1
|
Isbister GK, Jenkins S, Downes MA, Fakes K, Buckley NA. A randomized controlled trial and prospective cohort investigating antivenom for red-bellied black snake envenomation. Clin Toxicol (Phila) 2024; 62:343-351. [PMID: 38913734 DOI: 10.1080/15563650.2024.2367677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/07/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION Antivenom is first line treatment for snake envenomation worldwide, despite few placebo controlled clinical trials demonstrating effectiveness. We aimed to investigate whether early antivenom in red-bellied black snake (Pseudechis porphyriacus) bites would prevent systemic myotoxicity. METHODS We undertook a multicentre randomized placebo-controlled trial of antivenom for red-bellied black snake bites with patients recruited from the Australian Snakebite Project (July 2014 to June 2020). In addition, we report all patients with red-bellied black snake bites during the same period, comparing the same outcomes. Patients over 2 years of age with definite red-bellied black snake bites and early systemic effects were randomized to receive 50 per cent glucose (placebo) or tiger snake antivenom within 6 hours post-bite, or in the cohort group received antivenom determined by the treating clinician. The primary outcome was the proportion of patients with myotoxicity (peak creatine kinase activity >1,000 U/L). Secondary outcomes were: area under the curve of total creatine kinase elevation over 48 hours, presence of venom post-antivenom, and adverse reactions. We analyzed both the randomized control trial patients and the combination of randomized control trial and cohort patients. RESULTS Fifteen patients were recruited to the randomized controlled trial, and a cohort of 68 patients who were not randomized were included in the analysis. After treatment, two of seven patients given placebo had a peak creatine kinase activity >1,000 U/L versus none of the eight given antivenom (difference in favour of antivenom; 29 per cent; 95 per cent confidence interval:-18 per cent to +70 per cent; P = 0.2). The median area under the curve of total creatine kinase elevation over 48 hours in patients given placebo was 0 U/L*h (interquartile range: 0-124 U/L*h), which was not significantly different to those given antivenom: 197 U/L*h (interquartile range: 0-66,353 U/L*h; P = 0.26). Venom was not detected post-antivenom in six patients with measured venom concentrations given antivenom. Two patients given antivenom had immediate hypersensitivity reactions, one severe anaphylaxis, and another had serum sickness. Combining randomized and not randomized patients, three of 36 (8 per cent) administered antivenom less than 6 hours post-bite had a peak creatine kinase activity >1,000 U/L versus 17/47 (36 per cent) patients not receiving antivenom less than 6 hours post-bite (difference in favour of antivenom 29 per cent; 95 per cent confidence interval: 8 per cent to 44 per cent; P < 0.004). Overall, 13/36 (36 per cent) patients administered antivenom within 6 hours had hypersensitivity reactions, six severe anaphylaxis (17 per cent). DISCUSSION We found that early antivenom was effective in red-bellied black snake bites, and only three patients need to be given antivenom within 6 hours to prevent myotoxicity in one (number needed to treat = 3). However, one in three patients administered antivenom developed a hypersensitivity reaction, and one in six had severe anaphylaxis. The major limitation of this study was the small number of patients recruited to the randomized controlled trial. CONCLUSION Administration of antivenom in red-bellied black snake envenomation within 6 hours post-bite appeared to decrease the proportion of patients with myotoxicity, but a third of patients had adverse reactions.
Collapse
Affiliation(s)
- Geoffrey K Isbister
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, Australia
- Department of Clinical Toxicology, Newcastle, Australia
- New South Wales Poison Information Centre, Childrens Hospital Westmead, Sydney, Australia
| | - Shane Jenkins
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, Australia
| | - Michael A Downes
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, Australia
- Department of Clinical Toxicology, Newcastle, Australia
- New South Wales Poison Information Centre, Childrens Hospital Westmead, Sydney, Australia
| | - Kellie Fakes
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, Australia
| | - Nicholas A Buckley
- Department of Clinical Toxicology, Newcastle, Australia
- New South Wales Poison Information Centre, Childrens Hospital Westmead, Sydney, Australia
- Clinical Pharmacology & Toxicology Research Group, School of Medical Sciences, University of Sydney
| |
Collapse
|
2
|
Tasoulis T, Wang CR, Sumner J, Dunstan N, Pukala TL, Isbister GK. The Unusual Metalloprotease-Rich Venom Proteome of the Australian Elapid Snake Hoplocephalus stephensii. Toxins (Basel) 2022; 14:toxins14050314. [PMID: 35622563 PMCID: PMC9147224 DOI: 10.3390/toxins14050314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
The Australasian region is home to the most diverse elapid snake radiation on the planet (Hydrophiinae). Many of these snakes have evolved into unique ecomorphs compared to elapids on other continents; however, their venom compositions are poorly known. The Australian elapid Hoplocephalus stephensii (Stephen’s banded snake) is an arboreal snake with a unique morphology. Human envenoming results in venom-induced consumption coagulopathy, without neurotoxicity. Using transcriptomics and a multi-step fractionation method involving reverse-phase high-performance liquid chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis and bottom-up proteomics, we characterized the venom proteome of H. stephensii. 92% of the total protein component of the venom by weight was characterized, and included all dominant protein families and 4 secondary protein families. Eighteen toxins made up 76% of the venom, four previously characterized and 14 new toxins. The four dominant protein families made up 77% of the venom, including snake venom metalloprotease (SVMP; 36.7%; three identified toxins), phospholipase A2 (PLA2; 24.0%; five identified toxins), three-finger toxin (3FTx; 10.2%; two toxins) and snake venom serine protease (SVSP; 5.9%; one toxin; Hopsarin). Secondary protein families included L-amino acid oxidase (LAAO; 10.8%; one toxin), natriuretic peptide (NP; 0.8%; two toxins), cysteine-rich secretory protein (CRiSP; 1.7%; two toxins), c-type lectin (CTL; 1.1%; one toxin), and one minor protein family, nerve growth factor (NGF; 0.8%; one toxin). The venom composition of H. stephensii differs to other elapids, with a large proportion of SVMP and LAAO, and a relatively small amount of 3FTx. H. stephensii venom appeared to have less toxin diversity than other elapids, with only 18 toxins making up three-quarters of the venom.
Collapse
Affiliation(s)
- Theo Tasoulis
- Clinical Toxicology Research Group Newcastle, University of Newcastle, Newcastle, NSW 2308, Australia;
- Correspondence:
| | - C. Ruth Wang
- Department of Chemistry, Faculty of Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (C.R.W.); (T.L.P.)
| | - Joanna Sumner
- Genetic Resources, Museums Victoria, Carlton Gardens, Melbourne, VIC 5053, Australia;
| | | | - Tara L. Pukala
- Department of Chemistry, Faculty of Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (C.R.W.); (T.L.P.)
| | - Geoffrey K. Isbister
- Clinical Toxicology Research Group Newcastle, University of Newcastle, Newcastle, NSW 2308, Australia;
| |
Collapse
|
3
|
Johnston CI, Ryan NM, O'Leary MA, Brown SGA, Isbister GK. Australian taipan (Oxyuranus spp.) envenoming: clinical effects and potential benefits of early antivenom therapy - Australian Snakebite Project (ASP-25). Clin Toxicol (Phila) 2016; 55:115-122. [PMID: 27903075 DOI: 10.1080/15563650.2016.1250903] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONTEXT Taipans (Oxyuranus spp.) are medically important venomous snakes from Australia and Papua New Guinea. The objective of this study was to describe taipan envenoming in Australian and its response to antivenom. METHODS Confirmed taipan bites were recruited from the Australian Snakebite Project. Data were collected prospectively on all snakebites, including patient demographics, bite circumstances, clinical effects, laboratory results, complications and treatment. Blood samples were taken and analysed by venom specific immunoassay to confirm snake species and measure venom concentration pre- and post-antivenom. RESULTS There were 40 confirmed taipan bites: median age 41 years (2-85 years), 34 were males and 21 were snake handlers. Systemic envenoming occurred in 33 patients with neurotoxicity (26), complete venom induced consumption coagulopathy (VICC) (16), partial VICC (15), acute kidney injury (13), myotoxicity (11) and thrombocytopenia (7). Venom allergy occurred in seven patients, three of which had no evidence of envenoming and one died. Antivenom was given to 34 patients with a median initial dose of one vial (range 1-4), and a median total dose of two vials (range 1-9). A greater total antivenom dose was associated with VICC, neurotoxicity and acute kidney injury. Early antivenom administration was associated with a decreased frequency of neurotoxicity, acute kidney injury, myotoxicity and intubation. There was a shorter median time to discharge of 51 h (19-432 h) in patients given antivenom <4 h post-bite, compared to 175 h (27-1104 h) in those given antivenom >4 h. Median peak venom concentration in 25 patients with systemic envenoming and a sample available was 8.4 ng/L (1-3212 ng/L). No venom was detected in post-antivenom samples, including 20 patients given one vial initially and five patients bitten by inland taipans. DISCUSSION Australian taipan envenoming is characterised by neurotoxicity, myotoxicity, coagulopathy, acute kidney injury and thrombocytopenia. One vial of antivenom binds all measurable venom and early antivenom was associated with a favourable outcome.
Collapse
Affiliation(s)
| | - Nicole M Ryan
- a Clinical Toxicology Research Group, University of Newcastle , Newcastle , Australia
| | - Margaret A O'Leary
- a Clinical Toxicology Research Group, University of Newcastle , Newcastle , Australia
| | - Simon G A Brown
- b Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Royal Perth Hospital and the University of Western Australia , Perth , Australia
| | - Geoffrey K Isbister
- a Clinical Toxicology Research Group, University of Newcastle , Newcastle , Australia.,c Department of Clinical Toxicology and Pharmacology , Calvary Mater Newcastle , Newcastle , Australia
| |
Collapse
|
4
|
Dixit R, Herz J, Dalton R, Booy R. Benefits of using heterologous polyclonal antibodies and potential applications to new and undertreated infectious pathogens. Vaccine 2016; 34:1152-61. [PMID: 26802604 PMCID: PMC7131169 DOI: 10.1016/j.vaccine.2016.01.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Passive immunotherapy using polyclonal antibodies (immunoglobulins) has been used for over a century in the treatment and post-exposure prophylaxis of various infections and toxins. Heterologous polyclonal antibodies are obtained from animals hyperimmunised with a pathogen or toxin. AIMS The aims of this review are to examine the history of animal polyclonal antibody therapy use, their development into safe and effective products and the potential application to humans for emerging and neglected infectious diseases. METHODS A literature search of OVID Medline and OVID Embase databases was undertaken to identify articles on the safety, efficacy and ongoing development of polyclonal antibodies. The search contained database-specific MeSH and EMTREE terms in combination with pertinent text-words: polyclonal antibodies and rare/neglected diseases, antivenins, immunoglobulins, serum sickness, anaphylaxis, drug safety, post marketing surveillance, rabies, human influenza, Dengue, West Nile, Nipah, Hendra, Marburg, MERS, Hemorrhagic Fever Virus, and Crimean-Congo. No language limits were applied. The final search was completed on 20.06.2015. Of 1960 articles, title searches excluded many irrelevant articles, yielding 303 articles read in full. Of these, 179 are referenced in this study. RESULTS Serum therapy was first used in the 1890s against diphtheria. Early preparation techniques yielded products contaminated with reactogenic animal proteins. The introduction of enzymatic digestion, and purification techniques substantially improved their safety profile. The removal of the Fc fragment of antibodies further reduces hypersensitivity reactions. Clinical studies have demonstrated the efficacy of polyclonal antibodies against various infections, toxins and venoms. Products are being developed against infections for which prophylactic and therapeutic options are currently limited, such as avian influenza, Ebola and other zoonotic viruses. CONCLUSIONS Polyclonal antibodies have been successfully applied to rabies, envenomation and intoxication. Polyclonal production provides an exciting opportunity to revolutionise the prognosis of both longstanding neglected tropical diseases as well as emerging infectious threats to humans.
Collapse
Affiliation(s)
- Rashmi Dixit
- The Children's Hospital, Westmead, Sydney, Australia.
| | | | | | - Robert Booy
- The Children's Hospital, Westmead, Sydney, Australia
| |
Collapse
|
5
|
Isbister GK, Brown SGA, Page CB, McCoubrie DL, Greene SL, Buckley NA. Snakebite in Australia: a practical approach to diagnosis and treatment. Med J Aust 2014; 199:763-8. [PMID: 24329653 DOI: 10.5694/mja12.11172] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/30/2013] [Indexed: 11/17/2022]
Abstract
Snakebite is a potential medical emergency and must receive high-priority assessment and treatment, even in patients who initially appear well. Patients should be treated in hospitals with onsite laboratory facilities, appropriate antivenom stocks and a clinician capable of treating complications such as anaphylaxis. All patients with suspected snakebite should be admitted to a suitable clinical unit, such as an emergency short-stay unit, for at least 12 hours after the bite. Serial blood testing (activated partial thromboplastin time, international normalised ratio and creatine kinase level) and neurological examinations should be done for all patients. Most snakebites will not result in significant envenoming and do not require antivenom. Antivenom should be administered as soon as there is evidence of envenoming. Evidence of systemic envenoming includes venom-induced consumption coagulopathy, sudden collapse, myotoxicity, neurotoxicity, thrombotic microangiopathy and renal impairment. Venomous snake groups each cause a characteristic clinical syndrome, which can be used in combination with local geographical distribution information to determine the probable snake involved and appropriate antivenom to use. The Snake Venom Detection Kit may assist in regions where the range of possible snakes is too broad to allow the use of monovalent antivenoms. When the snake identification remains unclear, two monovalent antivenoms (eg, brown snake and tiger snake antivenom) that cover possible snakes, or a polyvalent antivenom, can be used. One vial of the relevant antivenom is sufficient to bind all circulating venom. However, recovery may be delayed as many clinical and laboratory effects of venom are not immediately reversible. For expert advice on envenoming, contact the National Poisons Information Centre on 13 11 26.
Collapse
Affiliation(s)
- Geoffrey K Isbister
- Discipline of Clinical Pharmacology, University of Newcastle, Newcastle, NSW, Australia.
| | - Simon G A Brown
- Centre for Clinical Research in Emergency Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and University of Western Australia, Perth, WA, Australia
| | - Colin B Page
- Emergency Department, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | | | - Shaun L Greene
- Emergency Department and Victorian Poisons Information Centre, The Austin Hospital, Melbourne, VIC, Australia
| | - Nicholas A Buckley
- NSW Poisons Information Centre, Sydney Children's Hospital Network, Sydney, NSW, Australia
| |
Collapse
|
6
|
Venom down under: dynamic evolution of Australian elapid snake toxins. Toxins (Basel) 2013; 5:2621-55. [PMID: 24351719 PMCID: PMC3873703 DOI: 10.3390/toxins5122621] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 12/30/2022] Open
Abstract
Despite the unparalleled diversity of venomous snakes in Australia, research has concentrated on a handful of medically significant species and even of these very few toxins have been fully sequenced. In this study, venom gland transcriptomes were sequenced from eleven species of small Australian elapid snakes, from eleven genera, spanning a broad phylogenetic range. The particularly large number of sequences obtained for three-finger toxin (3FTx) peptides allowed for robust reconstructions of their dynamic molecular evolutionary histories. We demonstrated that each species preferentially favoured different types of α-neurotoxic 3FTx, probably as a result of differing feeding ecologies. The three forms of α-neurotoxin [Type I (also known as (aka): short-chain), Type II (aka: long-chain) and Type III] not only adopted differential rates of evolution, but have also conserved a diversity of residues, presumably to potentiate prey-specific toxicity. Despite these differences, the different α-neurotoxin types were shown to accumulate mutations in similar regions of the protein, largely in the loops and structurally unimportant regions, highlighting the significant role of focal mutagenesis. We theorize that this phenomenon not only affects toxin potency or specificity, but also generates necessary variation for preventing/delaying prey animals from acquiring venom-resistance. This study also recovered the first full-length sequences for multimeric phospholipase A2 (PLA2) ‘taipoxin/paradoxin’ subunits from non-Oxyuranus species, confirming the early recruitment of this extremely potent neurotoxin complex to the venom arsenal of Australian elapid snakes. We also recovered the first natriuretic peptides from an elapid that lack the derived C-terminal tail and resemble the plesiotypic form (ancestral character state) found in viper venoms. This provides supporting evidence for a single early recruitment of natriuretic peptides into snake venoms. Novel forms of kunitz and waprin peptides were recovered, including dual domain kunitz-kunitz precursors and the first kunitz-waprin hybrid precursors from elapid snakes. The novel sequences recovered in this study reveal that the huge diversity of unstudied venomous Australian snakes are of considerable interest not only for the investigation of venom and whole organism evolution but also represent an untapped bioresource in the search for novel compounds for use in drug design and development.
Collapse
|
7
|
Allen GE, Wilson SK, Isbister GK. Paroplocephalus envenoming: a previously unrecognised highly venomous snake in Australia. Med J Aust 2013; 199:792-4. [DOI: 10.5694/mja13.10985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/02/2013] [Indexed: 11/17/2022]
Affiliation(s)
- George E Allen
- Emergency Department, Royal Brisbane and Women's Hospital, Brisbane, QLD
| | | | - Geoffrey K Isbister
- Discipline of Clinical Pharmacology, University of Newcastle, Newcastle, NSW
- Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle, Newcastle, NSW
| |
Collapse
|
8
|
O'Leary MA, Isbister GK. Detection of venom-antivenom (VAV) immunocomplexes in vitro as a measure of antivenom efficacy. Toxicon 2013; 77:125-32. [PMID: 24252422 DOI: 10.1016/j.toxicon.2013.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/23/2013] [Accepted: 11/06/2013] [Indexed: 11/27/2022]
Abstract
The measurement of free venom with enzyme immunoassay in serum of patients with snake envenoming is used to confirm snake identification and to determine if sufficient antivenom has been given. Recent studies with Russell's viper (RV; Daboia russelii) envenoming have detected free venom post-antivenom despite recovery of coagulopathy. This raises the question as to whether this assay also measures venom-antivenom (VAV) complexes. In this study we developed an assay to measure VAV complexes and investigate the binding of venom and antivenom in vitro. The assay consisted of rabbit anti-snake venom IgG attached to a microplate which binds the venom component of VAV and anti-horse IgG antibodies conjugated to horseradish peroxidase to detect the antivenom portion of VAV. A known amount of venom or toxin was incubated with increasing antivenom concentrations and VAV was detected as absorbance at 450 nm and plotted against AV concentration. Pseudonaja textilis (brown snake), Notechis scutatus (tiger snake), Oxyuranus scutellatus (taipan), Tropidechis carinatus (rough-scaled snake), Pseudechis porphyriacus (red-bellied black snake) and D. russelii mixtures with appropriate antivenoms were assayed. Measured VAV initially increased with increasing antivenom concentration until it reached a maximum after which the VAV concentration decreased with further increasing antivenom concentrations. The VAV curves for two Australian snake venom-antivenom mixtures, Hoplocephalus stephensii and Ancanthophis antarcticus, had broad VAV peaks with two maxima. Two fractions isolated from N. scutatus venom and Russell's viper factor X activator toxin produced similar VAV curves to their whole venoms. The antivenom concentration for which the maximum VAV occurred was linearly related to the venom concentration, and this slope or ratio was consistent with that used to define the neutralisation units for Australian antivenoms. The maximal VAV point appears to represent the antivenom concentration where every venom molecule (toxin) is attached to at least one antivenom molecule (antibody) on average and may be a useful measure of antivenom efficacy. In vivo this would mean that for a defined antivenom concentration, venom components will be eliminated and are trapped in the central compartment.
Collapse
Affiliation(s)
- M A O'Leary
- Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle, Newcastle, Australia
| | - G K Isbister
- Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle, Newcastle, Australia; School of Medicine and Public Health, University of Newcastle, Australia.
| |
Collapse
|
9
|
Faioli CN, Domingos TFS, de Oliveira EC, Sanchez EF, Ribeiro S, Muricy G, Fuly AL. Appraisal of antiophidic potential of marine sponges against Bothrops jararaca and Lachesis muta venom. Toxins (Basel) 2013; 5:1799-813. [PMID: 24141284 PMCID: PMC3813912 DOI: 10.3390/toxins5101799] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 01/10/2023] Open
Abstract
Snakebites are a health problem in many countries due to the high incidence of such accidents. Antivenom treatment has regularly been used for more than a century, however, this does not neutralize tissue damage and may even increase the severity and morbidity of accidents. Thus, it has been relevant to search for new strategies to improve antiserum therapy, and a variety of molecules from natural sources with antiophidian properties have been reported. In this paper, we analyzed the ability of ten extracts from marine sponges (Amphimedon viridis, Aplysina fulva, Chondrosia collectrix, Desmapsamma anchorata, Dysidea etheria, Hymeniacidon heliophila, Mycale angulosa, Petromica citrina, Polymastia janeirensis, and Tedania ignis) to inhibit the effects caused by Bothrops jararaca and Lachesis muta venom. All sponge extracts inhibited proteolysis and hemolysis induced by both snake venoms, except H. heliophila, which failed to inhibit any biological activity. P. citrina inhibited lethality, hemorrhage, plasma clotting, and hemolysis induced by B. jararaca or L. muta. Moreover, other sponges inhibited hemorrhage induced only by B. jararaca. We conclude that Brazilian sponges may be a useful aid in the treatment of snakebites caused by L. muta and B. jararaca and therefore have potential for the discovery of molecules with antiophidian properties.
Collapse
Affiliation(s)
- Camila Nunes Faioli
- Department of Molecular and Cellular Biology, Institute of Biology, Federal Fluminense University, Niteroi 24020-141, RJ, Brazil; E-Mails: (C.N.F.); (T.F.S.D.); (E.C.O.)
| | - Thaisa Francielle Souza Domingos
- Department of Molecular and Cellular Biology, Institute of Biology, Federal Fluminense University, Niteroi 24020-141, RJ, Brazil; E-Mails: (C.N.F.); (T.F.S.D.); (E.C.O.)
- Department of Marine Biology, Institute of Biology, Federal Fluminense University, Niteroi 24020-141, RJ, Brazil
| | - Eduardo Coriolano de Oliveira
- Department of Molecular and Cellular Biology, Institute of Biology, Federal Fluminense University, Niteroi 24020-141, RJ, Brazil; E-Mails: (C.N.F.); (T.F.S.D.); (E.C.O.)
| | | | - Suzi Ribeiro
- Department of Invertebrates, Federal University of Rio de Janeiro, National Museum 20940-040, RJ, Brazil; E-Mails: (S.R.); (G.M.)
| | - Guilherme Muricy
- Department of Invertebrates, Federal University of Rio de Janeiro, National Museum 20940-040, RJ, Brazil; E-Mails: (S.R.); (G.M.)
| | - Andre Lopes Fuly
- Department of Molecular and Cellular Biology, Institute of Biology, Federal Fluminense University, Niteroi 24020-141, RJ, Brazil; E-Mails: (C.N.F.); (T.F.S.D.); (E.C.O.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +55-21-2629-2294; Fax: +55-21-2629-2376
| |
Collapse
|
10
|
Use of immunoturbidimetry to detect venom–antivenom binding using snake venoms. J Pharmacol Toxicol Methods 2013; 67:177-81. [DOI: 10.1016/j.vascn.2013.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/31/2013] [Accepted: 02/04/2013] [Indexed: 11/30/2022]
|
11
|
Johnston CI, Brown SGA, O'Leary MA, Currie BJ, Greenberg R, Taylor M, Barnes C, White J, Isbister GK. Mulga snake (Pseudechis australis) envenoming: a spectrum of myotoxicity, anticoagulant coagulopathy, haemolysis and the role of early antivenom therapy - Australian Snakebite Project (ASP-19). Clin Toxicol (Phila) 2013; 51:417-24. [PMID: 23586640 DOI: 10.3109/15563650.2013.787535] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Mulga snakes (Pseudechis australis) are venomous snakes with a wide distribution in Australia. Objective. The objective of this study was to describe mulga snake envenoming and the response of envenoming to antivenom therapy. MATERIALS AND METHODS Definite mulga bites, based on expert identification or venom-specific enzyme immunoassay, were recruited from the Australian Snakebite Project. Demographics, information about the bite, clinical effects, laboratory investigations and antivenom treatment are recorded for all patients. Blood samples are collected to measure the serum venom concentrations pre- and post-antivenom therapy using enzyme immunoassay. RESULTS There were 17 patients with definite mulga snake bites. The median age was 37 years (6-70 years); 16 were male and six were snake handlers. Thirteen patients had systemic envenoming with non-specific systemic symptoms (11), anticoagulant coagulopathy (10), myotoxicity (7) and haemolysis (6). Antivenom was given to ten patients; the median dose was one vial (range, one-three vials). Three patients had systemic hypersensitivity reactions post-antivenom. Antivenom reversed the coagulopathy in all cases. Antivenom appeared to prevent myotoxicity in three patients with high venom concentrations, given antivenom within 2 h of the bite. Median peak venom concentration in 12 envenomed patients with samples was 29 ng/mL (range, 0.6-624 ng/mL). There was a good correlation between venom concentrations and the area under the curve of the creatine kinase for patients receiving antivenom after 2 h. Higher venom concentrations were also associated with coagulopathy and haemolysis. Venom was not detected after antivenom administration except in one patient who had a venom concentration of 8.3 ng/ml after one vial of antivenom, but immediate reversal of the coagulopathy. DISCUSSION Mulga snake envenoming is characterised by myotoxicity, anticoagulant coagulopathy and haemolysis, and has a spectrum of toxicity that is venom dose dependant. This study supports a dose of one vial of antivenom, given as soon as a systemic envenoming is identified, rather than waiting for the development of myotoxicity.
Collapse
Affiliation(s)
- C I Johnston
- School of Medicine Sydney, University of Notre Dame Australia, Darlinghurst, NSW, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Allen GE, Brown SGA, Buckley NA, O’Leary MA, Page CB, Currie BJ, White J, Isbister GK. Clinical effects and antivenom dosing in brown snake (Pseudonaja spp.) envenoming--Australian snakebite project (ASP-14). PLoS One 2012; 7:e53188. [PMID: 23300888 PMCID: PMC3532501 DOI: 10.1371/journal.pone.0053188] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/29/2012] [Indexed: 11/29/2022] Open
Abstract
Background Snakebite is a global health issue and treatment with antivenom continues to be problematic. Brown snakes (genus Pseudonaja) are the most medically important group of Australian snakes and there is controversy over the dose of brown snake antivenom. We aimed to investigate the clinical and laboratory features of definite brown snake (Pseudonaja spp.) envenoming, and determine the dose of antivenom required. Methods and Finding This was a prospective observational study of definite brown snake envenoming from the Australian Snakebite Project (ASP) based on snake identification or specific enzyme immunoassay for Pseudonaja venom. From January 2004 to January 2012 there were 149 definite brown snake bites [median age 42y (2–81y); 100 males]. Systemic envenoming occurred in 136 (88%) cases. All envenomed patients developed venom induced consumption coagulopathy (VICC), with complete VICC in 109 (80%) and partial VICC in 27 (20%). Systemic symptoms occurred in 61 (45%) and mild neurotoxicity in 2 (1%). Myotoxicity did not occur. Severe envenoming occurred in 51 patients (38%) and was characterised by collapse or hypotension (37), thrombotic microangiopathy (15), major haemorrhage (5), cardiac arrest (7) and death (6). The median peak venom concentration in 118 envenomed patients was 1.6 ng/mL (Range: 0.15–210 ng/mL). The median initial antivenom dose was 2 vials (Range: 1–40) in 128 patients receiving antivenom. There was no difference in INR recovery or clinical outcome between patients receiving one or more than one vial of antivenom. Free venom was not detected in 112/115 patients post-antivenom with only low concentrations (0.4 to 0.9 ng/ml) in three patients. Conclusions Envenoming by brown snakes causes VICC and over a third of patients had serious complications including major haemorrhage, collapse and microangiopathy. The results of this study support accumulating evidence that giving more than one vial of antivenom is unnecessary in brown snake envenoming.
Collapse
Affiliation(s)
- George E. Allen
- Emergency Department, Queen Elizabeth II Jubilee Hospital, Brisbane, Australia
| | - Simon G. A. Brown
- Centre for Clinical Research in Emergency Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and the University of Western Australia, Perth, Australia
| | - Nicholas A. Buckley
- Medical Professorial Unit, Prince of Wales Hospital Medical School, University of New South Wales, Sydney, Australia
- NSW Poisons Information Centre, Sydney Children’s Hospital Network, Sydney, Australia
| | - Margaret A. O’Leary
- Discipline of Clinical Pharmacology, University of Newcastle, Newcastle, Australia
- Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle, Newcastle, Australia
| | - Colin B. Page
- NSW Poisons Information Centre, Sydney Children’s Hospital Network, Sydney, Australia
- Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle, Newcastle, Australia
- Emergency Department, Princess Alexandra Hospital, Brisbane, Australia
| | - Bart J. Currie
- Menzies School of Health Research and Northern Territory Clinical School, Darwin, Australia
| | - Julian White
- Department of Toxinology, Women’s and Children’s Hospital, Adelaide, Australia
| | - Geoffrey K. Isbister
- NSW Poisons Information Centre, Sydney Children’s Hospital Network, Sydney, Australia
- Discipline of Clinical Pharmacology, University of Newcastle, Newcastle, Australia
- Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle, Newcastle, Australia
- * E-mail:
| | | |
Collapse
|
13
|
Abstract
BACKGROUND Snakebites in snake handlers are an important clinical problem that may differ to bites in the general population. AIM To investigate the epidemiology and clinical presentation of bites in snake handlers. DESIGN Prospective observational study. METHODS Bites in snake handlers recruited as part of the Australian Snakebite Project (ASP) from 2004 to 2011 were included in the study. Data were extracted from the ASP database, which included demographic and clinical information, laboratory tests and antivenom treatment. RESULTS From 1089 snake bites recruited to ASP, there were 106 (9.7%) bites in snake handlers. The median age was 40 years (range: 16-81 years) and 104 (98%) were males. The commonest circumstances of the bites were handling snakes (47), catching snakes (22), feeding snakes (18) and cleaning cages (11). Bites were to the upper limb in 103 cases. Bites were most commonly by Red-bellied black snakes (20), Brown snakes (17), Taipan (15), Tiger snakes (14) and Death adders (14). Envenoming occurred in 77 patients: venom-induced consumption coagulopathy in 45 patients (58%), neurotoxicity in 10 (13%) and myotoxicity in 13 (17%). Systemic hypersensitivity reactions (SHSRs) to venom occurred in eight, satisfying clinical criteria for anaphylaxis in five, of which three were hypotensive. Antivenom was administered in 60 envenomed patients. SHSRs to antivenom occurred in 15 (25%; 95% CI:15-38%), including 2 (3%:1-13%) with severe (hypotensive) reactions. CONCLUSION Bites in snake handlers remain a common, important problem involving a broad range of snakes. Neurotoxicity and myotoxicity are relatively common, consistent with the snakes involved. Venom anaphylaxis occured, despite previously being a poorly recognized problem in snake handlers. The incidence of SHSRs to antivenoms, including anaphylaxis, was not higher than that observed in non-snake handlers.
Collapse
Affiliation(s)
- Geoffrey K Isbister
- Discipline of Clinical Pharmacology, University of Newcastle, Calvary Mater Newcastle, Waratah NSW 2298, Australia.
| | | |
Collapse
|
14
|
Isbister GK, O'Leary MA, Elliott M, Brown SGA. Tiger snake (Notechis spp) envenoming: Australian Snakebite Project (ASP-13). Med J Aust 2012; 197:173-7. [PMID: 22860796 DOI: 10.5694/mja11.11300] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To describe the clinical syndrome associated with definite tiger snake (Notechis spp) envenoming and to examine the ability of tiger snake antivenom (TSAV) to bind free venom in vivo. DESIGN, SETTING AND PARTICIPANTS We conducted a prospective cohort study within the Australian Snakebite Project, reviewing all definite tiger snake envenoming cases between October 2004 and June 2011. Definite cases were identified by venom-specific enzyme immunoassay or expert snake identification. MAIN OUTCOME MEASURES Clinical effects of tiger snake envenoming; peak venom concentrations; number of vials of antivenom administered. RESULTS Fifty-six definite tiger snake envenomings were identified. Clinical effects included venom-induced consumption coagulopathy (VICC) (n = 53), systemic symptoms (n = 45), myotoxicity (n = 11) and neurotoxicity (n = 17). Thrombotic microangiopathy occurred in three patients, all of whom developed acute renal failure. There were no deaths. A bite-site snake venom detection kit test was done in 44 patients, but was positive for tiger snake in only 33 cases. Fifty-three patients received TSAV and eight of these patients had immediate hypersensitivity reactions, severe enough in one case to satisfy diagnostic criteria for severe anaphylaxis. The median peak venom concentration in 50 patients with pretreatment blood samples available was 3.2 ng/mL (interquartile range [IQR], 1-12 ng/mL; range 0.17-152 ng/mL). In 49 patients with post-treatment blood samples available, no venom was detected in serum after the first antivenom dose. Ten patients were given 1 vial of TSAV; the median dose was 2 vials (range, 1-4 vials). Pretreatment serum venom concentrations did not vary significantly between patients given 1 vial of TSAV and those given 2 or more vials. CONCLUSION Tiger snake envenoming causes VICC, systemic symptoms, neurotoxicity and myotoxicity. One vial of TSAV, the dose originally recommended when the antivenom was first made available, appears to be sufficient to bind all circulating venom.
Collapse
Affiliation(s)
- Geoffrey K Isbister
- Discipline of Clinical Pharmacology, University of Newcastle, Newcastle, NSW.
| | | | | | | |
Collapse
|
15
|
Johnston CI, O'Leary MA, Brown SGA, Currie BJ, Halkidis L, Whitaker R, Close B, Isbister GK. Death adder envenoming causes neurotoxicity not reversed by antivenom--Australian Snakebite Project (ASP-16). PLoS Negl Trop Dis 2012; 6:e1841. [PMID: 23029595 PMCID: PMC3459885 DOI: 10.1371/journal.pntd.0001841] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/16/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Death adders (Acanthophis spp) are found in Australia, Papua New Guinea and parts of eastern Indonesia. This study aimed to investigate the clinical syndrome of death adder envenoming and response to antivenom treatment. METHODOLOGY/PRINCIPAL FINDINGS Definite death adder bites were recruited from the Australian Snakebite Project (ASP) as defined by expert identification or detection of death adder venom in blood. Clinical effects and laboratory results were collected prospectively, including the time course of neurotoxicity and response to treatment. Enzyme immunoassay was used to measure venom concentrations. Twenty nine patients had definite death adder bites; median age 45 yr (5-74 yr); 25 were male. Envenoming occurred in 14 patients. Two further patients had allergic reactions without envenoming, both snake handlers with previous death adder bites. Of 14 envenomed patients, 12 developed neurotoxicity characterised by ptosis (12), diplopia (9), bulbar weakness (7), intercostal muscle weakness (2) and limb weakness (2). Intubation and mechanical ventilation were required for two patients for 17 and 83 hours. The median time to onset of neurotoxicity was 4 hours (0.5-15.5 hr). One patient bitten by a northern death adder developed myotoxicity and one patient only developed systemic symptoms without neurotoxicity. No patient developed venom induced consumption coagulopathy. Antivenom was administered to 13 patients, all receiving one vial initially. The median time for resolution of neurotoxicity post-antivenom was 21 hours (5-168). The median peak venom concentration in 13 envenomed patients with blood samples was 22 ng/mL (4.4-245 ng/mL). In eight patients where post-antivenom bloods were available, no venom was detected after one vial of antivenom. CONCLUSIONS/SIGNIFICANCE Death adder envenoming is characterised by neurotoxicity, which is mild in most cases. One vial of death adder antivenom was sufficient to bind all circulating venom. The persistent neurological effects despite antivenom, suggests that neurotoxicity is not reversed by antivenom.
Collapse
Affiliation(s)
- Christopher I. Johnston
- School of Medicine Sydney, University of Notre Dame Australia, Darlinghurst, New South Wales, Australia
- NSW Poisons Information Centre, Sydney Children's Hospital Network, Sydney, New South Wales, Australia
| | - Margaret A. O'Leary
- Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle and the Discipline of Clinical Pharmacology, University of Newcastle, Newcastle, New South Wales, Australia
| | - Simon G. A. Brown
- Centre for Clinical Research in Emergency Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and University of Western Australia, Perth, Western Australia, Australia
| | - Bart J. Currie
- Menzies School of Health Research and Northern Territory Clinical School, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Lambros Halkidis
- Emergency Department, Cairns Base Hospital, Cairns, Queensland, Australia
| | - Richard Whitaker
- Emergency Department, Cairns Base Hospital, Cairns, Queensland, Australia
| | - Benjamin Close
- Emergency Department, The Townsville Hospital, Townsville, Queensland, Australia
| | - Geoffrey K. Isbister
- NSW Poisons Information Centre, Sydney Children's Hospital Network, Sydney, New South Wales, Australia
- Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle and the Discipline of Clinical Pharmacology, University of Newcastle, Newcastle, New South Wales, Australia
- * E-mail:
| | | |
Collapse
|