1
|
Bittenbinder MA, van Thiel J, Cardoso FC, Casewell NR, Gutiérrez JM, Kool J, Vonk FJ. Tissue damaging toxins in snake venoms: mechanisms of action, pathophysiology and treatment strategies. Commun Biol 2024; 7:358. [PMID: 38519650 PMCID: PMC10960010 DOI: 10.1038/s42003-024-06019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Snakebite envenoming is an important public health issue responsible for mortality and severe morbidity. Where mortality is mainly caused by venom toxins that induce cardiovascular disturbances, neurotoxicity, and acute kidney injury, morbidity is caused by toxins that directly or indirectly destroy cells and degrade the extracellular matrix. These are referred to as 'tissue-damaging toxins' and have previously been classified in various ways, most of which are based on the tissues being affected (e.g., cardiotoxins, myotoxins). This categorisation, however, is primarily phenomenological and not mechanistic. In this review, we propose an alternative way of classifying cytotoxins based on their mechanistic effects rather than using a description that is organ- or tissue-based. The mechanisms of toxin-induced tissue damage and their clinical implications are discussed. This review contributes to our understanding of fundamental biological processes associated with snakebite envenoming, which may pave the way for a knowledge-based search for novel therapeutic options.
Collapse
Affiliation(s)
- Mátyás A Bittenbinder
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| | - Jory van Thiel
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Howard Hughes Medical Institute and Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
- Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
| | - José-María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| | - Jeroen Kool
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands.
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands.
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
2
|
de Oliveira AK, Pramoonjago P, Rucavado A, Moskaluk C, Silva DT, Escalante T, Gutiérrez JM, Fox JW. Mapping the Immune Cell Microenvironment with Spatial Profiling in Muscle Tissue Injected with the Venom of Daboia russelii. Toxins (Basel) 2023; 15:toxins15030208. [PMID: 36977099 PMCID: PMC10057198 DOI: 10.3390/toxins15030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Pathological and inflammatory events in muscle after the injection of snake venoms vary in different regions of the affected tissue and at different time intervals. In order to study such heterogeneity in the immune cell microenvironment, a murine model of muscle necrosis based on the injection of the venom of Daboia russelii was used. Histological and immunohistochemical methods were utilized to identify areas in muscle tissue with a different extent of muscle cell damage, based on the presence of hypercontracted muscle cells, a landmark of necrosis, and on the immunostaining for desmin. A gradient of inflammatory cells (neutrophils and macrophages) was observed from heavily necrotic areas to less damaged and non-necrotic areas. GeoMx® Digital Spatial Profiler (NanoString, Seattle, WA, USA) was used for assessing the presence of markers of various immune cells by comparing high-desmin (nondamaged) and low-desmin (damaged) regions of muscle. Markers of monocytes, macrophages, M2 macrophages, dendritic cells, neutrophils, leukocyte adhesion and migration markers, and hematopoietic precursor cells showed higher levels in low-desmin regions, especially in samples collected 24 hr after venom injection, whereas several markers of lymphocytes did not. Moreover, apoptosis (BAD) and extracellular matrix (fibronectin) markers were also increased in low-desmin regions. Our findings reveal a hitherto-unknown picture of immune cell microheterogeneity in venom-injected muscle which greatly depends on the extent of muscle cell damage and the time lapse after venom injection.
Collapse
Affiliation(s)
- Ana K. de Oliveira
- School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | | | - Dilza T. Silva
- School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Jay W. Fox
- School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence:
| |
Collapse
|
3
|
Rangel DL, Melani RD, Carvalho EL, Boldo JT, Gomes Dos Santos T, Kelleher NL, Pinto PM. Venom characterization of the Brazilian Pampa snake Bothrops pubescens by top-down and bottom-up proteomics. Toxicon 2022; 220:106937. [PMID: 36228757 PMCID: PMC9901210 DOI: 10.1016/j.toxicon.2022.106937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
The envenomation from the Bothrops genus is characterized by systemic and local effects caused by the main toxin families in the venom. In Bothrops pubescens venom we were able to identify 89 protein groups belonging to 13 toxin families with the bottom-up proteomics approach and 40 unique proteoforms belonging to 6 toxin families with the top-down proteomics approach. We also identified multi-proteoform complexes of dimeric L-amino acid oxidase using native top-down mass spectrometry.
Collapse
Affiliation(s)
- Darlene Lopes Rangel
- Applied Proteomics Laboratory, Federal University of Pampa, São Gabriel, Brazil; Pos Graduation in Biological Sciences, Federal University of Pampa, São Gabriel, Brazil
| | - Rafael D Melani
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, 60208, United States
| | - Evelise Leis Carvalho
- Applied Proteomics Laboratory, Federal University of Pampa, São Gabriel, Brazil; Pos Graduation in Biological Sciences, Federal University of Pampa, São Gabriel, Brazil
| | | | - Tiago Gomes Dos Santos
- Pampa Biodiversity Studies Laboratory (LEBIP), Federal University of Pampa, São Gabriel, Brazil
| | - Neil L Kelleher
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, 60208, United States
| | - Paulo Marcos Pinto
- Applied Proteomics Laboratory, Federal University of Pampa, São Gabriel, Brazil; Pos Graduation in Biological Sciences, Federal University of Pampa, São Gabriel, Brazil.
| |
Collapse
|
4
|
Dias ÊR, de Oliveira LA, Sales Lauria PS, Bordon KDCF, Rodrigues Domênico AM, da Silva Guerreiro ML, Wiezel GA, Cardoso IA, Rossini BC, Marino CL, Pimenta DC, Arantes EC, Casais-e-Silva LL, Branco A, dos Santos LD, Biondi I. Bothrops leucurus snake venom protein profile, isolation and biological characterization of its major toxin PLA2s-likeds. Toxicon 2022; 213:27-42. [DOI: 10.1016/j.toxicon.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022]
|
5
|
Colis-Torres A, Neri-Castro E, Strickland JL, Olvera-Rodríguez A, Borja M, Calvete J, Jones J, Parkinson CL, Bañuelos J, López de León J, Alagón A. Intraspecific venom variation of Mexican West Coast Rattlesnakes (Crotalus basiliscus) and its implications for antivenom production. Biochimie 2021; 192:111-124. [PMID: 34656669 DOI: 10.1016/j.biochi.2021.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 11/02/2022]
Abstract
Intraspecific variation in snake venoms has been widely documented worldwide. However, there are few studies on this subject in Mexico. Venom characterization studies provide important data used to predict clinical syndromes, to evaluate the efficacy of antivenoms and, in some cases, to improve immunogenic mixtures in the production of antivenoms. In the present work, we evaluated the intraspecific venom variation of Crotalus basiliscus, a rattlesnake of medical importance and whose venom is used in the immunization of horses to produce one of the Mexican antivenoms. Our results demonstrate that there is variation in biological and biochemical activities among adult venoms and that there is an ontogenetic change from juvenile to adult venoms. Juvenile venoms were more lethal and had higher percentages of crotamine and crotoxin, while adult venoms had higher percentages of snake venom metalloproteases (SVMPs). Additionally, we documented crotoxin-like PLA2 variation in which specimens from Zacatecas, Sinaloa and Michoacán (except 1) lacked the neurotoxin, while the rest of the venoms had it. Finally, we evaluated the efficacy of three lots of Birmex antivenom and all three were able to neutralize the lethality of four representative venoms but were not able to neutralize crotamine. We also observed significant differences in the LD50 values neutralized per vial among the different lots. Based on these results, we recommend including venoms containing crotamine in the production of antivenom for a better immunogenic mixture and to improve the homogeneity of lots.
Collapse
Affiliation(s)
- Andrea Colis-Torres
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Edgar Neri-Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Jason L Strickland
- Department of Biology, University of South Alabama, 5871 USA Dr. N, Mobile, AL, 36688, USA
| | - Alejandro Olvera-Rodríguez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Miguel Borja
- Facultad Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo, Mexico
| | - Juan Calvete
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010, Valencia, Spain
| | - Jason Jones
- Herp.mx A.C, Villa del Álvarez, Colima, Mexico
| | - Christopher L Parkinson
- Department of Biological Sciences and Department of Forestry, and Environmental Conservation, Clemson University, 190 Collings St. Clemson, SC, 29631, USA
| | - Jorge Bañuelos
- Herp.mx A.C, Villa del Álvarez, Colima, Mexico; Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Edificio de Biología Campus II Ave. Preparatoria S/N, Col. Agronómica, 98066, ZacatecasZacatecas, Mexico
| | - Jorge López de León
- Hospital General Norberto Treviño Zapata, Ciudad Victoria, Tamaulipas, Mexico
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
6
|
Tilbury CR, Peacock F, Harvey J. Envenomation by the spotted harlequin snake, Homoroselaps lacteus (Linnaeus) 1754 (Serpentes: Atractaspidinae). Toxicon 2021; 198:151-155. [PMID: 33961849 DOI: 10.1016/j.toxicon.2021.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Two cases of envenomation from the small, semi-fossorial, front-fanged colubrid Homoroselaps lacteus are presented and the recent literature reviewed. In addition to local oedema and lymphadenopathy, the development of significant subcutaneous loco-regional bruising suggest that damage to capillary basement membrane and possibly other underlying anti-haemostatic effects may pertain to the clinical syndrome. Although local clinical effects may appear dramatic, due to the small volumes of venom that can be injected, it is considered that envenomation is unlikely to cause life-threatening effects.
Collapse
Affiliation(s)
- Colin R Tilbury
- Dept of Botany & Zoology, University of Stellenbosch, South Africa. Private Bag X1, Matieland, Stellenbosch, South Africa.
| | - Faansie Peacock
- 1114 Robbejacht Crescent, Langebaan Country Estate, Langebaan, 7357, South Africa
| | - James Harvey
- Harvey Ecological, Greendale Park, Howick, South Africa
| |
Collapse
|
7
|
Ranéia E Silva PA, de Lima DS, Mesquita Luiz JP, Câmara NOS, Alves-Filho JCF, Pontillo A, Bortoluci KR, Faquim-Mauro EL. Inflammatory effect of Bothropstoxin-I from Bothrops jararacussu venom mediated by NLRP3 inflammasome involves ATP and P2X7 receptor. Clin Sci (Lond) 2021; 135:687-701. [PMID: 33620070 DOI: 10.1042/cs20201419] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Muscle tissue damage is one of the local effects described in bothropic envenomations. Bothropstoxin-I (BthTX-I), from Bothrops jararacussu venom, is a K49-phospholipase A2 (PLA2) that induces a massive muscle tissue injury, and, consequently, local inflammatory reaction. The NLRP3 inflammasome is a sensor that triggers inflammation by activating caspase 1 and releasing interleukin (IL)-1β and/or inducing pyroptotic cell death in response to tissue damage. We, therefore, aimed to address activation of NLRP3 inflammasome by BthTX-I-associated injury and the mechanism involved in this process. Intramuscular injection of BthTX-I results in infiltration of neutrophils and macrophages in gastrocnemius muscle, which is reduced in NLRP3- and Caspase-1-deficient mice. The in vitro IL-1β production induced by BthTX-I in peritoneal macrophages (PMs) requires caspase 1/11, ASC and NLRP3 and is dependent on adenosine 5'-triphosphate (ATP)-induced K+ efflux and P2X7 receptor (P2X7R). BthTX-I induces a dramatic release of ATP from C2C12 myotubes, therefore representing the major mechanism for P2X7R-dependent inflammasome activation in macrophages. A similar result was obtained when human monocyte-derived macrophages (HMDMs) were treated with BthTX-I. These findings demonstrated the inflammatory effect of BthTX-I on muscle tissue, pointing out a role for the ATP released by damaged cells for the NLRP3 activation on macrophages, contributing to the understanding of the microenvironment of the tissue damage of the Bothrops envenomation.
Collapse
Affiliation(s)
- Priscila Andrade Ranéia E Silva
- Laboratory of Immunopathology, Butantan Institute, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Dhêmerson Souza de Lima
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - João Paulo Mesquita Luiz
- Department of Pharmacology and Department of Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - José Carlos Farias Alves-Filho
- Department of Pharmacology and Department of Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Alessandra Pontillo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Karina Ramalho Bortoluci
- Department of Biological Sciences and Center for Cellular and Molecular Therapy (CTC-Mol),Federal University of São Paulo, São Paulo, Brazil
| | - Eliana L Faquim-Mauro
- Laboratory of Immunopathology, Butantan Institute, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
8
|
Sanchez-Castro EE, Pajuelo-Reyes C, Tejedo R, Soria-Juan B, Tapia-Limonchi R, Andreu E, Hitos AB, Martin F, Cahuana GM, Guerra-Duarte C, de Assis TCS, Bedoya FJ, Soria B, Chávez-Olórtegui C, Tejedo JR. Mesenchymal Stromal Cell-Based Therapies as Promising Treatments for Muscle Regeneration After Snakebite Envenoming. Front Immunol 2021; 11:609961. [PMID: 33633730 PMCID: PMC7902043 DOI: 10.3389/fimmu.2020.609961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Snakebite envenoming is a global neglected disease with an incidence of up to 2.7 million new cases every year. Although antivenoms are so-far the most effective treatment to reverse the acute systemic effects induced by snakebite envenoming, they have a limited therapeutic potential, being unable to completely neutralize the local venom effects. Local damage, such as dermonecrosis and myonecrosis, can lead to permanent sequelae with physical, social, and psychological implications. The strong inflammatory process induced by snake venoms is associated with poor tissue regeneration, in particular the lack of or reduced skeletal muscle regeneration. Mesenchymal stromal cells (MSCs)-based therapies have shown both anti-inflammatory and pro-regenerative properties. We postulate that using allogeneic MSCs or their cell-free products can induce skeletal muscle regeneration in snakebite victims, improving all the three steps of the skeletal muscle regeneration process, mainly by anti-inflammatory activity, paracrine effects, neovascularization induction, and inhibition of tissue damage, instrumental for microenvironment remodeling and regeneration. Since snakebite envenoming occurs mainly in areas with poor healthcare, we enlist the principles and potential of MSCs-based therapies and discuss regulatory issues, good manufacturing practices, transportation, storage, and related-procedures that could allow the administration of these therapies, looking forward to a safe and cost-effective treatment for a so far unsolved and neglected health problem.
Collapse
Affiliation(s)
| | - Cecilia Pajuelo-Reyes
- Institute of Tropical Diseases, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Rebeca Tejedo
- Faculty of Medicine, Universidad Privada San Juan Bautista, Lima, Peru
| | - Bárbara Soria-Juan
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.,Department of Surgery, Fundación Jiménez Díaz, Unidad de Terapias Avanzadas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael Tapia-Limonchi
- Institute of Tropical Diseases, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Etelvina Andreu
- ISABIAL-Hospital General y Universitario de Alicante, Alicante, Spain.,Departmento de Fisica Aplicadas, University Miguel Hernández, Alicante, Spain
| | - Ana B Hitos
- Department of Cell Regeneration and Advanced Therapies, Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo de Olavide-University of Sevilla-CSIC, Seville, Spain.,Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Franz Martin
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.,Department of Cell Regeneration and Advanced Therapies, Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo de Olavide-University of Sevilla-CSIC, Seville, Spain.,Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Gladys M Cahuana
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.,Department of Cell Regeneration and Advanced Therapies, Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo de Olavide-University of Sevilla-CSIC, Seville, Spain
| | - Clara Guerra-Duarte
- Center of Research and Development, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Thamyres C Silva de Assis
- Departament of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Francisco J Bedoya
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.,Department of Cell Regeneration and Advanced Therapies, Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo de Olavide-University of Sevilla-CSIC, Seville, Spain.,Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Bernat Soria
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.,ISABIAL-Hospital General y Universitario de Alicante, Alicante, Spain.,Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain.,Institute of Bioengineering, University Miguel Hernandez de Elche, Alicante, Spain
| | - Carlos Chávez-Olórtegui
- Departament of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juan R Tejedo
- Institute of Tropical Diseases, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.,Department of Cell Regeneration and Advanced Therapies, Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo de Olavide-University of Sevilla-CSIC, Seville, Spain.,Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Rudresha GV, Urs AP, Manjuprasanna VN, Milan Gowda MD, Jayachandra K, Rajaiah R, Vishwanath BS. Echis carinatus snake venom metalloprotease-induced toxicities in mice: Therapeutic intervention by a repurposed drug, Tetraethyl thiuram disulfide (Disulfiram). PLoS Negl Trop Dis 2021; 15:e0008596. [PMID: 33529194 PMCID: PMC7880489 DOI: 10.1371/journal.pntd.0008596] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 02/12/2021] [Accepted: 01/03/2021] [Indexed: 01/02/2023] Open
Abstract
Echis carinatus (EC) is known as saw-scaled viper and it is endemic to the Indian subcontinent. Envenoming by EC represents a major cause of snakebite mortality and morbidity in the Indian subcontinent. Zinc (Zn++) dependent snake venom metalloproteases (SVMPs) present in Echis carinatus venom (ECV) is well known to cause systemic hemorrhage and coagulopathy in experimental animals. An earlier report has shown that ECV activates neutrophils and releases neutrophil extracellular traps (NETs) that blocks blood vessels leading to severe tissue necrosis. However, the direct involvement of SVMPs in the release of NETs is not clear. Here, we investigated the direct involvement of EC SVMPs in observed pathological symptoms in a preclinical setup using specific Zn++ metal chelator, Tetraethyl thiuram disulfide (TTD)/disulfiram. TTD potently antagonizes the activity of SVMPs-mediated ECM protein degradation in vitro and skin hemorrhage in mice. In addition, TTD protected mice from ECV-induced footpad tissue necrosis by reduced expression of citrullinated H3 (citH3) and myeloperoxidase (MPO) in footpad tissue. TTD also neutralized ECV-induced systemic hemorrhage and conferred protection against lethality in mice. Moreover, TTD inhibited ECV-induced NETosis in human neutrophils and decreased the expression of peptidyl arginine deiminase (PAD) 4, citH3, MPO, and p-ERK. Further, we demonstrated that ECV-induced NETosis and tissue necrosis are mediated via PAR-1-ERK axis. Overall, our results provide an insight into SVMPs-induced toxicities and the promising protective efficacy of TTD can be extrapolated to treat severe tissue necrosis complementing anti-snake venom (ASV).
Collapse
Affiliation(s)
- Gotravalli V. Rudresha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - Amog P. Urs
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | | | | | - Krishnegowda Jayachandra
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - Rajesh Rajaiah
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - Bannikuppe S. Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, India
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| |
Collapse
|
10
|
Bastos APDSP, Cardoso PG, Santos ÍAFM, Trento MVC, Porto LCJ, Marcussi S. Enzymatic Modulators from Induratia spp. Curr Microbiol 2020; 77:3603-3611. [DOI: 10.1007/s00284-020-02170-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/19/2020] [Indexed: 11/30/2022]
|
11
|
Sousa LF, Bernardoni JL, Zdenek CN, Dobson J, Coimbra F, Gillett A, Lopes-Ferreira M, Moura-da-Silva AM, Fry BG. Differential coagulotoxicity of metalloprotease isoforms from Bothrops neuwiedi snake venom and consequent variations in antivenom efficacy. Toxicol Lett 2020; 333:211-221. [PMID: 32841740 DOI: 10.1016/j.toxlet.2020.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
Abstract
Bothrops (lance-head pit vipers) venoms are rich in weaponised metalloprotease enzymes (SVMP). These toxic enzymes are structurally diverse and functionally versatile. Potent coagulotoxicity is particularly important for prey capture (via stroke-induction) and relevant to human clinical cases (due to consumption of clotting factors including the critical depletion of fibrinogen). In this study, three distinct isoforms of P-III class SVMPs (IC, IIB and IIC), isolated from Bothrops neuwiedi venom, were evaluated for their differential capacities to affect hemostasis of prey and human plasma. Furthermore, we tested the relative antivenom neutralisation of effects upon human plasma. The toxic enzymes displayed differential procoagulant potency between plasma types, and clinically relevant antivenom efficacy variations were observed. Of particular importance was the confirmation the antivenom performed better against prothrombin activating toxins than Factor X activating toxins, which is likely due to the greater prevalence of the former in the immunising venoms used for antivenom production. This is clinically relevant as the enzymes displayed differential potency in this regard, with one (IC) in particular being extremely potent in activating Factor X and thus was correspondingly poorly neutralised. This study broadens the current understanding about the adaptive role of the SVMPs, as well as highlights how the functional diversity of SVMP isoforms can influence clinical outcomes. Key Contribution: Our findings shed light upon the hemorrhagic and coagulotoxic effects of three SVMPs of the P-III class, as well as the coagulotoxic effects of SVMPs on human, avian and amphibian plasmas. Antivenom neutralised prothrombin-activating isoforms better than Factor X activating isoforms.
Collapse
Affiliation(s)
- Leijiane F Sousa
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo, SP, Brazil; Toxin Evolution Lab, School of Biological Sciences, University of Queensland, Santa Lucia, QLD 4072, Australia
| | | | - Christina N Zdenek
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, Santa Lucia, QLD 4072, Australia
| | - James Dobson
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, Santa Lucia, QLD 4072, Australia
| | - Francisco Coimbra
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, Santa Lucia, QLD 4072, Australia
| | - Amber Gillett
- Fauna Vet Wildlife Veterinary Consultancy, Beerwah, QLD, Australia
| | - Mônica Lopes-Ferreira
- Immunoregulation Unit of the Special Laboratory of Applied Toxinology (Center of Toxins Immune-Response and Cell Signaling), Butantan Institute, São Paulo, SP, Brazil
| | - A M Moura-da-Silva
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo, SP, Brazil.
| | - Bryan G Fry
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, Santa Lucia, QLD 4072, Australia.
| |
Collapse
|
12
|
Herrera C, Escalante T, Rucavado A, Fox JW, Gutiérrez JM. Metalloproteinases in disease: identification of biomarkers of tissue damage through proteomics. Expert Rev Proteomics 2018; 15:967-982. [DOI: 10.1080/14789450.2018.1538800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cristina Herrera
- Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Jay W. Fox
- School of Medicine, University of Virginia, Charlottesville, VA22959, USA
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
13
|
A functional and thromboelastometric-based micromethod for assessing crotoxin anticoagulant activity and antiserum relative potency against Crotalus durissus terrificus venom. Toxicon 2018; 148:26-32. [PMID: 29654870 DOI: 10.1016/j.toxicon.2018.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 11/20/2022]
Abstract
The assessment of the capacity of antivenoms to neutralize the lethal activity of snake venoms still relies on traditional rodent in vivo lethality assay. ED50 and LD50 assays require large quantities of venoms and antivenoms, and besides leading to animal suffering. Therefore, in vitro tests should be introduced for assessing antivenom neutralizing capacity in intermediary steps of antivenom production. This task is facilitated when one key lethal toxin is identified. A good example is crotoxin, a β-neurotoxin phospholipase A2-like toxin that presents anticoagulant activity in vitro and is responsible for the lethality of venoms of Crotalus durissus snakes. By using rotational thromboelastometry, we reported recently one sensitive coagulation assay for assessing relative potency of the anti-bothropic serum in neutralizing procoagulant activity of Bothrops jararaca venom upon recalcified factor-XII-deficient chicken plasma samples (CPS). In this study, we stablished conditions for determining relative potency of four batches of the anti-crotalic serum (ACS) (antagonist) in inactivating crotoxin anticoagulant activity in CPS (target) simultaneously treated with one classical activator of coagulation (agonists). The correlation coefficient (r) between values related the ACS potency in inactivating both in vitro crotoxin anticoagulant activity and the in vivo lethality of whole venom (ED50) was 0.94 (p value < 0.05). In conclusion, slowness in spontaneous thrombin/fibrin generation even after recalcification elicit time lapse sufficient for elaboration of one dose-response curve to pro- or anti-coagulant agonists in CPS. We propose this methodology as an alternative and sensitive assay for assessing antivenom neutralizing ability in plasma of immunized horses as well as for in-process quality control.
Collapse
|
14
|
Why is Skeletal Muscle Regeneration Impaired after Myonecrosis Induced by Viperid Snake Venoms? Toxins (Basel) 2018; 10:toxins10050182. [PMID: 29723952 PMCID: PMC5983238 DOI: 10.3390/toxins10050182] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/22/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle regeneration after myonecrosis involves the activation, proliferation and fusion of myogenic cells, and a coordinated inflammatory response encompassing phagocytosis of necrotic cell debris, and the concerted synthesis of cytokines and growth factors. Myonecrosis often occurs in snakebite envenomings. In the case of venoms that cause myotoxicity without affecting the vasculature, such as those of many elapid snakes, regeneration proceeds successfully. In contrast, in envenomings by most viperid snakes, which affect the vasculature and extracellular matrix in addition to muscle fibers, regeneration is largely impaired and, therefore, the muscle mass is reduced and replaced by fibro-adipose tissue. This review discusses possible causes for such poor regenerative outcome including: (a) damage to muscle microvasculature, which causes tissue hypoxia and affects the inflammatory response and the timely removal of necrotic tissue; (b) damage to intramuscular nerves, which results in atrophy of regenerating fibers; (c) degradation of muscle cell basement membrane, compromising the spatial niche for proliferating myoblasts; (d) widespread degradation of the extracellular matrix; and (e) persistence of venom components in the damaged tissue, which may affect myogenic cells at critical points in the regenerative process. Understanding the causes of poor muscle regeneration may pave the way for the development of novel therapeutic interventions aimed at fostering the regenerative process in envenomed patients.
Collapse
|
15
|
Unresolved issues in the understanding of the pathogenesis of local tissue damage induced by snake venoms. Toxicon 2018; 148:123-131. [PMID: 29698755 DOI: 10.1016/j.toxicon.2018.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/04/2018] [Accepted: 04/22/2018] [Indexed: 12/20/2022]
Abstract
Snakebite envenoming by viperid species, and by some elapids, is characterized by a complex pattern of tissue damage at the anatomical site of venom injection. In severe cases, tissue destruction may be so extensive as to lead to permanent sequelae, with serious pathophysiological, social and psychological consequences. Significant advances have been performed in the study of venom-induced tissue damage, including identification and characterization of the toxins involved, insights into the mechanisms of action of venoms and toxins, and study of tissue responses to venom-induced injury. Nevertheless, much remains to be known and understood on the pathogenesis of these alterations. This review focuses on some of the pending issues in the topic of snake venom-induced local tissue damage. The traditional 'reductionist' approach, which has predominated in the study of snake venoms and their actions, needs to be complemented by more integrative and holistic perspectives aimed at capturing the complexity of these pathological alterations. Future advances in the study of these topics will certainly pave the way for innovative therapeutic interventions, with the goal of reducing the impact of this aspect of snakebite envenoming.
Collapse
|
16
|
Ferreira FB, Pereira TM, Souza DLN, Lopes DS, Freitas V, Ávila VMR, Kümmerle AE, Sant’Anna CMR. Structure-Based Discovery of Thiosemicarbazone Metalloproteinase Inhibitors for Hemorrhage Treatment in Snakebites. ACS Med Chem Lett 2017; 8:1136-1141. [PMID: 29152044 DOI: 10.1021/acsmedchemlett.7b00186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/26/2017] [Indexed: 11/30/2022] Open
Abstract
The venoms of snakes are composed by many toxins, which are responsible for various toxic effects including intense pain, bleeding disorders, and local tissue damage caused by hemorrhage and necrosis. The snake venom metalloproteinases (SVMPs) are proteolytic zinc-dependent enzymes acting in different hemostatic mechanisms. In this work, a structure-based molecular modeling strategy was used for the rational design, by means of a homology 3D model of an SVMP isolated from Bothrops pauloensis venom (BpMP-I), followed by synthesis and in vitro evaluation of new thiosemicarbazones as the first inhibitors of the B. pauloensis SVMP. Besides being effective for the SVMP inhibition, two molecules were shown to be effective also in vivo, inhibiting hemorrhage caused by the B. pauloensis whole venom. Docking studies on metalloproteinases from other snake species suggest that the thiosemicarbazones activity is not confined to BpMP-I, but seems to be a common feature of metzincins.
Collapse
Affiliation(s)
- Francis B. Ferreira
- Departamento
de Química, Instituto de Ciências Exatas, UFRRJ, Seropédica, RJ, Brazil
| | - Thiago M. Pereira
- Departamento
de Química, Instituto de Ciências Exatas, UFRRJ, Seropédica, RJ, Brazil
| | | | - Daiana S. Lopes
- Instituto de Genética e Bioquímica, UFU, Uberlândia, MG, Brazil
| | - Vitor Freitas
- Instituto de Genética e Bioquímica, UFU, Uberlândia, MG, Brazil
| | | | - Arthur E. Kümmerle
- Departamento
de Química, Instituto de Ciências Exatas, UFRRJ, Seropédica, RJ, Brazil
| | | |
Collapse
|
17
|
Segura Á, Herrera M, Reta Mares F, Jaime C, Sánchez A, Vargas M, Villalta M, Gómez A, Gutiérrez JM, León G. Proteomic, toxicological and immunogenic characterization of Mexican west-coast rattlesnake ( Crotalus basiliscus ) venom and its immunological relatedness with the venom of Central American rattlesnake ( Crotalus simus ). J Proteomics 2017; 158:62-72. [DOI: 10.1016/j.jprot.2017.02.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 11/26/2022]
|
18
|
Rucavado A, Nicolau CA, Escalante T, Kim J, Herrera C, Gutiérrez JM, Fox JW. Viperid Envenomation Wound Exudate Contributes to Increased Vascular Permeability via a DAMPs/TLR-4 Mediated Pathway. Toxins (Basel) 2016; 8:toxins8120349. [PMID: 27886127 PMCID: PMC5198544 DOI: 10.3390/toxins8120349] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 01/21/2023] Open
Abstract
Viperid snakebite envenomation is characterized by inflammatory events including increase in vascular permeability. A copious exudate is generated in tissue injected with venom, whose proteomics analysis has provided insights into the mechanisms of venom-induced tissue damage. Hereby it is reported that wound exudate itself has the ability to induce increase in vascular permeability in the skin of mice. Proteomics analysis of exudate revealed the presence of cytokines and chemokines, together with abundant damage associated molecular pattern molecules (DAMPs) resulting from both proteolysis of extracellular matrix and cellular lysis. Moreover, significant differences in the amounts of cytokines/chemokines and DAMPs were detected between exudates collected 1 h and 24 h after envenomation, thus highlighting a complex temporal dynamic in the composition of exudate. Pretreatment of mice with Eritoran, an antagonist of Toll-like receptor 4 (TLR4), significantly reduced the exudate-induced increase in vascular permeability, thus suggesting that DAMPs might be acting through this receptor. It is hypothesized that an "Envenomation-induced DAMPs cycle of tissue damage" may be operating in viperid snakebite envenomation through which venom-induced tissue damage generates a variety of DAMPs which may further expand tissue alterations.
Collapse
Affiliation(s)
- Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Carolina A Nicolau
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Rio de Janeiro CEP 21040-360, Brazil.
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Junho Kim
- Department of Fine Chemistry & New Materials, Sangji University, Wonju-si, Kangwon-do 220-702, Korea.
| | - Cristina Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología Universidad de Costa Rica, San José 11501-2060, Costa Rica.
- Facultad de Farmacia, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Jay W Fox
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, P.O. Box 800734, Charlottesville, VA 22908, USA.
| |
Collapse
|
19
|
Limkakeng AT, Monte AA, Kabrhel C, Puskarich M, Heitsch L, Tsalik EL, Shapiro NI. Systematic Molecular Phenotyping: A Path Toward Precision Emergency Medicine? Acad Emerg Med 2016; 23:1097-1106. [PMID: 27288269 PMCID: PMC5055430 DOI: 10.1111/acem.13027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/20/2016] [Accepted: 06/03/2016] [Indexed: 11/27/2022]
Abstract
Precision medicine is an emerging approach to disease treatment and prevention that considers variability in patient genes, environment, and lifestyle. However, little has been written about how such research impacts emergency care. Recent advances in analytical techniques have made it possible to characterize patients in a more comprehensive and sophisticated fashion at the molecular level, promising highly individualized diagnosis and treatment. Among these techniques are various systematic molecular phenotyping analyses (e.g., genomics, transcriptomics, proteomics, and metabolomics). Although a number of emergency physicians use such techniques in their research, widespread discussion of these approaches has been lacking in the emergency care literature and many emergency physicians may be unfamiliar with them. In this article, we briefly review the underpinnings of such studies, note how they already impact acute care, discuss areas in which they might soon be applied, and identify challenges in translation to the emergency department (ED). While such techniques hold much promise, it is unclear whether the obstacles to translating their findings to the ED will be overcome in the near future. Such obstacles include validation, cost, turnaround time, user interface, decision support, standardization, and adoption by end-users.
Collapse
Affiliation(s)
| | - Andrew A Monte
- The Department of Emergency Medicine, Division of Medical Toxicology, University of Colorado-Denver, Aurora, CO
- The Rocky Mountain Poison & Drug Center Denver Health & Hospital Authority, Denver, CO
| | - Christopher Kabrhel
- The Department of Emergency Medicine, Center for Vascular Emergencies, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Michael Puskarich
- The Department of Emergency Medicine, University of Mississippi, Jackson, MS
| | - Laura Heitsch
- The Department of Emergency Medicine, Washington University, St. Louis, MO
| | - Ephraim L Tsalik
- The Emergency Medicine Service, Durham Veteran's Affairs Medical Center, Durham, NC
- The Center for Applied Genomics & Precision Medicine and Division of Infectious Diseases & International Health, Department of Medicine, Duke University, Durham, NC
| | - Nathan I Shapiro
- The Department of Emergency Medicine and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
20
|
No safety in the trees: Local and species-level adaptation of an arboreal squirrel to the venom of sympatric rattlesnakes. Toxicon 2016; 118:149-55. [DOI: 10.1016/j.toxicon.2016.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/03/2016] [Accepted: 05/04/2016] [Indexed: 11/29/2022]
|
21
|
Gutiérrez JM, Escalante T, Rucavado A, Herrera C. Hemorrhage Caused by Snake Venom Metalloproteinases: A Journey of Discovery and Understanding. Toxins (Basel) 2016; 8:93. [PMID: 27023608 PMCID: PMC4848620 DOI: 10.3390/toxins8040093] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 01/11/2023] Open
Abstract
The historical development of discoveries and conceptual frames for understanding the hemorrhagic activity induced by viperid snake venoms and by hemorrhagic metalloproteinases (SVMPs) present in these venoms is reviewed. Histological and ultrastructural tools allowed the identification of the capillary network as the main site of action of SVMPs. After years of debate, biochemical developments demonstrated that all hemorrhagic toxins in viperid venoms are zinc-dependent metalloproteinases. Hemorrhagic SVMPs act by initially hydrolyzing key substrates at the basement membrane (BM) of capillaries. This degradation results in the weakening of the mechanical stability of the capillary wall, which becomes distended owing of the action of the hemodynamic biophysical forces operating in the circulation. As a consequence, the capillary wall is disrupted and extravasation occurs. SVMPs do not induce rapid toxicity to endothelial cells, and the pathological effects described in these cells in vivo result from the mechanical action of these hemodynamic forces. Experimental evidence suggests that degradation of type IV collagen, and perhaps also perlecan, is the key event in the onset of microvessel damage. It is necessary to study this phenomenon from a holistic, systemic perspective in which the action of other venom components is also taken into consideration.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Cristina Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
- Facultad de Farmacia, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| |
Collapse
|
22
|
Mamede CCN, de Sousa BB, Pereira DFDC, Matias MS, de Queiroz MR, de Morais NCG, Vieira SAPB, Stanziola L, de Oliveira F. Comparative analysis of local effects caused by Bothrops alternatus and Bothrops moojeni snake venoms: enzymatic contributions and inflammatory modulations. Toxicon 2016; 117:37-45. [PMID: 26975252 DOI: 10.1016/j.toxicon.2016.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/05/2016] [Accepted: 03/08/2016] [Indexed: 11/30/2022]
Abstract
Bothropic envenomation is characterised by severe local damage caused by the toxic action of venom components and aggravated by induced inflammation. In this comparative study, the local inflammatory effects caused by the venoms of Bothrops alternatus and Bothrops moojeni, two snakes of epidemiological importance in Brazil, were investigated. The toxic action of venom components induced by bothropic venom was also characterised. Herein, the oedema, hyperalgesia and myotoxicity induced by bothropic venom were monitored for various lengths of time after venom injection in experimental animals. The intensity of the local effects caused by B. moojeni venom is considerably more potent than B. alternatus venom. Our results also indicate that metalloproteases and phospholipases A2 have a central role in the local damage induced by bothropic venoms, but serine proteases also contribute to the effects of these venoms. Furthermore, we observed that specific anti-inflammatory drugs were able to considerably reduce the oedema, the pain and the muscle damage caused by both venoms. The inflammatory reaction induced by B. moojeni venom is mediated by eicosanoid action, histamine and nitric oxide, with significant participation of bradykinin on the hyperalgesic and myotoxic effects of this venom. These mediators also participate to inflammation caused by B. alternatus venom. However, the inefficient anti-inflammatory effects of some local modulation suggest that histamine, leukotrienes and nitric oxide have little role in the oedema or myotoxicity caused by B. alternatus venom.
Collapse
Affiliation(s)
- Carla Cristine Neves Mamede
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), 31270-901 Belo Horizonte, MG, Brazil.
| | - Bruna Barbosa de Sousa
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), 31270-901 Belo Horizonte, MG, Brazil
| | | | - Mariana Santos Matias
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil
| | - Mayara Ribeiro de Queiroz
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), 31270-901 Belo Horizonte, MG, Brazil
| | - Nadia Cristina Gomes de Morais
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), 31270-901 Belo Horizonte, MG, Brazil
| | | | - Leonilda Stanziola
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), 31270-901 Belo Horizonte, MG, Brazil
| | - Fábio de Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
23
|
Hemorrhagic stroke in children caused by Bothrops marajoensis envenoming: a case report. J Venom Anim Toxins Incl Trop Dis 2015; 21:53. [PMID: 26672486 PMCID: PMC4678637 DOI: 10.1186/s40409-015-0052-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/21/2015] [Indexed: 11/10/2022] Open
Abstract
According to the World Health Organization, snakebites are considered neglected diseases. Bothrops, the genus most frequently implicated in envenomations in Brazil, includes the species B. marajoensis Hoge, 1966, part of the complex B. atrox, which is found in the savannas of Marajó Island, Pará state, Brazil, a region that presents scarce epidemiological data. This work reports the first case of hemorrhagic stroke in a child, attributed to delayed medical care after snakebite envenoming by Bothrops marajoensis in Anajás city, Marajó Island, Pará, Brazil, which led to permanent hemiplegia as a sequela.
Collapse
|
24
|
Bustillo S, García-Denegri ME, Gay C, Van de Velde AC, Acosta O, Angulo Y, Lomonte B, Gutiérrez JM, Leiva L. Phospholipase A(2) enhances the endothelial cell detachment effect of a snake venom metalloproteinase in the absence of catalysis. Chem Biol Interact 2015; 240:30-6. [PMID: 26279213 DOI: 10.1016/j.cbi.2015.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/01/2015] [Accepted: 08/07/2015] [Indexed: 11/18/2022]
Abstract
Microvessel disruption leading to hemorrhage stands among the most dangerous consequences of envenomings by snakes of the family Viperidae. A PIII metalloproteinase (SVMP), balteragin, purified from the venom of the snake Bothrops alternatus, displays a potent hemorrhagic effect, and a moderate myotoxicity in vivo. Previous studies described the ability of this SVMP to induce the detachment of C2C12 myoblasts in culture, without causing cytolysis. Surprisingly, a purified acidic phospholipase A2 (PLA2) from the same venom was found to increase this detaching activity of the SVMP on myoblasts. Since endothelial cells are a natural target of SVMPs in vivo, the possibility that this synergistic effect is also observed on this cell type was explored in the present work. In addition, a first approach of the mechanism of action of this effect was studied. Results clearly confirm that the acidic PLA2, despite lacking toxicity towards endothelial cells, significantly enhances the detaching effect of the SVMP even at a concentration as low as 1 μg/mL. Inhibition of enzymatic activity of the PLA2 by chemical modification with p-bromophenacyl bromide did not affect the synergistic activity, suggesting that this effect is not dependent on phospholipase enzymatic activity and may instead be the consequence of an interaction of the PLA2 with endothelial cell plasma membrane. To our knowledge, this is the first report of a synergistic action of a non toxic PLA2 in enhancing the detachment of endothelial cells induced by a metalloproteinase.
Collapse
Affiliation(s)
- Soledad Bustillo
- Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina.
| | | | - Carolina Gay
- Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| | | | - Ofelia Acosta
- Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| | - Yamileth Angulo
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Laura Leiva
- Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| |
Collapse
|
25
|
Al-Quraishy S, Dkhil MA, Abdel Moneim AE. Hepatotoxicity and oxidative stress induced by Naja haje crude venom. J Venom Anim Toxins Incl Trop Dis 2014; 20:42. [PMID: 25258623 PMCID: PMC4174607 DOI: 10.1186/1678-9199-20-42] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Snake venoms are synthesized and stored in venom glands. Most venoms are complex mixtures of several proteins, peptides, enzymes, toxins and non-protein components. In the present study, we investigated the oxidative stress and apoptosis in rat liver cells provoked by Naja haje crude injection (LD50) after four hours. METHODS Wistar rats were randomly divided into two groups, the control group was intraperitoneally injected with saline solution while LD50-dose envenomed group was intraperitoneally injected with venom at a dose of 0.025 μg/kg of body weight. Animals were killed four hours after the injection. Lipid peroxidation, nitric oxide and glutathione levels were measured as oxidative markers in serum and liver homogenate. In addition, liver function parameters and activities of antioxidant enzymes were determined. RESULTS N. haje crude venom (0.025 μg/kg of body weight) enhanced lipid peroxidation and nitric oxide production in both serum and liver with concomitant reduction in glutathione, catalase, glutathione reductase and glutathione-S-transferase activities. Superoxide dismutase and glutathione peroxidase activities were significantly increased in liver of envenomed rats. These findings were associated with apoptosis induction in the liver. In addition, N. haje crude venom caused hepatic injury as indicated by histopathological changes in the liver tissue with an elevation in total bilirubin, serum alanine aminotransferase, aspartate aminotransferase, γ-glutamyl transpeptidase, and alkaline phosphatase. CONCLUSIONS Based on the present results, it can hypothesized that N. haje crude venom is a potent inducer of toxin-mediated hepatotoxicity associated with apoptosis in the liver.
Collapse
Affiliation(s)
- Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mahamed A Dkhil
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia ; Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed Esmat Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt ; Department of Biochemistry and Molecular Biology, Asturias Institute of Biotechnology, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
26
|
Calvete JJ. Proteomic tools against the neglected pathology of snake bite envenoming. Expert Rev Proteomics 2014; 8:739-58. [DOI: 10.1586/epr.11.61] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Gay C, Maruñak S, Teibler P, Leiva L, Acosta O. Effect of monospecific antibodies against baltergin in myotoxicity induced by Bothrops alternatus venom from northeast of Argentina. Role of metalloproteinases in muscle damage. Toxicon 2013; 63:104-11. [PMID: 23246580 DOI: 10.1016/j.toxicon.2012.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 11/23/2012] [Accepted: 11/27/2012] [Indexed: 11/28/2022]
Abstract
Myotoxicity, one of the most relevant local manifestations in envenomation by Bothrops genus, may result from a direct action of myotoxins or be due to an indirect vascular degeneration and ischemia. Baltergin, a snake venom metalloproteinase (SVMP), isolated from Bothrops alternatus venom has been used to obtain monospecific IgG, in order to determine the relative role of toxin in myotoxicity induced by whole venom. Bothrops diporus venom, another medical relevant genus of the northeastern region of Argentina, was also studied. Anti-baltergin IgG was able to neutralize completely the hemorrhagic activity of B. alternatus venom at an antibodies:venom ratio of 30:1 (w:w). However, mice injected with B. diporus venom showed a small spot remaining even at the highest ratio of IgG:venom assayed (50:1; w:w). Specific antibodies were efficient to neutralize the myotoxicity of B. alternatus venom at ratio 30:1 (w:w) but did not neutralize the same effects in B. diporus venom. Anti-baltergin polyclonal antibodies were useful tools for revealing the central role of SVMPs in the development of myotoxicity of B. alternatus venom, as well as, helping to suggest indirectly presence of potent myotoxic phospholipases A2 (PLA2s) in B. diporus venom.
Collapse
Affiliation(s)
- Carolina Gay
- Laboratorio de Investigación en Proteínas, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5470, Corrientes 3400, Argentina.
| | | | | | | | | |
Collapse
|
28
|
Mendes MM, Vieira SAPB, Gomes MSR, Paula VF, Alcântara TM, Homsi-Brandeburgo MI, dos Santos JI, Magro AJ, Fontes MRM, Rodrigues VM. Triacontyl p-coumarate: an inhibitor of snake venom metalloproteinases. PHYTOCHEMISTRY 2013; 86:72-82. [PMID: 23141056 DOI: 10.1016/j.phytochem.2012.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 08/18/2012] [Accepted: 10/16/2012] [Indexed: 06/01/2023]
Abstract
Snake venom metalloproteinases (SVMPs) participate in a number of important biological, physiological and pathophysiological processes and are primarily responsible for the local tissue damage characteristic of viperid snake envenomations. The use of medicinal plant extracts as antidotes against animal venoms is an old practice, especially against snake envenomations. Such plants are sources of many pharmacologically active compounds and have been shown to antagonize the effects of some venoms and toxins. The present study explores the activity of triacontyl p-coumarate (PCT), an active compound isolated from root bark of Bombacopsis glabra vegetal extract (Bg), against harmful effects of Bothropoides pauloensis snake venom and isolated toxins (SVMPs or phospholipase A(2)). Before inhibition assays, Bg or PCT was incubated with venom or toxins at ratios of 1:1 and 1:5 (w/w; venom or isolated toxins/PCT) for 30 min at 37°C. Treatment conditions were also assayed to simulate snakebite with PCT inoculated at either the same venom or toxin site. PCT neutralized fibrinogenolytic activity and plasmatic fibrinogen depletion induced by B. pauloensis venom or isolated toxin. PCT also efficiently inhibited the hemorrhagic (3MDH - minimum hemorrhagic dose injected i.d into mice) and myotoxic activities induced by Jararhagin, a metalloproteinase from B. jararaca at 1:5 ratio (toxin: inhibitor, w/w) when it was previously incubated with PCT and injected into mice or when PCT was administered after toxin injection. Docking simulations using data on a metalloproteinase (Neuwiedase) structure suggest that the binding between the protein and the inhibitor occurs mainly in the active site region causing blockade of the enzymatic reaction by displacement of catalytic water. Steric hindrance may also play a role in the mechanism since the PCT hydrophobic tail was found to interact with the loop associated with substrate anchorage. Thus, PCT may provide a alternative to complement ophidian envenomation treatments.
Collapse
Affiliation(s)
- M M Mendes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bordon KC, Perino MG, Giglio JR, Arantes EC. Isolation, enzymatic characterization and antiedematogenic activity of the first reported rattlesnake hyaluronidase from Crotalus durissus terrificus venom. Biochimie 2012; 94:2740-8. [DOI: 10.1016/j.biochi.2012.08.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/18/2012] [Indexed: 11/16/2022]
|
30
|
Key events in microvascular damage induced by snake venom hemorrhagic metalloproteinases. J Proteomics 2011; 74:1781-94. [DOI: 10.1016/j.jprot.2011.03.026] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 01/28/2023]
|
31
|
Poor regenerative outcome after skeletal muscle necrosis induced by Bothrops asper venom: alterations in microvasculature and nerves. PLoS One 2011; 6:e19834. [PMID: 21629691 PMCID: PMC3101212 DOI: 10.1371/journal.pone.0019834] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 04/17/2011] [Indexed: 11/19/2022] Open
Abstract
Background Viperid snakebite envenoming is characterized by prominent local tissue damage, including muscle necrosis. A frequent outcome of such local pathology is deficient skeletal muscle regeneration, which causes muscle dysfunction, muscle loss and fibrosis, thus provoking permanent sequelae that greatly affect the quality of life of patients. The causes of such poor regenerative outcome of skeletal muscle after viperid snakebites are not fully understood. Methodology/Principal Findings A murine model of muscle necrosis and regeneration was adapted to study the effects of the venom and isolated toxins of Bothrops asper, the medically most important snake in Central America. Gastrocnemius muscle was injected with either B. asper venom, a myotoxic phospholipase A2 (Mtx), a hemorrhagic metalloproteinase (SVMP), or saline solution. At various time intervals, during one month, tissue samples were collected and analyzed by histology, and by immunocytochemical and immunohistochemical techniques aimed at detecting muscle fibers, collagen, endothelial cells, myoblasts, myotubes, macrophages, TUNEL-positive nuclei, and axons. A successful regenerative response was observed in muscle injected with Mtx, which induces myonecrosis but does not affect the microvasculature. In contrast, poor regeneration, with fibrosis and atrophic fibers, occurred when muscle was injected with venom or SVMP, both of which provoke necrosis, microvascular damage leading to hemorrhage, and poor axonal regeneration. Conclusions/Significance The deficient skeletal muscle regeneration after injection of B. asper venom is likely to depend on the widespread damage to the microvasculature, which affects the removal of necrotic debris by phagocytes, and the provision of nutrients and oxygen required for regeneration. In addition, deficient axonal regeneration is likely to contribute to the poor regenerative outcome in this model.
Collapse
|
32
|
Antivenoms for the treatment of snakebite envenomings: The road ahead. Biologicals 2011; 39:129-42. [DOI: 10.1016/j.biologicals.2011.02.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 02/22/2011] [Indexed: 11/18/2022] Open
|
33
|
Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84:825-89. [PMID: 20967426 PMCID: PMC2988997 DOI: 10.1007/s00204-010-0577-x] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022]
Abstract
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and the Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
34
|
Cook DA, Owen T, Wagstaff SC, Kinne J, Wernery U, Harrison RA. Analysis of camelid antibodies for antivenom development: Neutralisation of venom-induced pathology. Toxicon 2010; 56:373-80. [DOI: 10.1016/j.toxicon.2010.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/24/2010] [Accepted: 04/06/2010] [Indexed: 12/01/2022]
|
35
|
Eble JA. Matrix biology meets toxinology. Matrix Biol 2010; 29:239-47. [PMID: 20079834 DOI: 10.1016/j.matbio.2010.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 01/07/2010] [Accepted: 01/11/2010] [Indexed: 02/05/2023]
Abstract
Venoms are cocktails containing pharmacologically active compounds, which drastically affect essential functions of the neuromuscular and cardiovascular system, as well as of blood, kidney and other organs. As the extracellular matrix and its contacts with cells are responsible for maintaining the integrity and functionality of these organs and tissues, it is not surprising that several venom components target matrix molecules and their respective cellular receptors. Many venom components, such as matrix-degrading enzymes, disintegrins, and C-type lectin-like proteins, have been identified and have laid the foundation for the frontier research field of matrix toxinology. Interestingly, many toxins consist of domains which are structurally homologous to modules and domains of matrix proteins, their proteinases and cellular receptors. In addition to finding new agents and tools, which specifically interact with matrix molecules and their receptors, the characterization of known matrix-targeting toxins will provide insights into their molecular modes of action and thus may lead to potential new therapeutic strategies for treating matrix-related diseases, such as blood clotting and thrombocyte-mediated disorders, but also tumor malignancies.
Collapse
Affiliation(s)
- Johannes A Eble
- Excellence Cluster Cardio-Pulmonary System, Center for Molecular Medicine, Dept. Vascular Matrix Biology, Frankfurt University Hospital, Bldg 9, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|