1
|
Chen ZH, Guo YW, Li XW. Recent advances on marine mollusk-derived natural products: chemistry, chemical ecology and therapeutical potential. Nat Prod Rep 2023; 40:509-556. [PMID: 35942896 DOI: 10.1039/d2np00021k] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 2011-2021Marine mollusks, which are well known as rich sources of diverse and biologically active natural products, have attracted significant attention from researchers due to their chemical and pharmacological properties. The occurrence of some of these marine mollusk-derived natural products in their preys, predators, and associated microorganisms has also gained interest in chemical ecology research. Based on previous reviews, herein, we present a comprehensive summary of the recent advances of interesting secondary metabolites from marine mollusks, focusing on their structural features, possible chemo-ecological significance, and promising biological activities, covering the literature from 2011 to 2021.
Collapse
Affiliation(s)
- Zi-Hui Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| |
Collapse
|
2
|
Mohamed AA, Nabil ZI, El-Naggar MS. Prospecting for candidate molecules from Conus virgo toxins to develop new biopharmaceuticals. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20220028. [PMID: 36545288 PMCID: PMC9761950 DOI: 10.1590/1678-9199-jvatitd-2022-0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/12/2022] [Indexed: 12/23/2022] Open
Abstract
Background A combination of pharmacological and biomedical assays was applied in this study to examine the bioactivity of Conus virgo crude venom in order to determine the potential pharmacological benefit of this venom, and its in vivo mechanism of action. Methods Two doses (1/5 and 1/10 of LC50, 9.14 and 4.57 mg/kg) of the venom were used in pharmacological assays (central and peripheral analgesic, anti-inflammatory and antipyretic), while 1/2 of LC50 (22.85 mg/kg) was used in cytotoxic assays on experimental animals at different time intervals, and then compared with control and reference drug groups. Results The tail immersion time was significantly increased in venom-treated mice compared with the control group. Also, a significant reduction in writhing movement was recorded after injection of both venom doses compared with the control group. In addition, only the high venom concentration has a mild anti-inflammatory effect at the late inflammation stage. The induced pyrexia was also decreased significantly after treatment with both venom doses. On the other hand, significant increases were observed in lipid peroxidation (after 4 hours) and reduced glutathione contents and glutathione peroxidase activity, while contents of lipid peroxidation and nitric oxide (after 24 hours) and catalase activity were depleted significantly after venom administration. Conclusion These results indicated that the crude venom of Conus virgo probably contain bioactive components that have pharmacological activities with low cytotoxic effects. Therefore, it may comprise a potential lead compound for the development of drugs that would control pain and pyrexia.
Collapse
Affiliation(s)
- Anas A. Mohamed
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt.,Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Zohour I. Nabil
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Mohamed S. El-Naggar
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt.,Correspondence:
| |
Collapse
|
3
|
Marine Origin Ligands of Nicotinic Receptors: Low Molecular Compounds, Peptides and Proteins for Fundamental Research and Practical Applications. Biomolecules 2022; 12:biom12020189. [PMID: 35204690 PMCID: PMC8961598 DOI: 10.3390/biom12020189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
The purpose of our review is to briefly show what different compounds of marine origin, from low molecular weight ones to peptides and proteins, offer for understanding the structure and mechanism of action of nicotinic acetylcholine receptors (nAChRs) and for finding novel drugs to combat the diseases where nAChRs may be involved. The importance of the mentioned classes of ligands has changed with time; a protein from the marine snake venom was the first excellent tool to characterize the muscle-type nAChRs from the electric ray, while at present, muscle and α7 receptors are labeled with the radioactive or fluorescent derivatives prepared from α-bungarotoxin isolated from the many-banded krait. The most sophisticated instruments to distinguish muscle from neuronal nAChRs, and especially distinct subtypes within the latter, are α-conotoxins. Such information is crucial for fundamental studies on the nAChR revealing the properties of their orthosteric and allosteric binding sites and mechanisms of the channel opening and closure. Similar data are provided by low-molecular weight compounds of marine origin, but here the main purpose is drug design. In our review we tried to show what has been obtained in the last decade when the listed classes of compounds were used in the nAChR research, applying computer modeling, synthetic analogues and receptor mutants, X-ray and electron-microscopy analyses of complexes with the nAChRs, and their models which are acetylcholine-binding proteins and heterologously-expressed ligand-binding domains.
Collapse
|
4
|
Abalde S, Dutertre S, Zardoya R. A Combined Transcriptomics and Proteomics Approach Reveals the Differences in the Predatory and Defensive Venoms of the Molluscivorous Cone Snail Cylinder ammiralis (Caenogastropoda: Conidae). Toxins (Basel) 2021; 13:toxins13090642. [PMID: 34564647 PMCID: PMC8472973 DOI: 10.3390/toxins13090642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 12/20/2022] Open
Abstract
Venoms are complex mixtures of proteins that have evolved repeatedly in the animal kingdom. Cone snail venoms represent one of the best studied venom systems. In nature, this venom can be dynamically adjusted depending on its final purpose, whether to deter predators or hunt prey. Here, the transcriptome of the venom gland and the proteomes of the predation-evoked and defensive venoms of the molluscivorous cone snail Cylinder ammiralis were catalogued. A total of 242 venom-related transcripts were annotated. The conotoxin superfamilies presenting more different peptides were O1, O2, T, and M, which also showed high expression levels (except T). The three precursors of the J superfamily were also highly expressed. The predation-evoked and defensive venoms showed a markedly distinct profile. A total of 217 different peptides were identified, with half of them being unique to one venom. A total of 59 peptides ascribed to 23 different protein families were found to be exclusive to the predatory venom, including the cono-insulin, which was, for the first time, identified in an injected venom. A total of 43 peptides from 20 protein families were exclusive to the defensive venom. Finally, comparisons of the relative abundance (in terms of number of peptides) of the different conotoxin precursor superfamilies showed that most of them present similar abundance regardless of the diet.
Collapse
Affiliation(s)
- Samuel Abalde
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain;
- Department of Zoology, Swedish Museum of Natural History, Frescativägen 40, 114 18 Stockholm, Sweden
- Correspondence:
| | | | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain;
| |
Collapse
|
5
|
Gulsevin A, Papke RL, Stokes C, Tran HNT, Jin AH, Vetter I, Meiler J. The Allosteric Activation of α7 nAChR by α-Conotoxin MrIC Is Modified by Mutations at the Vestibular Site. Toxins (Basel) 2021; 13:toxins13080555. [PMID: 34437426 PMCID: PMC8402416 DOI: 10.3390/toxins13080555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
α-conotoxins are 13–19 amino acid toxin peptides that bind various nicotinic acetylcholine receptor (nAChR) subtypes. α-conotoxin Mr1.7c (MrIC) is a 17 amino acid peptide that targets α7 nAChR. Although MrIC has no activating effect on α7 nAChR when applied by itself, it evokes a large response when co-applied with the type II positive allosteric modulator PNU-120596, which potentiates the α7 nAChR response by recovering it from a desensitized state. A lack of standalone activity, despite activation upon co-application with a positive allosteric modulator, was previously observed for molecules that bind to an extracellular domain allosteric activation (AA) site at the vestibule of the receptor. We hypothesized that MrIC may activate α7 nAChR allosterically through this site. We ran voltage-clamp electrophysiology experiments and in silico peptide docking calculations in order to gather evidence in support of α7 nAChR activation by MrIC through the AA site. The experiments with the wild-type α7 nAChR supported an allosteric mode of action, which was confirmed by the significantly increased MrIC + PNU-120596 responses of three α7 nAChR AA site mutants that were designed in silico to improve MrIC binding. Overall, our results shed light on the allosteric activation of α7 nAChR by MrIC and suggest the involvement of the AA site.
Collapse
Affiliation(s)
- Alican Gulsevin
- Center for Structural Biology, Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA;
- Correspondence:
| | - Roger L. Papke
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.P.); (C.S.)
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.P.); (C.S.)
| | - Hue N. T. Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (H.N.T.T.); (A.H.J.); (I.V.)
| | - Aihua H. Jin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (H.N.T.T.); (A.H.J.); (I.V.)
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (H.N.T.T.); (A.H.J.); (I.V.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jens Meiler
- Center for Structural Biology, Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA;
- Institute for Drug Discovery, Leipzig University Medical School, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Conotoxin Diversity in the Venom Gland Transcriptome of the Magician's Cone, Pionoconus magus. Mar Drugs 2019; 17:md17100553. [PMID: 31569823 PMCID: PMC6835573 DOI: 10.3390/md17100553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
The transcriptomes of the venom glands of two individuals of the magician’s cone, Pionoconus magus, from Okinawa (Japan) were sequenced, assembled, and annotated. In addition, RNA-seq raw reads available at the SRA database from one additional specimen of P. magus from the Philippines were also assembled and annotated. The total numbers of identified conotoxin precursors and hormones per specimen were 118, 112, and 93. The three individuals shared only five identical sequences whereas the two specimens from Okinawa had 30 sequences in common. The total number of distinct conotoxin precursors and hormones for P. magus was 275, and were assigned to 53 conotoxin precursor and hormone superfamilies, two of which were new based on their divergent signal region. The superfamilies that had the highest number of precursors were M (42), O1 (34), T (27), A (18), O2 (17), and F (13), accounting for 55% of the total diversity. The D superfamily, previously thought to be exclusive of vermivorous cones was found in P. magus and contained a highly divergent mature region. Similarly, the A superfamily alpha 4/3 was found in P. magus despite the fact that it was previously postulated to be almost exclusive of the genus Rhombiconus. Differential expression analyses of P. magus compared to Chelyconus ermineus, the only fish-hunting cone from the Atlantic Ocean revealed that M and A2 superfamilies appeared to be more expressed in the former whereas the O2 superfamily was more expressed in the latter.
Collapse
|
7
|
Transcriptomic-Proteomic Correlation in the Predation-Evoked Venom of the Cone Snail, Conus imperialis. Mar Drugs 2019; 17:md17030177. [PMID: 30893765 PMCID: PMC6471084 DOI: 10.3390/md17030177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/23/2022] Open
Abstract
Individual variation in animal venom has been linked to geographical location, feeding habit, season, size, and gender. Uniquely, cone snails possess the remarkable ability to change venom composition in response to predatory or defensive stimuli. To date, correlations between the venom gland transcriptome and proteome within and between individual cone snails have not been reported. In this study, we use 454 pyrosequencing and mass spectrometry to decipher the transcriptomes and proteomes of the venom gland and corresponding predation-evoked venom of two specimens of Conus imperialis. Transcriptomic analyses revealed 17 conotoxin gene superfamilies common to both animals, including 5 novel superfamilies and two novel cysteine frameworks. While highly expressed transcripts were common to both specimens, variation of moderately and weakly expressed precursor sequences was surprisingly diverse, with one specimen expressing two unique gene superfamilies and consistently producing more paralogs within each conotoxin gene superfamily. Using a quantitative labelling method, conotoxin variability was compared quantitatively, with highly expressed peptides showing a strong correlation between transcription and translation, whereas peptides expressed at lower levels showed a poor correlation. These results suggest that major transcripts are subject to stabilizing selection, while minor transcripts are subject to diversifying selection.
Collapse
|
8
|
Abalde S, Tenorio MJ, Afonso CML, Zardoya R. Conotoxin Diversity in Chelyconus ermineus (Born, 1778) and the Convergent Origin of Piscivory in the Atlantic and Indo-Pacific Cones. Genome Biol Evol 2018; 10:2643-2662. [PMID: 30060147 PMCID: PMC6178336 DOI: 10.1093/gbe/evy150] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 12/27/2022] Open
Abstract
The transcriptome of the venom duct of the Atlantic piscivorous cone species Chelyconus ermineus (Born, 1778) was determined. The venom repertoire of this species includes at least 378 conotoxin precursors, which could be ascribed to 33 known and 22 new (unassigned) protein superfamilies, respectively. Most abundant superfamilies were T, W, O1, M, O2, and Z, accounting for 57% of all detected diversity. A total of three individuals were sequenced showing considerable intraspecific variation: each individual had many exclusive conotoxin precursors, and only 20% of all inferred mature peptides were common to all individuals. Three different regions (distal, medium, and proximal with respect to the venom bulb) of the venom duct were analyzed independently. Diversity (in terms of number of distinct members) of conotoxin precursor superfamilies increased toward the distal region whereas transcripts detected toward the proximal region showed higher expression levels. Only the superfamilies A and I3 showed statistically significant differential expression across regions of the venom duct. Sequences belonging to the alpha (motor cabal) and kappa (lightning-strike cabal) subfamilies of the superfamily A were mainly detected in the proximal region of the venom duct. The mature peptides of the alpha subfamily had the α4/4 cysteine spacing pattern, which has been shown to selectively target muscle nicotinic-acetylcholine receptors, ultimately producing paralysis. This function is performed by mature peptides having a α3/5 cysteine spacing pattern in piscivorous cone species from the Indo-Pacific region, thereby supporting a convergent evolution of piscivory in cones.
Collapse
Affiliation(s)
- Samuel Abalde
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Manuel J Tenorio
- Departamento CMIM y Q. Inorgánica-INBIO, Facultad de Ciencias, Universidad de Cadiz, Puerto Real, Spain
| | - Carlos M L Afonso
- Fisheries, Biodiversity and Conervation Group, Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
9
|
Zhang H, Fu Y, Wang L, Liang A, Chen S, Xu A. Identifying novel conopepetides from the venom ducts of Conus litteratus through integrating transcriptomics and proteomics. J Proteomics 2018; 192:346-357. [PMID: 30267875 DOI: 10.1016/j.jprot.2018.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
The venom ducts of marine cone snails secrete highly complex mixtures of cysteine-rich active peptides, which are generally known as conotoxins or conopeptides and provide a potential fertile resource for pharmacological neuroscience research and the discovery of new drugs. Previous studies have devoted substantial effort to the identification of novel conopeptides, and the 109 cone snail species have yielded 7000 known conopeptides to date. Here, we used de novo deep transcriptome sequencing analyses combined with traditional Sanger sequencing and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) to identify 30 distinct conopeptide precursors. Twenty of these were previously reported and the other 10 were novel conopeptide precursors. The study provides the first identification of the Con-ikot-ikot, NSF-bt05, O3 and I1 gene superfamilies in C. litteratus. A new putative superfamily was identified. In addition, the following cysteine frameworks were first identified in this study: CC-C-C-C-C-C-C-C-C-C-C-C-CC-C-C-C-C-C and C-C-C-C-C-CC-C. Several isomerases involved in post-translational modification of conopeptides were identified as well. The discovery of new conopeptides in C. litteratus will enhance our understanding of the conopeptide diversity in this particular clade of cone snails. We also found the existence of intraspecific variations in vermivorous species. Finally, the analysis strategy offers a relatively reliable workflow for screening for peptide drug candidates. SIGNIFICANCE: These novel conopeptides provide a potential resource for the development of new channel-targeting drugs. The intraspecific variation in C. litteratus enhance our understanding of the conopeptide diversity in this particular clade of cone snails. The identified three cysteine residues, which might participate in the formation of disulfide bonds, provide a clue to get the connectivity of cysteine frameworks. Finally, the analysis strategy offers a relatively reliable workflow for screening for peptide drug candidates.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China; Shenzhen Research Institute, Sun Yat-Sen University, People's Republic of China
| | - Yonggui Fu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China; Shenzhen Research Institute, Sun Yat-Sen University, People's Republic of China
| | - Lei Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China; Shenzhen Research Institute, Sun Yat-Sen University, People's Republic of China
| | - Anwen Liang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China; Shenzhen Research Institute, Sun Yat-Sen University, People's Republic of China.
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China; School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| |
Collapse
|
10
|
A novel α-conopeptide Eu1.6 inhibits N-type (Ca V2.2) calcium channels and exhibits potent analgesic activity. Sci Rep 2018; 8:1004. [PMID: 29343689 PMCID: PMC5772529 DOI: 10.1038/s41598-017-18479-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/06/2017] [Indexed: 01/13/2023] Open
Abstract
We here describe a novel α-conopeptide, Eu1.6 from Conus eburneus, which exhibits strong anti-nociceptive activity by an unexpected mechanism of action. Unlike other α-conopeptides that largely target nicotinic acetylcholine receptors (nAChRs), Eu1.6 displayed only weak inhibitory activity at the α3β4 and α7 nAChR subtypes and TTX-resistant sodium channels, and no activity at TTX-sensitive sodium channels in rat dorsal root ganglion (DRG) neurons, or opiate receptors, VR1, KCNQ1, L- and T-type calcium channels expressed in HEK293 cells. However, Eu1.6 inhibited high voltage-activated N-type calcium channel currents in isolated mouse DRG neurons which was independent of GABAB receptor activation. In HEK293 cells expressing CaV2.2 channels alone, Eu1.6 reversibly inhibited depolarization-activated Ba2+ currents in a voltage- and state-dependent manner. Inhibition of CaV2.2 by Eu1.6 was concentration-dependent (IC50 ~1 nM). Significantly, systemic administration of Eu1.6 at doses of 2.5–5.0 μg/kg exhibited potent analgesic activities in rat partial sciatic nerve injury and chronic constriction injury pain models. Furthermore, Eu1.6 had no significant side-effect on spontaneous locomotor activity, cardiac and respiratory function, and drug dependence in mice. These findings suggest α-conopeptide Eu1.6 is a potent analgesic for the treatment of neuropathic and chronic pain and opens a novel option for future analgesic drug design.
Collapse
|
11
|
Sensitive Detection of α-Conotoxin GI in Human Plasma Using a Solid-Phase Extraction Column and LC-MS/MS. Toxins (Basel) 2017; 9:toxins9080235. [PMID: 28788055 PMCID: PMC5577569 DOI: 10.3390/toxins9080235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/29/2022] Open
Abstract
α-conotoxin GI, a short peptide toxin in the venom of Conus geographus, is composed of 13 amino acids and two disulfide bonds. It is the most toxic component of Conus geographus venom with estimated lethal doses of 0.029–0.038 mg/kg for humans. There is currently no reported analytical method for this toxin. In the present study, a sensitive detection method was developed to quantify GI in human plasma using a solid-phase extraction (SPE) column (polystyrene–divinyl benzene copolymer) combined with liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) in the multiple reaction monitoring (MRM) mode. The plasma samples were treated with a protein precipitating solvent (methanol: acetonitrile = 50:50, v/v). GI in the solvent was efficiently extracted with an SPE column and was further separated by a Grace Alltima HP C18 (50 × 2.1 mm, 5 μm) column at a flow rate of 0.4 mL/min. Water (with 2% methanol) acetonitrile (with 0.1% acetic acid) was selected as the mobile phase combination used in a linear gradient system. α-Conotoxin GI was analyzed by an API 4000 triple quadrupole mass spectrometer. In the method validation, the linear calibration curve in the range of 2.0 to 300.0 ng/mL had correlation coefficients (r) above 0.996. The recovery was 57.6–66.8% for GI and the internal standard. The lower limit of quantification (LLOQ) was 2 ng/mL. The intra- and inter-batch precisions were below 6.31% and 8.61%, respectively, and the accuracies were all within acceptance. GI was stable in a bench-top autosampler through long-term storage and freeze/thaw cycles. Therefore, this method is specific, sensitive and reliable for quantitative analysis of α-conotoxin GI in human plasma.
Collapse
|
12
|
Franklin JB, Rajesh RP, Vinithkumar NV, Kirubagaran R. Identification of short single disulfide-containing contryphans from the venom of cone snails using de novo mass spectrometry-based sequencing methods. Toxicon 2017; 132:50-54. [PMID: 28400262 DOI: 10.1016/j.toxicon.2017.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Jayaseelan Benjamin Franklin
- Andaman and Nicobar Centre for Ocean Science and Technology, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Dollygunj, Port Blair 744103, India.
| | | | - Nambali Valsalan Vinithkumar
- Andaman and Nicobar Centre for Ocean Science and Technology, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Dollygunj, Port Blair 744103, India
| | - Ramalingam Kirubagaran
- Marine Biotechnology Division, Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Pallikaranai, Chennai 600100, India
| |
Collapse
|
13
|
Vijayasarathy M, Basheer SM, Franklin JB, Balaram P. Contryphan Genes and Mature Peptides in the Venom of Nine Cone Snail Species by Transcriptomic and Mass Spectrometric Analysis. J Proteome Res 2016; 16:763-772. [DOI: 10.1021/acs.jproteome.6b00776] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Soorej M. Basheer
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Jayaseelan Benjamin Franklin
- Andaman
and Nicobar Centre for Ocean Science and Technology, Earth System
Sciences Organisation-National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Port Blair 744103, India
| | - Padmanabhan Balaram
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
14
|
Meissner GO, de Resende Lara PT, Scott LPB, Braz ASK, Chaves-Moreira D, Matsubara FH, Soares EM, Trevisan-Silva D, Gremski LH, Veiga SS, Chaim OM. Molecular cloning and in silico characterization of knottin peptide, U2-SCRTX-Lit2, from brown spider (Loxosceles intermedia) venom glands. J Mol Model 2016; 22:196. [PMID: 27488102 DOI: 10.1007/s00894-016-3067-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 07/10/2016] [Indexed: 01/16/2023]
Abstract
Inhibitor cystine knots (ICKs) are a family of structural peptides with a large number of cysteine residues that form intramolecular disulfide bonds, resulting in a knot. These peptides are involved in a variety of biological functions including predation and defense, and are found in various species, such as spiders, scorpions, sea anemones, and plants. The Loxosceles intermedia venom gland transcriptome identified five groups of ICK peptides that represent more than 50 % of toxin-coding transcripts. Here, we describe the molecular cloning of U2-Sicaritoxin-Lit2 (U2-SCRTX-Lit2), bioinformatic characterization, structure prediction, and molecular dynamic analysis. The sequence of U2-SCRTX-Lit2 obtained from the transcriptome is similar to that of μ-Hexatoxin-Mg2, a peptide that inhibits the insect Nav channel. Bioinformatic analysis of sequences classified as ICK family members also showed a conservation of cysteine residues among ICKs from different spiders, with the three dimensional molecular model of U2-SCRTX-Lit2 similar in structure to the hexatoxin from μ-hexatoxin-Mg2a. Molecular docking experiments showed the interaction of U2-SCRTX-Lit2 to its predictable target-the Spodoptera litura voltage-gated sodium channel (SlNaVSC). After 200 ns of molecular dynamic simulation, the final structure of the complex showed stability in agreement with the experimental data. The above analysis corroborates the existence of a peptide toxin with insecticidal activity from a novel ICK family in L. intermedia venom and demonstrates that this peptide targets Nav channels.
Collapse
Affiliation(s)
- Gabriel Otto Meissner
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Pedro Túlio de Resende Lara
- Laboratory of Computational Biology and Bioinformatics, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Luis Paulo Barbour Scott
- Laboratory of Computational Biology and Bioinformatics, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Antônio Sérgio Kimus Braz
- Laboratory of Computational Biology and Bioinformatics, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Daniele Chaves-Moreira
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Fernando Hitomi Matsubara
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Eduardo Mendonça Soares
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Dilza Trevisan-Silva
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil.,Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Clinical Hospital of Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil
| | - Olga Meiri Chaim
- Department of Cell Biology, Federal University of Paraná, Jardim das Américas, 81531-990, Curitiba, Paraná, Brazil.
| |
Collapse
|
15
|
Yu S, Du T, Liu Z, Wu Q, Feng G, Dong M, Zhou X, Jiang L, Dai Q. Im10A, a short conopeptide isolated from Conus imperialis and possesses two highly concentrated disulfide bridges and analgesic activity. Peptides 2016; 81:15-20. [PMID: 27131596 DOI: 10.1016/j.peptides.2016.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/02/2016] [Accepted: 04/26/2016] [Indexed: 12/27/2022]
Abstract
In the present study, we isolated, synthesized and NMR structurally characterized a novel conopeptide Im10A consisting of 11 amino acids (NTICCEGCMCY-NH2) from Conus imperialis. Unlike other conopeptides with four cysteine residues, Im10A had only two residues in loop 1 and one residue in loop 2 (CC-loop1-C-loop2-C), which formed a stable disulfide connectivity "I-IV, II- III" (framework X) with a type I β-turn. Interestingly, Im10A exhibited 50.7% analgesic activity on rat partial sciatic nerve ligation (PNL) at 2h after Im10A administration. However, 10μM Im10A exhibited no apparent effect on neuronal nicotinic acetylcholine receptor, and it did not target DRG voltage-dependent sodium, potassium and calcium ion channels and opioid receptor. To our knowledge, Im10A had the most concentrated disulfide bridges among conopeptides with four cysteine residues. This finding provided a new motif for the future development of biomimetic compounds.
Collapse
Affiliation(s)
- Shuo Yu
- Beijing Institute of Biotechnology, Beijing 10071, PR China
| | - Tianpeng Du
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, Wuhan 430071, PR China
| | - Zhuguo Liu
- Beijing Institute of Biotechnology, Beijing 10071, PR China
| | - Qiaoling Wu
- Beijing Institute of Biotechnology, Beijing 10071, PR China
| | - Guixue Feng
- Beijing Institute of Biotechnology, Beijing 10071, PR China
| | - Mingxin Dong
- Beijing Institute of Biotechnology, Beijing 10071, PR China
| | - Xiaowei Zhou
- Beijing Institute of Biotechnology, Beijing 10071, PR China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, Wuhan 430071, PR China.
| | - Qiuyun Dai
- Beijing Institute of Biotechnology, Beijing 10071, PR China.
| |
Collapse
|
16
|
Phuong MA, Mahardika GN, Alfaro ME. Dietary breadth is positively correlated with venom complexity in cone snails. BMC Genomics 2016; 17:401. [PMID: 27229931 PMCID: PMC4880860 DOI: 10.1186/s12864-016-2755-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/19/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Although diet is believed to be a major factor underlying the evolution of venom, few comparative studies examine both venom composition and diet across a radiation of venomous species. Cone snails within the family, Conidae, comprise more than 700 species of carnivorous marine snails that capture their prey by using a cocktail of venomous neurotoxins (conotoxins or conopeptides). Venom composition across species has been previously hypothesized to be shaped by (a) prey taxonomic class (i.e., worms, molluscs, or fish) and (b) dietary breadth. We tested these hypotheses under a comparative phylogenetic framework using ecological data from past studies in conjunction with venom duct transcriptomes sequenced from 12 phylogenetically disparate cone snail species, including 10 vermivores (worm-eating), one molluscivore, and one generalist. RESULTS We discovered 2223 unique conotoxin precursor peptides that encoded 1864 unique mature toxins across all species, >90 % of which are new to this study. In addition, we identified two novel gene superfamilies and 16 novel cysteine frameworks. Each species exhibited unique venom profiles, with venom composition and expression patterns among species dominated by a restricted set of gene superfamilies and mature toxins. In contrast with the dominant paradigm for interpreting Conidae venom evolution, prey taxonomic class did not predict venom composition patterns among species. We also found a significant positive relationship between dietary breadth and measures of conotoxin complexity. CONCLUSIONS The poor performance of prey taxonomic class in predicting venom components suggests that cone snails have either evolved species-specific expression patterns likely as a consequence of the rapid evolution of conotoxin genes, or that traditional means of categorizing prey type (i.e., worms, mollusc, or fish) and conotoxins (i.e., by gene superfamily) do not accurately encapsulate evolutionary dynamics between diet and venom composition. We also show that species with more generalized diets tend to have more complex venoms and utilize a greater number of venom genes for prey capture. Whether this increased gene diversity confers an increased capacity for evolutionary change remains to be tested. Overall, our results corroborate the key role of diet in influencing patterns of venom evolution in cone snails and other venomous radiations.
Collapse
Affiliation(s)
- Mark A Phuong
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA.
| | - Gusti N Mahardika
- Animal Biomedical and Molecular Biology Laboratory, Faculty of Veterinary Medicine, Udayana University Bali, Jl Sesetan-Markisa 6, Denpasar, Bali, 80225, Indonesia
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
17
|
Prashanth JR, Dutertre S, Jin AH, Lavergne V, Hamilton B, Cardoso FC, Griffin J, Venter DJ, Alewood PF, Lewis RJ. The role of defensive ecological interactions in the evolution of conotoxins. Mol Ecol 2016; 25:598-615. [PMID: 26614983 DOI: 10.1111/mec.13504] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022]
Abstract
Venoms comprise of complex mixtures of peptides evolved for predation and defensive purposes. Remarkably, some carnivorous cone snails can inject two distinct venoms in response to predatory or defensive stimuli, providing a unique opportunity to study separately how different ecological pressures contribute to toxin diversification. Here, we report the extraordinary defensive strategy of the Rhizoconus subgenus of cone snails. The defensive venom from this worm-hunting subgenus is unusually simple, almost exclusively composed of αD-conotoxins instead of the ubiquitous αA-conotoxins found in the more complex defensive venom of mollusc- and fish-hunting cone snails. A similarly compartmentalized venom gland as those observed in the other dietary groups facilitates the deployment of this defensive venom. Transcriptomic analysis of a Conus vexillum venom gland revealed the αD-conotoxins as the major transcripts, with lower amounts of 15 known and four new conotoxin superfamilies also detected with likely roles in prey capture. Our phylogenetic and molecular evolution analysis of the αD-conotoxins from five subgenera of cone snails suggests they evolved episodically as part of a defensive strategy in the Rhizoconus subgenus. Thus, our results demonstrate an important role for defence in the evolution of conotoxins.
Collapse
Affiliation(s)
- J R Prashanth
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - S Dutertre
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, 4072, Australia.,Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier-CNRS, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - A H Jin
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - V Lavergne
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - B Hamilton
- Pathology, Mater Health Services, Raymond Terrace, South Brisbane, Qld, 4101, Australia.,Mater Research Institute, The University of Queensland, St. Lucia, Qld, 4072, Australia
| | - F C Cardoso
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - J Griffin
- ACRF Microscopy Facility, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - D J Venter
- Pathology, Mater Health Services, Raymond Terrace, South Brisbane, Qld, 4101, Australia.,Mater Research Institute, The University of Queensland, St. Lucia, Qld, 4072, Australia.,School of Medicine, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - P F Alewood
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - R J Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, 4072, Australia
| |
Collapse
|
18
|
Li L, Liu N, Ding R, Wang S, Liu Z, Li H, Zheng X, Dai Q. A novel 4/6-type alpha-conotoxin ViIA selectively inhibits nAchR α3β2 subtype. Acta Biochim Biophys Sin (Shanghai) 2015; 47:1023-8. [PMID: 26511093 DOI: 10.1093/abbs/gmv105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 08/24/2015] [Indexed: 01/01/2023] Open
Abstract
Conotoxins (CTxs) are typically small peptides composed of 12-50 amino acid residues with 2-5 disulfide bridges. Most of them potently and selectively target a wide variety of ion channels and membrane receptors. They are highly valued as neuropharmacological probes and in pharmaceutical development. In this work, a novel α4/6-CTx named ViIA (RDCCSNPPCAHNNPDC-NH2) was identified from a cDNA library of the venom ducts of Conus virgo (C. virgo). ViIA was then synthesized chemically and its disulfide connectivity was identified as 'C(1)-C(3), C(2)-C(4)'. Its molecular targets were further assessed using two-electrode voltage clamping. The results indicated that ViIA selectively inhibited nicotinic acetylcholine receptor (nAChR) α3β2 subtype with an IC50 of 845.5 nM, but did not target dorsal root ganglion sodium (Na(+))-, potassium (K(+))- or calcium (Ca(2+))-ion channels. Further structure-activity relationship analysis demonstrated that Arg(1) and His(11) but not Asp(2) were the functional residues. To the best of our knowledge, ViIA is the first 4/6 α-CTx that selectively inhibits nAChR α3β2 subtype. This finding expands the knowledge of targets of α4/6-family CTxs.
Collapse
Affiliation(s)
- Liang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China Beijing Institute of Biotechnology, Beijing 100071, China
| | - Na Liu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Rong Ding
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Shuo Wang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Zhuguo Liu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Haiying Li
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Qiuyun Dai
- Beijing Institute of Biotechnology, Beijing 100071, China
| |
Collapse
|
19
|
Kancherla AK, Meesala S, Jorwal P, Palanisamy R, Sikdar SK, Sarma SP. A Disulfide Stabilized β-Sandwich Defines the Structure of a New Cysteine Framework M-Superfamily Conotoxin. ACS Chem Biol 2015; 10:1847-60. [PMID: 25961405 DOI: 10.1021/acschembio.5b00226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of a new cysteine framework (-C-CC-C-C-C-) "M"-superfamily conotoxin, Mo3964, shows it to have a β-sandwich structure that is stabilized by inter-sheet cross disulfide bonds. Mo3964 decreases outward K(+) currents in rat dorsal root ganglion neurons and increases the reversal potential of the NaV1.2 channels. The structure of Mo3964 (PDB ID: 2MW7 ) is constructed from the disulfide connectivity pattern, i.e., 1-3, 2-5, and 4-6, that is hitherto undescribed for the "M"-superfamily conotoxins. The tertiary structural fold has not been described for any of the known conus peptides. NOE (549), dihedral angle (84), and hydrogen bond (28) restraints, obtained by measurement of (h3)JNC' scalar couplings, were used as input for structure calculation. The ensemble of structures showed a backbone root mean square deviation of 0.68 ± 0.18 Å, with 87% and 13% of the backbone dihedral (ϕ, ψ) angles lying in the most favored and additional allowed regions of the Ramachandran map. The conotoxin Mo3964 represents a new bioactive peptide fold that is stabilized by disulfide bonds and adds to the existing repertoire of scaffolds that can be used to design stable bioactive peptide molecules.
Collapse
Affiliation(s)
- Aswani K. Kancherla
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Srinu Meesala
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Pooja Jorwal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Ramasamy Palanisamy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Sujit K. Sikdar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Siddhartha P. Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
20
|
Optimized deep-targeted proteotranscriptomic profiling reveals unexplored Conus toxin diversity and novel cysteine frameworks. Proc Natl Acad Sci U S A 2015; 112:E3782-91. [PMID: 26150494 DOI: 10.1073/pnas.1501334112] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cone snails are predatory marine gastropods characterized by a sophisticated venom apparatus responsible for the biosynthesis and delivery of complex mixtures of cysteine-rich toxin peptides. These conotoxins fold into small highly structured frameworks, allowing them to potently and selectively interact with heterologous ion channels and receptors. Approximately 2,000 toxins from an estimated number of >70,000 bioactive peptides have been identified in the genus Conus to date. Here, we describe a high-resolution interrogation of the transcriptomes (available at www.ddbj.nig.ac.jp) and proteomes of the diverse compartments of the Conus episcopatus venom apparatus. Using biochemical and bioinformatic tools, we found the highest number of conopeptides yet discovered in a single Conus specimen, with 3,305 novel precursor toxin sequences classified into 9 known superfamilies (A, I1, I2, M, O1, O2, S, T, Z), and identified 16 new superfamilies showing unique signal peptide signatures. We were also able to depict the largest population of venom peptides containing the pharmacologically active C-C-CC-C-C inhibitor cystine knot and CC-C-C motifs (168 and 44 toxins, respectively), as well as 208 new conotoxins displaying odd numbers of cysteine residues derived from known conotoxin motifs. Importantly, six novel cysteine-rich frameworks were revealed which may have novel pharmacology. Finally, analyses of codon usage bias and RNA-editing processes of the conotoxin transcripts demonstrate a specific conservation of the cysteine skeleton at the nucleic acid level and provide new insights about the origin of sequence hypervariablity in mature toxin regions.
Collapse
|
21
|
Wang S, Zhao C, Liu Z, Wang X, Liu N, Du W, Dai Q. Structural and Functional Characterization of a Novel α-Conotoxin Mr1.7 from Conus marmoreus Targeting Neuronal nAChR α3β2, α9α10 and α6/α3β2β3 Subtypes. Mar Drugs 2015; 13:3259-75. [PMID: 26023835 PMCID: PMC4483627 DOI: 10.3390/md13063259] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/11/2015] [Indexed: 12/26/2022] Open
Abstract
In the present study, we synthesized and, structurally and functionally characterized a novel α4/7-conotoxin Mr1.7 (PECCTHPACHVSHPELC-NH2), which was previously identified by cDNA libraries from Conus marmoreus in our lab. The NMR solution structure showed that Mr1.7 contained a 310-helix from residues Pro7 to His10 and a type I β-turn from residues Pro14 to Cys17. Electrophysiological results showed that Mr1.7 selectively inhibited the α3β2, α9α10 and α6/α3β2β3 neuronal nicotinic acetylcholine receptors (nAChRs) with an IC50 of 53.1 nM, 185.7 nM and 284.2 nM, respectively, but showed no inhibitory activity on other nAChR subtypes. Further structure-activity studies of Mr1.7 demonstrated that the PE residues at the N-terminal sequence of Mr1.7 were important for modulating its selectivity, and the replacement of Glu2 by Ala resulted in a significant increase in potency and selectivity to the α3β2 nAChR. Furthermore, the substitution of Ser12 with Asn in the loop2 significantly increased the binding of Mr1.7 to α3β2, α3β4, α2β4 and α7 nAChR subtypes. Taken together, this work expanded our knowledge of selectivity and provided a new way to improve the potency and selectivity of inhibitors for nAChR subtypes.
Collapse
Affiliation(s)
- Shuo Wang
- Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Cong Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Zhuguo Liu
- Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Xuesong Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Na Liu
- Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Qiuyun Dai
- Beijing Institute of Biotechnology, Beijing 100071, China.
| |
Collapse
|
22
|
Kumar PS, Kumar DS, Umamaheswari S. A perspective on toxicology of Conus venom peptides. ASIAN PAC J TROP MED 2015; 8:337-51. [PMID: 26003592 DOI: 10.1016/s1995-7645(14)60342-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The evolutionarily unique and ecologically diverse family Conidae presents fundamental opportunities for marine pharmacology research and drug discovery. The focus of this investigation is to summarize the worldwide distribution of Conus and their species diversity with special reference to the Indian coast. In addition, this study will contribute to understanding the structural properties of conotoxin and therapeutic application of Conus venom peptides. Cone snails can inject a mix of various conotoxins and these venoms are their major weapon for prey capture, and may also have other biological purposes, and some of these conotoxins fatal to humans. Conus venoms contain a remarkable diversity of pharmacologically active small peptides; their targets are an iron channel and receptors in the neuromuscular system. Interspecific divergence is pronounced in venom peptide genes, which is generally attributed to their species specific biotic interactions. There is a notable interspecific divergence observed in venom peptide genes, which can be justified as of biotic interactions that stipulate species peculiar habitat and ecology of cone snails. There are several conopeptides used in clinical trials and one peptide (Ziconotide) has received FDA approval for treatment of pain. This perspective provides a comprehensive overview of the distribution of cone shells and focus on the molecular approach in documenting their taxonomy and diversity with special reference to geographic distribution of Indian cone snails, structure and properties of conopeptide and their pharmacological targets and future directions.
Collapse
Affiliation(s)
| | - Dhanabalan Senthil Kumar
- Department of Zoology, Kandaswami Kandar College, Paramathi Velur-638 182, Namakkal, Tamil Nadu, India
| | - Sundaresan Umamaheswari
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchurapalli, Tamil Nadu 620024, India
| |
Collapse
|
23
|
Natural compounds interacting with nicotinic acetylcholine receptors: from low-molecular weight ones to peptides and proteins. Toxins (Basel) 2015; 7:1683-701. [PMID: 26008231 PMCID: PMC4448168 DOI: 10.3390/toxins7051683] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 05/07/2015] [Indexed: 12/16/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) fulfill a variety of functions making identification and analysis of nAChR subtypes a challenging task. Traditional instruments for nAChR research are d-tubocurarine, snake venom protein α-bungarotoxin (α-Bgt), and α-conotoxins, neurotoxic peptides from Conus snails. Various new compounds of different structural classes also interacting with nAChRs have been recently identified. Among the low-molecular weight compounds are alkaloids pibocin, varacin and makaluvamines C and G. 6-Bromohypaphorine from the mollusk Hermissenda crassicornis does not bind to Torpedo nAChR but behaves as an agonist on human α7 nAChR. To get more selective α-conotoxins, computer modeling of their complexes with acetylcholine-binding proteins and distinct nAChRs was used. Several novel three-finger neurotoxins targeting nAChRs were described and α-Bgt inhibition of GABA-A receptors was discovered. Information on the mechanisms of nAChR interactions with the three-finger proteins of the Ly6 family was found. Snake venom phospholipases A2 were recently found to inhibit different nAChR subtypes. Blocking of nAChRs in Lymnaea stagnalis neurons was shown for venom C-type lectin-like proteins, appearing to be the largest molecules capable to interact with the receptor. A huge nAChR molecule sensible to conformational rearrangements accommodates diverse binding sites recognizable by structurally very different compounds.
Collapse
|
24
|
Conotoxin gene superfamilies. Mar Drugs 2014; 12:6058-101. [PMID: 25522317 PMCID: PMC4278219 DOI: 10.3390/md12126058] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/29/2014] [Accepted: 12/04/2014] [Indexed: 12/16/2022] Open
Abstract
Conotoxins are the peptidic components of the venoms of marine cone snails (genus Conus). They are remarkably diverse in terms of structure and function. Unique potency and selectivity profiles for a range of neuronal targets have made several conotoxins valuable as research tools, drug leads and even therapeutics, and has resulted in a concerted and increasing drive to identify and characterise new conotoxins. Conotoxins are translated from mRNA as peptide precursors, and cDNA sequencing is now the primary method for identification of new conotoxin sequences. As a result, gene superfamily, a classification based on precursor signal peptide identity, has become the most convenient method of conotoxin classification. Here we review each of the described conotoxin gene superfamilies, with a focus on the structural and functional diversity present in each. This review is intended to serve as a practical guide to conotoxin superfamilies and to facilitate interpretation of the increasing number of conotoxin precursor sequences being identified by targeted-cDNA sequencing and more recently high-throughput transcriptome sequencing.
Collapse
|
25
|
High accuracy mass spectrometry comparison of Conus bandanus and Conus marmoreus venoms from the South Central Coast of Vietnam. Toxicon 2013; 75:148-59. [DOI: 10.1016/j.toxicon.2013.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/10/2013] [Accepted: 06/11/2013] [Indexed: 11/20/2022]
|