 11/07/2022]
Abstract
The need for molecules with high specificity against noxious insects leads the search towards spider venoms that have evolved highly selective toxins for insect preys. In this respect, spiders as a highly diversified group of almost exclusive insect predators appear to possess infinite potential for the discovery of novel insect-selective toxins. In 2003, a group of toxins was isolated from the spider Macrothele gigas and the amino acid sequence was reported. We obtained, by molecular biology techniques in a heterologous system, one of these toxins. Purification process was optimized by chromatographic methods to determine the three-dimensional structure by nuclear magnetic resonance in solution, and, finally, their biological activity was tested. rMagi3 resulted to be a specific insect toxin with no effect on mice.
Collapse
Affiliation(s)
- Gustavo Titaux-Delgado
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, CU, Ciudad de México, 04510, México
| | - Elisa Carrillo
- Laboratorio de Toxinología Marina, Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, 04510, México
| | - Angeles Mendoza
- División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Col. Lomas del Campestre León, Gto, 37150, México
| | - Marlen Mayorga-Flores
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, CU, Ciudad de México, 04510, México
| | - Fátima C Escobedo-González
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, CU, Ciudad de México, 04510, México
| | - Patricia Cano-Sánchez
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, CU, Ciudad de México, 04510, México
| | - Estuardo López-Vera
- Laboratorio de Toxinología Marina, Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, 04510, México
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 61500, México
| | - Federico Del Rio-Portilla
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, CU, Ciudad de México, 04510, México
| |
Collapse
|
5
|
Nadezhdin KD, Romanovskaia DD, Sachkova MY, Oparin PB, Kovalchuk SI, Grishin EV, Arseniev AS, Vassilevski AA. Modular toxin from the lynx spider Oxyopes takobius: Structure of spiderine domains in solution and membrane-mimicking environment. Protein Sci 2017; 26:611-616. [PMID: 27997708 DOI: 10.1002/pro.3101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/20/2016] [Accepted: 12/08/2016] [Indexed: 12/24/2022]
Abstract
We have recently demonstrated that a common phenomenon in evolution of spider venom composition is the emergence of so-called modular toxins consisting of two domains, each corresponding to a "usual" single-domain toxin. In this article, we describe the structure of two domains that build up a modular toxin named spiderine or OtTx1a from the venom of Oxyopes takobius. Both domains were investigated by solution NMR in water and detergent micelles used to mimic membrane environment. The N-terminal spiderine domain OtTx1a-AMP (41 amino acid residues) contains no cysteines. It is disordered in aqueous solution but in micelles, it assumes a stable amphiphilic structure consisting of two α-helices separated by a flexible linker. On the contrary, the C-terminal domain OtTx1a-ICK (59 residues) is a disulfide-rich polypeptide reticulated by five S-S bridges. It presents a stable structure in water and its core is the inhibitor cystine knot (ICK) or knottin motif that is common among single-domain neurotoxins. OtTx1a-ICK structure is the first knottin with five disulfide bridges and it represents a good reference for the whole oxytoxin family. The affinity of both domains to membranes was measured with NMR using titration by liposome suspensions. In agreement with biological tests, OtTx1a-AMP was found to show high membrane affinity explaining its potent antimicrobial properties.
Collapse
Affiliation(s)
- Kirill D Nadezhdin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia.,Moscow Institute of Physics and Technology (State University), 9 Institutskiy per, Dolgoprudny, Moscow Region, 141700, Russia
| | - Daria D Romanovskaia
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia.,Moscow Institute of Physics and Technology (State University), 9 Institutskiy per, Dolgoprudny, Moscow Region, 141700, Russia
| | - Maria Y Sachkova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Peter B Oparin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Sergey I Kovalchuk
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Eugene V Grishin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Alexander S Arseniev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia.,Moscow Institute of Physics and Technology (State University), 9 Institutskiy per, Dolgoprudny, Moscow Region, 141700, Russia
| | - Alexander A Vassilevski
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| |
Collapse
|
6
|
Meissner GO, de Resende Lara PT, Scott LPB, Braz ASK, Chaves-Moreira D, Matsubara FH, Soares EM, Trevisan-Silva D, Gremski LH, Veiga SS, Chaim OM. Molecular cloning and in silico characterization of knottin peptide, U2-SCRTX-Lit2, from brown spider (Loxosceles intermedia) venom glands. J Mol Model 2016; 22:196. [PMID: 27488102 DOI: 10.1007/s00894-016-3067-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 07/10/2016] [Indexed: 01/16/2023]
Abstract
Inhibitor cystine knots (ICKs) are a family of structural peptides with a large number of cysteine residues that form intramolecular disulfide bonds, resulting in a knot. These peptides are involved in a variety of biological functions including predation and defense, and are found in various species, such as spiders, scorpions, sea anemones, and plants. The Loxosceles intermedia venom gland transcriptome identified five groups of ICK peptides that represent more than 50 % of toxin-coding transcripts. Here, we describe the molecular cloning of U2-Sicaritoxin-Lit2 (U2-SCRTX-Lit2), bioinformatic characterization, structure prediction, and molecular dynamic analysis. The sequence of U2-SCRTX-Lit2 obtained from the transcriptome is similar to that of μ-Hexatoxin-Mg2, a peptide that inhibits the insect Nav channel. Bioinformatic analysis of sequences classified as ICK family members also showed a conservation of cysteine residues among ICKs from different spiders, with the three dimensional molecular model of U2-SCRTX-Lit2 similar in structure to the hexatoxin from μ-hexatoxin-Mg2a. Molecular docking experiments showed the interaction of U2-SCRTX-Lit2 to its predictable target-the Spodoptera litura voltage-gated sodium channel (SlNaVSC). After 200 ns of molecular dynamic simulation, the final structure of the complex showed stability in agreement with the experimental data. The above analysis corroborates the existence of a peptide toxin with insecticidal activity from a novel ICK family in L. intermedia venom and demonstrates that this peptide targets Nav channels.
Collapse
Affiliation(s)
- Gabriel Otto Meissner
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Pedro Túlio de Resende Lara
- Laboratory of Computational Biology and Bioinformatics, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Luis Paulo Barbour Scott
- Laboratory of Computational Biology and Bioinformatics, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Antônio Sérgio Kimus Braz
- Laboratory of Computational Biology and Bioinformatics, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Daniele Chaves-Moreira
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Fernando Hitomi Matsubara
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Eduardo Mendonça Soares
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Dilza Trevisan-Silva
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil.,Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Clinical Hospital of Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Olga Meiri Chaim
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil.
| |
Collapse
|
7
|
Estrada G, Silva AO, Villegas E, Ortiz E, Beirão PSL, Corzo G. Heterologous expression of five disulfide-bonded insecticidal spider peptides. Toxicon 2016; 119:152-8. [PMID: 27263806 DOI: 10.1016/j.toxicon.2016.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/25/2016] [Accepted: 06/01/2016] [Indexed: 12/31/2022]
Abstract
The genes of the five disulfide-bonded peptide toxins 1 and 2 (named Oxytoxins or Oxotoxins) from the spider Oxyopes lineatus were cloned into the expression vector pQE30 containing a 6His-tag and a Factor Xa proteolytic cleavage region. These two recombinant vectors were transfected into Escherichia coli BL21 cells and expressed under induction with isopropyl thiogalactoside (IPTG). The product of each gene was named HisrOxyTx1 or HisrOxyTx2, and the protein expression was ca 14 and 6 mg/L of culture medium, respectively. Either recombinant toxin HisrOxyTx1 or HisrOxyTx2 were found exclusively in inclusion bodies, which were solubilized using a chaotropic agent, and then, purified using affinity chromatography and reverse-phase HPLC (RP-HPLC). The HisrOxyTx1 and HisrOxyTx2 products, obtained from the affinity chromatographic step, showed several peptide fractions having the same molecular mass of 9913.1 and 8030.1 Da, respectively, indicating that both HisrOxyTx1 and HisrOxyTx2 were oxidized forming several distinct disulfide bridge arrangements. The isoforms of both HisrOxyTx1 and HisrOxyTx2 after DTT reduction eluted from the column as a single protein component of 9923 and 8040 Da, respectively. In vitro folding of either HisrOxyTx1 or HisrOxyTx2 yielded single oxidized components, which were cleaved independently by the proteolytic enzyme Factor Xa to give the recombinant peptides rOxyTx1 and rOxyTx2. The experimental molecular masses of rOxyTx1 and rOxyTx2 were 8059.0 and 6176.4 Da, respectively, which agree with their expected theoretical masses. The recombinant peptides rOxyTx1 and rOxyTx2 showed lower but comparable toxicity to the native toxins when injected into lepidopteran larvae; furthermore, rOxyTx1 was able to inhibit calcium ion currents on dorsal unpaired median (DUM) neurons from Periplaneta americana.
Collapse
Affiliation(s)
- Georgina Estrada
- Centro de Investigación Científica de Yucatán, A.C. Calle 43 No.130, Mérida, Yucatán, 97200, Mexico
| | - Anita O Silva
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil
| | - Elba Villegas
- Centro de Investigación en Biotecnología - UAEM, Av. Universidad 1001, Cuernavaca, Morelos, 62209, Mexico
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 61500, Mexico
| | - Paulo S L Beirão
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, UFMG, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, Brazil
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 61500, Mexico.
| |
Collapse
|
8
|
Sachkova MY, Slavokhotova AA, Grishin EV, Vassilevski AA. Genes and evolution of two-domain toxins from lynx spider venom. FEBS Lett 2014; 588:740-5. [PMID: 24462682 DOI: 10.1016/j.febslet.2014.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/02/2014] [Accepted: 01/10/2014] [Indexed: 11/29/2022]
Abstract
Spiderines are comparatively long polypeptide toxins (∼110 residues) from lynx spiders (genus Oxyopes). They are built of an N-terminal linear cationic domain (∼40 residues) and a C-terminal knottin domain (∼60 residues). The linear domain empowers spiderines with strong cytolytic activity. In the present work we report 16 novel spiderine sequences from Oxyopes takobius and Oxyopes lineatus classified into two subfamilies. Strikingly, negative selection acts on both linear and knottin domains. Genes encoding Oxyopes two-domain toxins were sequenced and found to be intronless. We further discuss a possible scenario of lynx spider modular toxin evolution.
Collapse
Affiliation(s)
- Maria Y Sachkova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, 117997 Moscow, Russian Federation.
| | - Anna A Slavokhotova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, 117997 Moscow, Russian Federation; N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina, 119991 Moscow, Russian Federation
| | - Eugene V Grishin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, 117997 Moscow, Russian Federation
| | - Alexander A Vassilevski
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, 117997 Moscow, Russian Federation.
| |
Collapse
|
9
|
Vassilevski AA, Sachkova MY, Ignatova AA, Kozlov SA, Feofanov AV, Grishin EV. Spider toxins comprising disulfide-rich and linear amphipathic domains: a new class of molecules identified in the lynx spider Oxyopes takobius. FEBS J 2014; 280:6247-61. [PMID: 24118933 DOI: 10.1111/febs.12547] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 09/22/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022]
Abstract
In addition to the conventional neurotoxins and cytotoxins, venom of the lynx spider Oxyopes takobius was found to contain two-domain modular toxins named spiderines: OtTx1a, 1b, 2a and 2b. These toxins show both insecticidal activity (a median lethal dose against flesh fly larvae of 75 μg·g(-1)) and potent antimicrobial effects (minimal inhibitory concentrations in the range 0.1-10 μm). Full sequences of the purified spiderines were established by a combination of Edman degradation, mass spectrometry and cDNA cloning. They are relatively large molecules (~ 110 residues, 12.0-12.5 kDa) and consist of two distinct modules separated by a short linker. The N-terminal part (~ 40 residues) contains no cysteine residues, is highly cationic, forms amphipathic α-helical structures in a membrane-mimicking environment, and shows potent cytolytic effects on cells of various origins. The C-terminal part (~ 60 residues) is disulfide-rich (five S-S bonds), and contains the inhibitor cystine knot (ICK/knottin) signature. The N-terminal part of spiderines is very similar to linear cytotoxic peptides found in various organisms, whereas the C-terminal part corresponds to the usual spider neurotoxins. We synthesized the modules of OtTx1a and compared their activity to that of full-length mature toxin produced recombinantly, highlighting the importance of the N-terminal part, which retained full-length toxin activity in both insecticidal and antimicrobial assays. The unique structure of spiderines completes the range of two-domain spider toxins.
Collapse
Affiliation(s)
- Alexander A Vassilevski
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
10
|
Smith JJ, Herzig V, King GF, Alewood PF. The insecticidal potential of venom peptides. Cell Mol Life Sci 2013; 70:3665-93. [PMID: 23525661 PMCID: PMC11114029 DOI: 10.1007/s00018-013-1315-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/19/2022]
Abstract
Pest insect species are a burden to humans as they destroy crops and serve as vectors for a wide range of diseases including malaria and dengue. Chemical insecticides are currently the dominant approach for combating these pests. However, the de-registration of key classes of chemical insecticides due to their perceived ecological and human health risks in combination with the development of insecticide resistance in many pest insect populations has created an urgent need for improved methods of insect pest control. The venoms of arthropod predators such as spiders and scorpions are a promising source of novel insecticidal peptides that often have different modes of action to extant chemical insecticides. These peptides have been optimized via a prey-predator arms race spanning hundreds of millions of years to target specific types of insect ion channels and receptors. Here we review the current literature on insecticidal venom peptides, with a particular focus on their structural and pharmacological diversity, and discuss their potential for deployment as insecticides.
Collapse
Affiliation(s)
- Jennifer J. Smith
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Paul F. Alewood
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| |
Collapse
|
11
|
Kuhn-Nentwig L, Fedorova IM, Lüscher BP, Kopp LS, Trachsel C, Schaller J, Vu XL, Seebeck T, Streitberger K, Nentwig W, Sigel E, Magazanik LG. A venom-derived neurotoxin, CsTx-1, from the spider Cupiennius salei exhibits cytolytic activities. J Biol Chem 2012; 287:25640-9. [PMID: 22613721 DOI: 10.1074/jbc.m112.339051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
CsTx-1, the main neurotoxic acting peptide in the venom of the spider Cupiennius salei, is composed of 74 amino acid residues, exhibits an inhibitory cysteine knot motif, and is further characterized by its highly cationic charged C terminus. Venom gland cDNA library analysis predicted a prepropeptide structure for CsTx-1 precursor. In the presence of trifluoroethanol, CsTx-1 and the long C-terminal part alone (CT1-long; Gly-45-Lys-74) exhibit an α-helical structure, as determined by CD measurements. CsTx-1 and CT1-long are insecticidal toward Drosophila flies and destroys Escherichia coli SBS 363 cells. CsTx-1 causes a stable and irreversible depolarization of insect larvae muscle cells and frog neuromuscular preparations, which seem to be receptor-independent. Furthermore, this membranolytic activity could be measured for Xenopus oocytes, in which CsTx-1 and CT1-long increase ion permeability non-specifically. These results support our assumption that the membranolytic activities of CsTx-1 are caused by its C-terminal tail, CT1-long. Together, CsTx-1 exhibits two different functions; as a neurotoxin it inhibits L-type Ca(2+) channels, and as a membranolytic peptide it destroys a variety of prokaryotic and eukaryotic cell membranes. Such a dualism is discussed as an important new mechanism for the evolution of spider venomous peptides.
Collapse
Affiliation(s)
- Lucia Kuhn-Nentwig
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dubovskii PV, Vassilevski AA, Samsonova OV, Egorova NS, Kozlov SA, Feofanov AV, Arseniev AS, Grishin EV. Novel lynx spider toxin shares common molecular architecture with defense peptides from frog skin. FEBS J 2011; 278:4382-93. [PMID: 21933345 DOI: 10.1111/j.1742-4658.2011.08361.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A unique 30-residue cationic peptide oxyopinin 4a (Oxt 4a) was identified in the venom of the lynx spider Oxyopes takobius (Oxyopidae). Oxt 4a contains a single N-terminally located disulfide bond, Cys4-Cys10, and is structurally different from any spider toxin studied so far. According to NMR findings, the peptide is disordered in water, but assumes a peculiar torpedo-like structure in detergent micelles. It features a C-terminal amphipathic α-helical segment (body; residues 12-25) and an N-terminal disulfide-stabilized loop (head; residues 1-11), and has an unusually high density of positive charge in the head region. Synthetic Oxt 4a was produced and shown to possess strong and broad-spectrum cytolytic and antimicrobial activity. cDNA cloning showed that the peptide is synthesized in the form of a conventional prepropeptide with an acidic prosequence. Unlike other arachnid toxins, Oxt 4a exhibits striking similarity with defense peptides from the skin of ranid frogs that contain the so-called Rana-box motif (a C-terminal disulfide-enclosed loop). Parallelism or convergence is apparent on several levels: the structure, function and biosynthesis of a lynx spider toxin are mirrored by those of Rana-box peptides from frogs.
Collapse
Affiliation(s)
- Peter V Dubovskii
- M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|