1
|
Alvarez-Flores MP, Correia Batista IDF, Villas Boas IM, Bufalo MC, de Souza JG, Oliveira DS, Bonfá G, Fernandes CM, Marques Porto R, Lichtenstein F, Picolo G, Tambourgi DV, Chudzinski-Tavassi AM, Ibañez OCM, Teixeira C. Snake and arthropod venoms: Search for inflammatory activity in human cells involved in joint diseases. Toxicon 2024; 238:107568. [PMID: 38110040 DOI: 10.1016/j.toxicon.2023.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
Most anti-inflammatory drugs currently adopted to treat chronic inflammatory joint diseases can alleviate symptoms but they do not lead to remission. Therefore, new and more efficient drugs are needed to block the course of joint inflammatory diseases. Animal venoms, rich in bioactive compounds, can contribute as valuable tools in this field of research. In this study, we first demonstrate the direct action of venoms on cells that constitute the articular joints. We established a platform consisting of cell-based assays to evaluate the release of cytokines (IL-6, IL-8, TNFα, IL-1β, and IL-10) by human chondrocytes, synoviocytes and THP1 macrophages, as well as the release of neuropeptides (substance-P and β-endorphin) by differentiated sensory neuron-like cells, 24 h after stimulation of cells with 21 animal venoms from snake and arthropod species, sourced from different taxonomic families and geographic origins. Results demonstrated that at non-cytotoxic concentrations, the venoms activate at varying degrees the secretion of inflammatory mediators involved in the pathology of articular diseases, such as IL-6, IL-8, and TNF-α by chondrocytes, synoviocytes, and macrophages and of substance P by neuron-like cells. Venoms of the Viperidae snake family were more inflammatory than those of the Elapidae family, while venoms of Arthropods were less inflammatory than snake venoms. Notably, some venoms also induced the release of the anti-inflammatory IL-10 by macrophages. However, the scorpion Buthus occitanus venom induced the release of IL-10 without increasing the release of inflammatory cytokines by macrophages. Since the cell types used in the experiments are crucial elements in joint inflammatory processes, the results of this work may guide future research on the activation of receptors and inflammatory signaling pathways by selected venoms in these particular cells, aiming at discovering new targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Isadora Maria Villas Boas
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunochemistry, Instituto Butantan, Sao Paulo, Brazil
| | | | - Jean Gabriel de Souza
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunogenetics, Instituto Butantan, Sao Paulo, Brazil
| | | | - Giuliano Bonfá
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunochemistry, Instituto Butantan, Sao Paulo, Brazil
| | - Cristina Maria Fernandes
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Pharmacology, Instituto Butantan, Sao Paulo, Brazil
| | - Rafael Marques Porto
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil
| | - Flavio Lichtenstein
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil
| | - Gisele Picolo
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Pain and Signaling, Instituto Butantan, Sao Paulo, Brazil
| | | | | | - Olga Célia Martinez Ibañez
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunogenetics, Instituto Butantan, Sao Paulo, Brazil.
| | - Catarina Teixeira
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Pharmacology, Instituto Butantan, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Baudou FG, Gutiérrez JM, Rodríguez JP. Immune response to neurotoxic South American snake venoms. Toxicon 2023; 234:107300. [PMID: 37757959 DOI: 10.1016/j.toxicon.2023.107300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
South American rattlesnakes (Crotalus durissus spp) and coral snakes (Micrurus sp) venoms are characterized by inducing a limited inflammatory innate immune response, in contrast to Bothrops sp snake venoms which exert a prominent inflammatory activity. Some Crotalus durissus spp venoms, in addition, exert immunosuppressive activities that hamper the development of neutralizing antibodies in animals immunized for antivenom production. Micrurus sp venoms are rich in low molecular mass neurotoxins that elicit a limited immune response. These characteristics make it difficult to generate antivenoms of high neutralizing activity. Therefore, the study of the mechanisms operating behind this limited immune response to venoms is relevant from both fundamental and practical perspectives. This review summarizes key aspects of the immune response to these venoms and discusses some pending challenges to further understand these phenomena and to improve antivenom production.
Collapse
Affiliation(s)
- Federico G Baudou
- Universidad Nacional de Luján (UNLu), Depto. de Ciencias Básicas, Luján, Buenos Aires, Argentina; Grupo de Investigaciones Básicas y Aplicadas en Inmunología y Bioactivos (GIBAIB), Instituto de Ecología y Desarrollo Sustentable (INEDES), UNLu-CONICET, Luján, Buenos Aires, Argentina.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Juan Pablo Rodríguez
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes, Argentina
| |
Collapse
|
3
|
Zambelli VO, Hösch NG, Farom S, Zychar BC, Spadacci-Morena DD, Carvalho LV, Curi R, Lepsch LB, Scavone C, Sant'Anna OA, Gonçalves LRC, Cury Y, Sampaio SC. Formyl peptide receptors are involved in CTX-induced impairment of lymphocyte functions. Toxicon 2023; 222:106986. [PMID: 36442690 DOI: 10.1016/j.toxicon.2022.106986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Crotoxin (CTX) is a neurotoxin that is isolated from the venom of Crotalus durissus terrificus, which displays immunomodulatory, anti-inflammatory, and anti-tumoral effects. Previous research has demonstrated that CTX promotes the adherence of leukocytes to the endothelial cells in blood microcirculation and the high endothelial venules of lymph nodes, which reduces the number of blood cells and lymphocytes. Studies have also shown that these effects are mediated by lipoxygenase-derived mediators. However, the exact lipoxygenase-derived eicosanoid involved in the CTX effect on lymphocytes is yet to be characterized. As CTX stimulates lipoxin-derived mediators from macrophages and lymphocyte effector functions could be modulated by activating formyl peptide receptors, we aimed to investigate whether these receptors were involved in CTX-induced redistribution and functions of lymphocytes in rats. We used male Wistar rats treated with CTX to demonstrate that Boc2 (butoxycarbonyl-Phe-Leu-Phe-Leu-Phe), an antagonist of formyl peptide receptors, prevented CTX-induced decrease in the number of circulating lymphocytes and increased the expression of the lymphocyte adhesion molecule LFA1. CTX reduced the T and B lymphocyte functions, such as lymphocyte proliferation in response to the mitogen Concanavalin A and antibody production in response to BSA immunization, respectively, which was prevented by the administration of Boc2. Importantly, mesenteric lymph node lymphocytes from CTX-treated rats showed an increased release of 15-epi-LXA4. These results indicate that formyl peptide receptors mediate CTX-induced redistribution of lymphocytes and that 15-epi-LXA4 is a key mediator of the immunosuppressive effects of CTX.
Collapse
Affiliation(s)
- Vanessa O Zambelli
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil.
| | - Natália Gabriele Hösch
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Sarah Farom
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Laboratory of Pathophysiology, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Bianca C Zychar
- Laboratory of Pathophysiology, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Diva D Spadacci-Morena
- Laboratory of Pathophysiology, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Luciana Vieira Carvalho
- Laboratory of Immunochemistry, Butantan Institute, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Rui Curi
- Immunobiological Production Section, Bioindustrial Center, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro of Sul University, São Paulo, SP, Brazil
| | - Lucilia B Lepsch
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Osvaldo Augusto Sant'Anna
- Laboratory of Immunochemistry, Butantan Institute, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Luís Roberto C Gonçalves
- Laboratory of Pathophysiology, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Yara Cury
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Sandra C Sampaio
- Laboratory of Pathophysiology, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia. Toxins (Basel) 2022; 14:toxins14120875. [PMID: 36548772 PMCID: PMC9784998 DOI: 10.3390/toxins14120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/16/2022] Open
Abstract
In Colombia, South America, there is a subspecies of the South American rattlesnake Crotalus durissus, C. d. cumanensis, a snake of the Viperidae family, whose presence has been reduced due to the destruction of its habitat. It is an enigmatic snake from the group of pit vipers, venomous, with large articulated front fangs, special designs on its body, and a characteristic rattle on its tail. Unlike in Brazil, the occurrence of human envenomation by C. durisus in Colombia is very rare and contributes to less than 1% of envenomation caused by snakes. Its venom is a complex cocktail of proteins with different biological effects, which evolved with the purpose of paralyzing the prey, killing it, and starting its digestive process, as well as having defense functions. When its venom is injected into humans as the result of a bite, the victim presents with both local tissue damage and with systemic involvement, including a diverse degree of neurotoxic, myotoxic, nephrotoxic, and coagulopathic effects, among others. Its biological effects are being studied for use in human health, including the possible development of analgesic, muscle relaxant, anti-inflammatory, immunosuppressive, anti-infection, and antineoplastic drugs. Several groups of researchers in Brazil are very active in their contributions in this regard. In this work, a review is made of the most relevant biological and medical aspects related to the South American rattlesnake and of what may be of importance for a better understanding of the snake C. d. cumanensis, present in Colombia and Venezuela.
Collapse
|
5
|
Purification and Characterization of a Novel Factor of Crotoxin Inter-CRO (V-1), a New Phospholipase A2 Isoform from Crotalus durissus collilineatus Snake Venom Using an In Vitro Neuromuscular Preparation. Processes (Basel) 2022. [DOI: 10.3390/pr10071428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The fractionation of Crotalus durissus collilineatus whole venom through an HPLC chromatographic method enabled the purification of a new V-1 neurotoxin. Inter-CRO (V-1) presents similarity in its primary structure to crotoxin B (CB), suggesting another isoform of this toxin. The aim of this study was to compare V-1 to the crotoxin complex (CA/CB) and CB to elucidate aspects related to its functionality. The homogeneity of the purified protein was confirmed with a molecular mass of 1425.45 Da, further verified by mass spectrometry. The sequence of the protein showed high similarity to other viperid snake venom PLA2 proteins. The results of this study report that V-1 is an uncharacterized novel toxin with different biological activities from CB. V-1 maintained catalytic activity but presented neurotoxic activity as observed by the 2.5-fold increase in twitch tension record compared to control values on isolated muscle cells.
Collapse
|
6
|
Biological Effects of Animal Venoms on the Human Immune System. Toxins (Basel) 2022; 14:toxins14050344. [PMID: 35622591 PMCID: PMC9143185 DOI: 10.3390/toxins14050344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Venoms are products of specialized glands and serve many living organisms to immobilize and kill prey, start digestive processes and act as a defense mechanism. Venoms affect different cells, cellular structures and tissues, such as skin, nervous, hematological, digestive, excretory and immune systems, as well as the heart, among other structures. Components of both the innate and adaptive immune systems can be stimulated or suppressed. Studying the effects on the cells and molecules produced by the immune system has been useful in many biomedical fields. The effects of venoms can be the basis for research and development of therapeutic protocols useful in the modulation of the immunological system, including different autoimmune diseases. This review focuses on the understanding of biological effects of diverse venom on the human immune system and how some of their components can be useful for the study and development of immunomodulatory drugs.
Collapse
|
7
|
Hayashi MAF, Campeiro JD, Yonamine CM. Revisiting the potential of South American rattlesnake Crotalus durissus terrificus toxins as therapeutic, theranostic and/or biotechnological agents. Toxicon 2021; 206:1-13. [PMID: 34896407 DOI: 10.1016/j.toxicon.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
The potential biotechnological and biomedical applications of the animal venom components are widely recognized. Indeed, many components have been used either as drugs or as templates/prototypes for the development of innovative pharmaceutical drugs, among which many are still used for the treatment of human diseases. A specific South American rattlesnake, named Crotalus durissus terrificus, shows a venom composition relatively simpler compared to any viper or other snake species belonging to the Crotalus genus, although presenting a set of toxins with high potential for the treatment of several still unmet human therapeutic needs, as reviewed in this work. In addition to the main toxin named crotoxin, which is under clinical trials studies for antitumoral therapy and which has also anti-inflammatory and immunosuppressive activities, other toxins from the C. d. terrificus venom are also being studied, aiming for a wide variety of therapeutic applications, including as antinociceptive, anti-inflammatory, antimicrobial, antifungal, antitumoral or antiparasitic agent, or as modulator of animal metabolism, fibrin sealant (fibrin glue), gene carrier or theranostic agent. Among these rattlesnake toxins, the most relevant, considering the potential clinical applications, are crotamine, crotalphine and gyroxin. In this narrative revision, we propose to organize and present briefly the updates in the accumulated knowledge on potential therapeutic applications of toxins collectively found exclusively in the venom of this specific South American rattlesnake, with the objective of contributing to increase the chances of success in the discovery of drugs based on toxins.
Collapse
Affiliation(s)
- Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil.
| | - Joana D Campeiro
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Camila M Yonamine
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil.
| |
Collapse
|
8
|
Baudou FG, Rodriguez JP, Fusco L, de Roodt AR, De Marzi MC, Leiva L. South American snake venoms with abundant neurotoxic components. Composition and toxicological properties. A literature review. Acta Trop 2021; 224:106119. [PMID: 34481791 DOI: 10.1016/j.actatropica.2021.106119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/18/2023]
Abstract
In South America there are three snake genera with predominantly neurotoxic venoms: Crotalus, Micrurus and Hydrophis, which include nine species/subspecies, 97 species and a single marine species, respectively. Although accidents with neurotoxic venoms are less frequent than those with anticoagulant, cytotoxic or necrotic venoms (e.g. from Bothrops), they are of major public health importance. Venoms from genus Crotalus have been extensively studied, while data on the venoms from the other two genera are very limited, especially for Hydrophis. The venoms of North and South American Crotalus species show biochemical and physiopathological differences. The former species cause bothrops-like envenomation symptoms, while the latter mainly have neurotoxic and myotoxic effects, leading to respiratory paralysis and, occasionally, renal failure by myoglobinuria and death, often with no local lesions. Micrurus and Hydrophis also cause neurotoxic envenomations. Many studies have isolated, identified and characterized new enzymes and toxins, thus expanding the knowledge of snake venom composition. The present review summarizes the currently available information on neurotoxic venoms from South American snakes, with a focus on protein composition and toxicological properties. It also includes some comments concerning potential medical applications of elapid and crotalic toxins.
Collapse
Affiliation(s)
- Federico G Baudou
- Universidad Nacional de Luján (UNLu), Depto. de Ciencias Básicas, Luján, Buenos Aires, Argentina; Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES), UNLu-CONICET, Luján, Buenos Aires, Argentina.
| | - Juan P Rodriguez
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes, Argentina
| | - Luciano Fusco
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA (UNNE, CONICET), FaCENA, (UNNE), Corrientes, Argentina
| | - Adolfo R de Roodt
- Área Investigación y Desarrollo-Venenos, Instituto Nacional de Producción de Biológicos, Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Ministerio de Salud de la Nación, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Argentina; Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Mauricio C De Marzi
- Universidad Nacional de Luján (UNLu), Depto. de Ciencias Básicas, Luján, Buenos Aires, Argentina; Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES), UNLu-CONICET, Luján, Buenos Aires, Argentina
| | - Laura Leiva
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA (UNNE, CONICET), FaCENA, (UNNE), Corrientes, Argentina
| |
Collapse
|
9
|
Freitas AP, Clissa PB, Soto DR, Câmara NOS, Faquim-Mauro EL. The modulatory effect of crotoxin and its phospholipase A 2 subunit from Crotalus durissus terrificus venom on dendritic cells interferes with the generation of effector CD4 + T lymphocytes. Immunol Lett 2021; 240:56-70. [PMID: 34626682 DOI: 10.1016/j.imlet.2021.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 01/02/2023]
Abstract
Dendritic Cells (DCs) direct either cellular immune response or tolerance. The crotoxin (CTX) and its CB subunit (phospholipase A2) isolated from Crotalus durissus terrificus rattlesnake venom modulate the DC maturation induced by a TLR4 agonist. Here, we analyzed the potential effect of CTX and CB subunit on the functional ability of DCs to induce anti-ovalbumin (OVA) immune response. Thus, CTX and CB inhibited the maturation of OVA/LPS-stimulated BM-DCs from BALB/c mice, which means inhibition of costimulatory and MHC-II molecule expression and proinflammatory cytokine secretion, accompanied by high expression of ICOSL, PD-L1/2, IL-10 and TGF-β mRNA expression. The addition of CTX and CB in cultures of BM-DCs incubated with ConA or OVA/LPS inhibited the proliferation of CD3+ or CD4+T cells from OVA-immunized mice. In in vitro experiment of co-cultures of purified CD4+T cells of DO11.10 mice with OVA/LPS-stimulated BM-DCs, the CTX or CB induced lowest percentage of Th1 and Th2 and CTX induced increase of Treg cells. In in vivo, CTX and CB induced lower percentage of CD4+IFNγ+ and CD4+IL-4+ cells, as well as promoted CD4+CD25+IL-10+ population in OVA/LPS-immunized mice. CTX in vivo also inhibited the maturation of DCs. Our findings demonstrate that the modulatory action of CTX and CB on DCs interferes with the generation of adaptive immunity and, therefore contribute for the understanding of the mechanisms involved in the generation of cellular immunity, which can be useful for new therapeutic approaches for immune disorders.
Collapse
Affiliation(s)
- Amanda P Freitas
- Laboratory of Immunopathology, Butantan Institute, São Paulo, SP, Brazil; Department of Immunology, Institute of Biomedical Science, University of São Paulo, SP, Brazil
| | - Patricia B Clissa
- Laboratory of Immunopathology, Butantan Institute, São Paulo, SP, Brazil
| | - Dunia R Soto
- Laboratory of Biotechnology, Butantan Institute, São Paulo, Brazil
| | - Niels O S Câmara
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, SP, Brazil
| | - Eliana L Faquim-Mauro
- Laboratory of Immunopathology, Butantan Institute, São Paulo, SP, Brazil; Department of Immunology, Institute of Biomedical Science, University of São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Minutti-Zanella C, Gil-Leyva EJ, Vergara I. Immunomodulatory properties of molecules from animal venoms. Toxicon 2021; 191:54-68. [PMID: 33417946 DOI: 10.1016/j.toxicon.2020.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/02/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
The immune system can amplify or decrease the strength of its response when it is stimulated by chemical or biological substances that act as immunostimulators, immunosuppressants, or immunoadjuvants. Immunomodulation is a progressive approach to treat a diversity of pathologies with promising results, including autoimmune disorders and cancer. Animal venoms are a mixture of chemical compounds that include proteins, peptides, amines, salts, polypeptides, enzymes, among others, which produce the toxic effect. Since the discovery of captopril in the early 1980s, other components from snakes, spiders, scorpions, and marine animal venoms have been demonstrated to be useful for treating several human diseases. The valuable progress in fields such as venomics, molecular biology, biotechnology, immunology, and others has been crucial to understanding the interaction of toxins with the immune system and its application on immune pathologies. More in-depth knowledge of venoms' components and multi-disciplinary studies could facilitate their transformation into effective novel immunotherapies. This review addresses advances and research of molecules from venoms that have immunomodulatory properties.
Collapse
Affiliation(s)
- C Minutti-Zanella
- Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, ExHda. Sta. Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico
| | - E J Gil-Leyva
- Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, ExHda. Sta. Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico
| | - I Vergara
- Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, ExHda. Sta. Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico.
| |
Collapse
|
11
|
Azevedo E, Figueiredo RG, Pinto RV, Ramos TDCF, Sampaio GP, Bulhosa Santos RP, Guerreiro MLDS, Biondi I, Trindade SC. Evaluation of systemic inflammatory response and lung injury induced by Crotalus durissus cascavella venom. PLoS One 2020; 15:e0224584. [PMID: 32084665 PMCID: PMC7035002 DOI: 10.1371/journal.pone.0224584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
This study investigated the systemic inflammatory response and mechanism of pulmonary lesions induced by Crotalus durissus cascavella venom in murine in the state of Bahia. In order to investigate T helper Th1, Th2 and Th17 lymphocyte profiles, we measured interleukin (IL) -2, IL-4, IL-6, IL-10, IL-17, tumor necrosis factor (TNF) and interferon gamma (IFN-γ) levels in the peritoneal fluid and macerated lungs of mice and histopathological alterations at the specific time windows of 1h, 3h, 6h, 12h, 24h and 48h after inoculation with Crotalus durissus cascavella venom. The data demonstrated an increase of acute-phase cytokines (IL-6 and TNF) in the first hours after inoculation, with a subsequent increase in IL-10 and IL-4, suggesting immune response modulation for the Th2 profile. The histopathological analysis showed significant morphological alterations, compatible with acute pulmonary lesions, with polymorphonuclear leukocyte (PMN) infiltration, intra-alveolar edema, congestion, hemorrhage and atelectasis. These findings advance our understanding of the dynamics of envenomation and contribute to improve clinical management and antiophidic therapy for individuals exposed to venom.
Collapse
Affiliation(s)
- Elen Azevedo
- Laboratory of Venomous Animals and Herpetology, Biology Department, State University of Feira de Santana, Feira de Santana, Brazil
- Postgraduate Program in Biotechnology, State University of Feira de Santana, Feira de Santana, Brazil
| | - Ricardo Gassmann Figueiredo
- Pulmonology Division, Department of Health, State University of Feira de Santana–UEFS, Feira de Santana, Brazil
| | - Roberto Vieira Pinto
- Pathological Anatomy Laboratory–LABSEAP, Cardiopulmonary Clinic, Novo Mundo, Brazil
| | | | | | | | - Marcos Lázaro da Silva Guerreiro
- Laboratory of Venomous Animals and Herpetology, Biology Department, State University of Feira de Santana, Feira de Santana, Brazil
| | - Ilka Biondi
- Laboratory of Venomous Animals and Herpetology, Biology Department, State University of Feira de Santana, Feira de Santana, Brazil
- * E-mail: (SCT); (IB)
| | - Soraya Castro Trindade
- Postgraduate Program in Biotechnology, State University of Feira de Santana, Feira de Santana, Brazil
- Department of Health, Feira de Santana State University, Feira de Santana, Bahia, Brazil
- * E-mail: (SCT); (IB)
| |
Collapse
|
12
|
Teixeira NB, Sant'Anna MB, Giardini AC, Araujo LP, Fonseca LA, Basso AS, Cury Y, Picolo G. Crotoxin down-modulates pro-inflammatory cells and alleviates pain on the MOG 35-55-induced experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Brain Behav Immun 2020; 84:253-268. [PMID: 31843645 DOI: 10.1016/j.bbi.2019.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a Central Nervous System inflammatory demyelinating disease that has as primary symptoms losses of sensory and motor functions, including chronic pain. To date, however, few studies have investigated the mechanisms of chronic pain in animal models of MS since locomotor impairments render difficult its evaluation. It was previously demonstrated that in the MOG35-55-induced EAE, an animal model of MS, the hypernociception appears before the onset of motor disability, allowing for the study of these two phenomena separately. Here, we evaluated the effect of crotoxin (CTX), a neurotoxin isolated from the Crotalus durissus terrificus snake venom that displays, at non-toxic dose, antinociceptive, anti-inflammatory and immunomodulatory effects, in the pain and in symptoms progression of EAE. The pain threshold of female C57BL/6 mice decreased at the 4th day after immunization, while the first sign of disease appeared around the 11st-12nd days, coinciding with the onset of motor abnormalities. CTX (40 µg/kg, s.c.) administered in a single dose on the 5th day after immunization, induced a long-lasting analgesic effect (5 days), without interfering with the clinical signs of the disease. On the other hand, when crotoxin was administered for 5 consecutive days, from 5th-9th day after immunization, it induced analgesia and also reduced EAE progression. The antinociceptive effect of crotoxin was blocked by Boc-2 (0.5 mg/kg, i.p.), a selective antagonist of formyl peptide receptors, by NDGA (30 μg/kg, i.p.), a lipoxygenase inhibitor and by atropine sulfate (10 mg/kg, i.p.), an antagonist of muscarinic receptors, administered 30 min before CTX. CTX was also effective in decreasing EAE clinical signs even when administered after its onset. Regarding the interactions between neurons and immunocompetent cells, CTX, in vitro, was able to reduce T cell proliferation, decreasing Th1 and Th17 and increasing Treg cell differentiation. Furthermore, in EAE model, the treatment with 5 consecutive doses of CTX inhibited IFN-γ-producing T cells, GM-CSF-producing T cells, reduced the frequency of activated microglia/macrophages within the CNS and decreased the number of migrating cell to spinal cord and cerebellum at the peak of the disease. These results suggest that CTX is a potential treatment not only for pain alteration but also for clinical progression induced by the disease as well as an useful tool for the development of new therapeutic approaches for the multiple sclerosis control.
Collapse
Affiliation(s)
- N B Teixeira
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - M B Sant'Anna
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - A C Giardini
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - L P Araujo
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of Sao Paulo, UNIFESP, Sao Paulo, Brazil
| | - L A Fonseca
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - A S Basso
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of Sao Paulo, UNIFESP, Sao Paulo, Brazil
| | - Y Cury
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - G Picolo
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil.
| |
Collapse
|
13
|
de Andrade CM, Rey FM, Cintra ACO, Sampaio SV, Torqueti MR. Effects of crotoxin, a neurotoxin from Crotalus durissus terrificus snake venom, on human endothelial cells. Int J Biol Macromol 2019; 134:613-621. [PMID: 31071401 DOI: 10.1016/j.ijbiomac.2019.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/04/2019] [Accepted: 05/04/2019] [Indexed: 01/03/2023]
Abstract
Vascular endothelium plays an important modulatory role due to the production of molecules that mediate vasomotricity, inflammation, and leukocyte adhesion and rolling. Here we addressed whether crotoxin (25-200 μg/mL) - the main component of Crotalus durissus terrificus snake venom - interferes with cell viability, apotosis/necrosis, and cell response to oxidative stress in human umbilical vein endothelial cells (HUVEC) in vitro. We also examined whether crotoxin alters the levels of interleukins, adhesion molecules, and endothelial vasoactive factors in HUVEC cells treated or not with lipopolysaccharide (LPS; 1 μg/mL; 24 h). Crotoxin was not cytotoxic towards HUVEC cells, and downregulated the LPS-induced production of adhesion molecules (VCAM-1, ICAM-1, and E-selectin), vasoactive factors (endothelin-1 and prostaglandin I2), and interleukins (IL-6, IL-8, and IL1β), as well as protected cells against H2O2-induced oxidative stress. Hence, crotoxin played anti-inflammatory, antioxidant, immunomodulating, and vasoactive actions on HUVEC cells, in vitro. Considering that the initial stages of atherosclerosis is characterized by vasoconstriction, increased levels of adhesion molecules, inflammatory cytokines, and oxidative stress in the vascular endothelium; and crotoxin downmodulated all these events, our findings indicate that the actions of crotoxin here demonstrated suggest that it may have an anti-atherogenic action in vivo, which deserves to be tested in future studies.
Collapse
Affiliation(s)
- Camila M de Andrade
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Fernanda M Rey
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Adélia Cristina O Cintra
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Suely V Sampaio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Regina Torqueti
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
14
|
Sartim MA, Menaldo DL, Sampaio SV. Immunotherapeutic potential of Crotoxin: anti-inflammatory and immunosuppressive properties. J Venom Anim Toxins Incl Trop Dis 2018; 24:39. [PMID: 30564276 PMCID: PMC6296157 DOI: 10.1186/s40409-018-0178-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
For the past 80 years, Crotoxin has become one of the most investigated isolated toxins from snake venoms, partially due to its major role as the main toxic component in the venom of the South American rattlesnake Crotalus durissus terrificus. However, in the past decades, progressive studies have led researchers to shift their focus on Crotoxin, opening novel perspectives and applications as a therapeutic approach. Although this toxin acts on a wide variety of biological events, the modulation of immune responses is considered as one of its most relevant behaviors. Therefore, the present review describes the scientific investigations on the capacity of Crotoxin to modulate anti-inflammatory and immunosuppressive responses, and its application as a medicinal immunopharmacological approach. In addition, this review will also discuss its mechanisms, involving cellular and molecular pathways, capable of improving pathological alterations related to immune-associated disorders.
Collapse
Affiliation(s)
- Marco Aurélio Sartim
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, 14040-903 Brazil
| | - Danilo Luccas Menaldo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, 14040-903 Brazil
| | - Suely Vilela Sampaio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, 14040-903 Brazil
| |
Collapse
|
15
|
Crotoxin Isolated from Crotalus durissus terrificus Venom Modulates the Functional Activity of Dendritic Cells via Formyl Peptide Receptors. J Immunol Res 2018; 2018:7873257. [PMID: 29967803 PMCID: PMC6008858 DOI: 10.1155/2018/7873257] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/08/2018] [Indexed: 02/07/2023] Open
Abstract
The Crotalus durissus terrificus rattlesnake venom, its main toxin, crotoxin (CTX), and its crotapotin (CA) and phospholipase A2 (CB) subunits modulate the immune system. Formyl peptide receptors (FPRs) and lipoxin A4 (LXA4) are involved in CTX's effect on macrophages and neutrophils. Dendritic cells (DCs) are plasticity cells involved in the induction of adaptive immunity and tolerance maintenance. Therefore, we evaluated the effect of CTX, CA or CB on the maturation of DCs derived from murine bone marrow (BM). According to data, CTX and CB-but not CA-induced an increase of MHC-II, but not costimulatory molecules on DCs. Furthermore, CTX and CB inhibited the expression of costimulatory and MHC-II molecules, secretion of proinflammatory cytokines and NF-κBp65 and p38/ERK1/2-MAPK signaling pathways by LPS-incubated DCs. Differently, CTX and CB induced IL-10, PGE2 and LXA4 secretion in LPS-incubated DCs. Lower proliferation and IL-2 secretion were verified in coculture of CD3+ cells and DCs incubated with LPS plus CTX or CB compared with LPS-incubated DCs. The effect of CTX and CB on DCs was abolished in cultures incubated with a FPRs antagonist. Hence, CTX and CB exert a modulation on functional activity of DCs; we also checked the involvement the FPR family on cell activities.
Collapse
|
16
|
Neuromuscular paralysis by the basic phospholipase A 2 subunit of crotoxin from Crotalus durissus terrificus snake venom needs its acid chaperone to concurrently inhibit acetylcholine release and produce muscle blockage. Toxicol Appl Pharmacol 2017; 334:8-17. [DOI: 10.1016/j.taap.2017.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/10/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022]
|
17
|
Nasim F, Das S, Mishra R, Mishra R. Hematological alterations and splenic T lymphocyte polarization at the crest of snake venom induced acute kidney injury in adult male mice. Toxicon 2017; 134:57-63. [DOI: 10.1016/j.toxicon.2017.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 12/13/2022]
|
18
|
Harnessing the knowledge of animal toxins to generate drugs. Pharmacol Res 2016; 112:30-36. [PMID: 26826284 DOI: 10.1016/j.phrs.2016.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 11/20/2022]
Abstract
Animal toxins present high selectivity and specificity for their molecular targets, and have long been considered as prototypes for developing novel drugs, with some successful cases. In this regard, the variety of molecules found in animal venoms, which can be capable of affecting vital physiological systems, have providing the development of studies focusing on turning those molecules (toxins) into therapeutics to treat several diseases, such as chronic pain, hypertension, thrombosis, cancer, and so on. However, some important issues have been responsible for disrupting the toxin-based drug discovery projects. In this review, we have briefly highlighted the development of drugs based on animal toxins, discussing some successful cases as well as the main causes of failure, pointing out the recent strategies applied to overcome the difficulties related to the translational process in this kind of development scenario.
Collapse
|
19
|
Lyra-Neves RM, Santos EM, Medeiros PM, Alves RRN, Albuquerque UP. Ethnozoology in Brazil: analysis of the methodological risks in published studies. BRAZ J BIOL 2015; 75:S184-91. [DOI: 10.1590/1519-6984.09314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/01/2014] [Indexed: 11/22/2022] Open
Abstract
Abstract There has been a growth in the field of Ethnozoology throughout the years, especially in Brazil, where a considerable number of scientific articles pertaining to this subject has been published in recent decades. With this increase in publications comes the opportunity to assess the quality of these publications, as there are no known studies assessing the methodological risks in this area. Based on this observation, our objectives were to compile the papers published on the subject of ethnozoology and to answer the following questions: 1) Do the Brazilian ethnozoological studies use sound sampling methods?; 2) Is the sampling quality influenced by characteristics of the studies/publications? The studies found in databases and using web search engines were compiled to answer these questions. The studies were assessed based on their nature, sampling methods, use of hypotheses and tests, journal’s impact factor, and animal group studied. The majority of the studies analyzed exhibited problems associated with the samples, as 144 (66.98%) studies were classified as having a high risk of bias. With regard to the characteristics analyzed, we determined that a quantitative nature and the use of tests are essential components of good sampling. Most studies classified as moderate and low risk either did not provide these data or provided data that were not clear; therefore, these studies were classified as being of a quali-quantitative nature. Studies performed with vertebrate groups were of high risk. Most of the papers analyzed here focused on fish, insects, and/or mollusks, thus highlighting the difficulties associated with conducting interviews regarding tetrapod vertebrates. Such difficulties are largely related to the extremely strict Brazilian laws, justified by the decline and extinction of some species, related to the use of wild tetrapod vertebrates.
Collapse
Affiliation(s)
- R. M. Lyra-Neves
- Universidade Federal Rural de Pernambuco, Brazil; Universidade Federal Rural de Pernambuco, Brazil
| | - E. M. Santos
- Universidade Federal Rural de Pernambuco, Brazil
| | | | | | | |
Collapse
|
20
|
Almeida CDS, Andrade-Oliveira V, Câmara NOS, Jacysyn JF, Faquim-Mauro EL. Crotoxin from Crotalus durissus terrificus is able to down-modulate the acute intestinal inflammation in mice. PLoS One 2015; 10:e0121427. [PMID: 25853847 PMCID: PMC4390225 DOI: 10.1371/journal.pone.0121427] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 02/15/2015] [Indexed: 12/30/2022] Open
Abstract
Inflammatory bowel diseases (IBD) is the result of dysregulation of mucosal innate and adaptive immune responses. Factors such as genetic, microbial and environmental are involved in the development of these disorders. Accordingly, animal models that mimic human diseases are tools for the understanding the immunological processes of the IBD as well as to evaluate new therapeutic strategies. Crotoxin (CTX) is the main component of Crotalus durissus terrificus snake venom and has an immunomodulatory effect. Thus, we aimed to evaluate the modulatory effect of CTX in a murine model of colitis induced by 2,4,6- trinitrobenzene sulfonic acid (TNBS). The CTX was administered intraperitoneally 18 hours after the TNBS intrarectal instillation in BALB/c mice. The CTX administration resulted in decreased weight loss, disease activity index (DAI), macroscopic tissue damage, histopathological score and myeloperoxidase (MPO) activity analyzed after 4 days of acute TNBS colitis. Furthermore, the levels of TNF-α, IL-1β and IL-6 were lower in colon tissue homogenates of TNBS-mice that received the CTX when compared with untreated TNBS mice. The analysis of distinct cell populations obtained from the intestinal lamina propria showed that CTX reduced the number of group 3 innate lymphoid cells (ILC3) and Th17 population; CTX decreased IL-17 secretion but did not alter the frequency of CD4+Tbet+ T cells induced by TNBS instillation in mice. In contrast, increased CD4+FoxP3+ cell population as well as secretion of TGF-β, prostaglandin E2 (PGE2) and lipoxin A4 (LXA4) was observed in TNBS-colitis mice treated with CTX compared with untreated TNBS-colitis mice. In conclusion, the CTX is able to modulate the intestinal acute inflammatory response induced by TNBS, resulting in the improvement of clinical status of the mice. This effect of CTX is complex and involves the suppression of the pro-inflammatory environment elicited by intrarectal instillation of TNBS due to the induction of a local anti-inflammatory profile in mice.
Collapse
Affiliation(s)
| | | | | | | | - Eliana L. Faquim-Mauro
- Laboratory of Immunopathology, Butantan Institute, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
21
|
Crotalus durissus collilineatus Venom Induces TNF- α and IL-10 Production in Human Peripheral Blood Mononuclear Cells. ISRN INFLAMMATION 2014; 2014:563628. [PMID: 24563803 PMCID: PMC3915804 DOI: 10.1155/2014/563628] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/02/2013] [Indexed: 12/03/2022]
Abstract
Snake venom has been the subject of numerous studies in an attempt to find properties and biological effects that may be beneficial to man. In this study we evaluated in vitro the effects of Crotalus durissus terrificus (Cdt) and Crotalus durissus collilineatus (Cdc) venom in human peripheral blood mononuclear cells (PBMCs). At 24 h, a significant decrease of viable cells was observed in cells stimulated with the Cdc venom at 0.0005 mg/mL and 0.005 mg/mL compared to the negative control. At 48 h, a significant decrease of viable cells was observed only in cells stimulated with Cdc venom at 0.005 mg/mL. A significant increase of TNF-α and IL-10 was detected 48 hours after culture of PBMC with Cdc, but not with Cdt venom. The expression of CD69 and PD1 (programmed death-1), activation and regulatory cell markers, on CD8+ and CD8− T cells did not change in the presence of Cdt and Cdc venom. Our results suggest the presence of proinflammatory and anti-inflammatory components in the Cdc venom. Further analysis should be done to identify those Cdc venom components as it has been done for the Cdt venom by other authors, indicating that modulatory components are found in the venom of different species of Crotalus snakes.
Collapse
|
22
|
Lima TS, Cataneo SC, Iritus ACC, Sampaio SC, Della-Casa MS, Cirillo MC. Crotoxin, a rattlesnake toxin, induces a long-lasting inhibitory effect on phagocytosis by neutrophils. Exp Biol Med (Maywood) 2012; 237:1219-30. [PMID: 23045721 DOI: 10.1258/ebm.2012.012010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Crotalus durissus terrificus snake venom (CdtV) has long-lasting anti-inflammatory properties and inhibits the spreading and phagocytic activity of macrophages. Crotoxin (CTX), the main component of CdtV, is responsible for these effects. Considering the role of neutrophils in the inflammatory response and the lack of information about the effect of CdtV on neutrophils, the aim of this study was to investigate the effect of CdtV and CTX on two functions of neutrophils, namely phagocytosis and production of reactive oxygen species, and on the intracellular signaling involved in phagocytosis, particularly on tyrosine phosphorylation and rearrangements of the actin cytoskeleton. Our results showed that the incubation of neutrophils with CdtV or CTX, at different concentrations, or the subcutaneous injection of CdtV or CTX in rats two hours or one, four or 14 days before or one hour after the induction of inflammation inhibited the phagocytic activity of neutrophils. Furthermore, these in vitro and in vivo effects were associated with CdtV and CTX inhibition of tyrosine phosphorylation and consequently actin polymerization. Despite the inhibitory effect on phagocytosis, this study demonstrated that CdtV and CTX did not alter the production of the main reactive oxygen species. Therefore, this study characterized, for the first time, the actions of CdtV on neutrophils and demonstrated that CTX induces a long-lasting inhibition of tyrosine phosphorylation and consequently phagocytosis. We suggest that CTX represents a potential natural product in controlling inflammatory diseases, since a single dose exerts a long-lasting effect on intracellular signaling involved in phagocytosis by neutrophils.
Collapse
Affiliation(s)
- Tatiane S Lima
- Laboratory of Pathophysiology, Butantan Institute, Av. Vital Brazil 1500, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|