1
|
Rodrigo AP, Moutinho Cabral I, Alexandre A, Costa PM. Exploration of Toxins from a Marine Annelid: An Analysis of Phyllotoxins and Accompanying Bioactives. Animals (Basel) 2024; 14:635. [PMID: 38396603 PMCID: PMC10885894 DOI: 10.3390/ani14040635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Proteinaceous toxins are peptides or proteins that hold great biotechnological value, evidenced by their ecological role, whether as defense or predation mechanisms. Bioprospecting using bioinformatics and omics may render screening for novel bioactives more expeditious, especially considering the immense diversity of toxin-secreting marine organisms. Eulalia sp. (Annelida: Phyllodocidae), a toxin bearing marine annelid, was recently shown to secrete cysteine-rich protein (Crisp) toxins (hitherto referred to as 'phyllotoxins') that can immobilize its prey. By analyzing and validating transcriptomic data, we narrowed the list of isolated full coding sequences of transcripts of the most abundant toxins or accompanying bioactives secreted by the species (the phyllotoxin Crisp, hyaluronidase, serine protease, and peptidases M12A, M13, and M12B). Through homology matching with human proteins, the biotechnological potential of the marine annelid's toxins and related proteins was tentatively associated with coagulative and anti-inflammatory responses for the peptidases PepM12A, SePr, PepM12B, and PepM13, and with the neurotoxic activity of Crisp, and finally, hyaluronidase was inferred to bear properties of an permeabilizing agent. The in silico analysis succeeded by validation by PCR and Sanger sequencing enabled us to retrieve cDNAs can may be used for the heterologous expression of these toxins.
Collapse
Affiliation(s)
- Ana P. Rodrigo
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; (I.M.C.); (A.A.)
- UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Inês Moutinho Cabral
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; (I.M.C.); (A.A.)
- UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - António Alexandre
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; (I.M.C.); (A.A.)
- UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Pedro M. Costa
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; (I.M.C.); (A.A.)
- UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
2
|
Ratibou Z, Inguimbert N, Dutertre S. Predatory and Defensive Strategies in Cone Snails. Toxins (Basel) 2024; 16:94. [PMID: 38393171 PMCID: PMC10892987 DOI: 10.3390/toxins16020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Cone snails are carnivorous marine animals that prey on fish (piscivorous), worms (vermivorous), or other mollusks (molluscivorous). They produce a complex venom mostly made of disulfide-rich conotoxins and conopeptides in a compartmentalized venom gland. The pharmacology of cone snail venom has been increasingly investigated over more than half a century. The rising interest in cone snails was initiated by the surprising high human lethality rate caused by the defensive stings of some species. Although a vast amount of information has been uncovered on their venom composition, pharmacological targets, and mode of action of conotoxins, the venom-ecology relationships are still poorly understood for many lineages. This is especially important given the relatively recent discovery that some species can use different venoms to achieve rapid prey capture and efficient deterrence of aggressors. Indeed, via an unknown mechanism, only a selected subset of conotoxins is injected depending on the intended purpose. Some of these remarkable venom variations have been characterized, often using a combination of mass spectrometry and transcriptomic methods. In this review, we present the current knowledge on such specific predatory and defensive venoms gathered from sixteen different cone snail species that belong to eight subgenera: Pionoconus, Chelyconus, Gastridium, Cylinder, Conus, Stephanoconus, Rhizoconus, and Vituliconus. Further studies are needed to help close the gap in our understanding of the evolved ecological roles of many cone snail venom peptides.
Collapse
Affiliation(s)
- Zahrmina Ratibou
- CRIOBE, UAR CNRS-EPHE-UPVD 3278, University of Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860 Perpignan, France;
| | - Nicolas Inguimbert
- CRIOBE, UAR CNRS-EPHE-UPVD 3278, University of Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860 Perpignan, France;
| | | |
Collapse
|
3
|
Bittenbinder MA, Bergkamp ND, Slagboom J, Bebelman JPM, Casewell NR, Siderius MH, Smit MJ, Kool J, Vonk FJ. Monitoring Snake Venom-Induced Extracellular Matrix Degradation and Identifying Proteolytically Active Venom Toxins Using Fluorescently Labeled Substrates. BIOLOGY 2023; 12:765. [PMID: 37372050 DOI: 10.3390/biology12060765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023]
Abstract
Snakebite envenoming is an important public health issue with devastating consequences and annual mortality rates that range between 81,000 and 138,000. Snake venoms may cause a range of pathophysiological effects affecting the nervous system and the cardiovascular system. Moreover, snake venom may have tissue-damaging activities that result in lifelong morbidities such as amputations, muscle degeneration, and organ malfunctioning. The tissue-damaging components in snake venoms comprise multiple toxin classes with various molecular targets including cellular membranes and the extracellular matrix (ECM). In this study, we present multiple assay formats that enable investigation of snake venom-induced ECM degradation using a variety of (dye-quenched) fluorescently labeled ECM components. Using a combinatorial approach, we were able to characterise different proteolytic profiles for different medically relevant snake venoms, followed by identification of the responsible components within the snake venoms. This workflow could provide valuable insights into the key mechanisms by which proteolytic venom components exert their effects and could therefore prove useful for the development of effective snakebite treatments against this severe pathology.
Collapse
Affiliation(s)
- Mátyás A Bittenbinder
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1081 HZ Amsterdam, The Netherlands
| | - Nick D Bergkamp
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Julien Slagboom
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1081 HZ Amsterdam, The Netherlands
| | - Jan Paul M Bebelman
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Marco H Siderius
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1081 HZ Amsterdam, The Netherlands
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
4
|
Fiorotti HB, Figueiredo SG, Campos FV, Pimenta DC. Cone snail species off the Brazilian coast and their venoms: a review and update. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20220052. [PMID: 36756364 PMCID: PMC9897318 DOI: 10.1590/1678-9199-jvatitd-2022-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
The genus Conus includes over 900 species of marine invertebrates known as cone snails, whose venoms are among the most powerful described so far. This potency is mainly due to the concerted action of hundreds of small bioactive peptides named conopeptides, which target different ion channels and membrane receptors and thus interfere with crucial physiological processes. By swiftly harpooning and injecting their prey and predators with such deadly cocktails, the slow-moving cone snails guarantee their survival in the harsh, competitive marine environment. Each cone snail species produces a unique venom, as the mature sequences of conopeptides from the venoms of different species share very little identity. This biochemical diversity, added to the numerous species and conopeptides contained in their venoms, results in an immense biotechnological and therapeutic potential, still largely unexplored. That is especially true regarding the bioprospection of the venoms of cone snail species found off the Brazilian coast - a region widely known for its biodiversity. Of the 31 species described in this region so far, only four - Conus cancellatus, Conus regius, Conus villepinii, and Conus ermineus - have had their venoms partially characterized, and, although many bioactive molecules have been identified, only a few have been actually isolated and studied. In addition to providing an overview on all the cone snail species found off the Brazilian coast to date, this review compiles the information on the structural and pharmacological features of conopeptides and other molecules identified in the venoms of the four aforementioned species, paving the way for future studies.
Collapse
Affiliation(s)
- Helena B. Fiorotti
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São
Paulo, SP, Brazil.,Graduate Program in Biochemistry, Laboratory of Protein Chemistry
(LQP), Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Suely G. Figueiredo
- Graduate Program in Biochemistry, Laboratory of Protein Chemistry
(LQP), Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Fabiana V. Campos
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São
Paulo, SP, Brazil.,Graduate Program in Biochemistry, Laboratory of Protein Chemistry
(LQP), Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Daniel C. Pimenta
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São
Paulo, SP, Brazil.,Correspondence:
| |
Collapse
|
5
|
Vonk FJ, Bittenbinder MA, Kerkkamp HMI, Grashof DGB, Archer JP, Afonso S, Richardson MK, Kool J, van der Meijden A. A non-lethal method for studying scorpion venom gland transcriptomes, with a review of potentially suitable taxa to which it can be applied. PLoS One 2021; 16:e0258712. [PMID: 34793470 PMCID: PMC8601437 DOI: 10.1371/journal.pone.0258712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Scorpion venoms are mixtures of proteins, peptides and small molecular compounds with high specificity for ion channels and are therefore considered to be promising candidates in the venoms-to-drugs pipeline. Transcriptomes are important tools for studying the composition and expression of scorpion venom. Unfortunately, studying the venom gland transcriptome traditionally requires sacrificing the animal and therefore is always a single snapshot in time. This paper describes a new way of generating a scorpion venom gland transcriptome without sacrificing the animal, thereby allowing the study of the transcriptome at various time points within a single individual. By comparing these venom-derived transcriptomes to the traditional whole-telson transcriptomes we show that the relative expression levels of the major toxin classes are similar. We further performed a multi-day extraction using our proposed method to show the possibility of doing a multiple time point transcriptome analysis. This allows for the study of patterns of toxin gene activation over time a single individual, and allows assessment of the effects of diet, season and other factors that are known or likely to influence intraindividual venom composition. We discuss the gland characteristics that may allow this method to be successful in scorpions and provide a review of other venomous taxa to which this method may potentially be successfully applied.
Collapse
Affiliation(s)
- Freek J. Vonk
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Faculty of Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Animal Science and Health Cluster, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Mátyás A. Bittenbinder
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Faculty of Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Harald M. I. Kerkkamp
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Animal Science and Health Cluster, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | - John P. Archer
- CIBIO-InBIO, Biopolis, Universidade do Porto, Porto, Portugal
| | - Sandra Afonso
- CIBIO-InBIO, Biopolis, Universidade do Porto, Porto, Portugal
| | - Michael K. Richardson
- Animal Science and Health Cluster, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Jeroen Kool
- Faculty of Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
6
|
Rajabi H, Zolgharnein H, Ronagh MT, Amiri Moghaddam J, Crüsemann M. Conus coronatus and Conus frigidus Venom: A New Source of Conopeptides with Analgesic Activity. Avicenna J Med Biotechnol 2020; 12:179-185. [PMID: 32695281 PMCID: PMC7368110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Cone snails are a natural source of complex peptides with analgesic properties called conotoxins. These peptides are secreted in a complex venomic mixture and are predominantly smaller than 5 kDa. The present study aimed to document the analgesic activity of two species of Conus coronatus (C. coronatus) and Conus frigidus (C. frigidus) venom collected off the Iranian coast in a mouse behavioral test. METHODS Conotoxin containing fractions was extracted from the venom ducts and initially purified by column chromatography. The analgesic effect of the fractions was determined on formalin pain model and hot-plate test. RESULTS The results led to the identification of four fractions with analgesic activity in C. coronatus and two in C. frigidus. Only one fraction was able to reduce the flinching and licking in both acute pain and chronic pain phases of the formalin test. Moreover, the activity of this fraction remained 30 minutes on the hot-plate test. Purification of the fractions was carried out by RP-HPLC. LC-ESI-MS analysis of the fractions showed that the conotoxins of the analgesic fraction had molecular weights not previously reported. CONCLUSION The findings give insight into the venom of two previously under-investigated Conus species and reveal the therapeutic potential of the containing conopeptides.
Collapse
Affiliation(s)
- Halimeh Rajabi
- Abadan University of Medical Sciences, Abadan, Iran,Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran,Corresponding author: Halimeh Rajabi, Ph.D., Abadan University of Medical Sciences, Abadan, Iran, Tel: +98 9166313458, E-mail: ,
| | - Hossein Zolgharnein
- Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | | | - Jamshid Amiri Moghaddam
- Leibniz Institute for Natural Product Research and Infection Biology- Hans Knöll Institute, Jena, Germany
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Rungsa P, Janpan P, Saengkun Y, Jangpromma N, Klaynongsruang S, Patramanon R, Uawonggul N, Daduang J, Daduang S. Heterologous expression and mutagenesis of recombinant Vespa affinis hyaluronidase protein (rVesA2). J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190030. [PMID: 31839801 PMCID: PMC6892566 DOI: 10.1590/1678-9199-jvatitd-2019-0030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
Background Crude venom of the banded tiger waspVespa affinis contains a variety of enzymes including hyaluronidases, commonly known as spreading factors. Methods The cDNA cloning, sequence analysis and structural modelling of V. affinis venom hyaluronidase (VesA2) were herein described. Moreover, heterologous expression and mutagenesis of rVesA2 were performed. Results V. affinis venom hyaluronidase full sequence is composed of 331 amino acids, with four predicted N-glycosylation sites. It was classified into the glycoside hydrolase family 56. The homology modelling exhibited a central core (α/β)7 composed of Asp107 and Glu109, acting as the catalytic residues. The recombinant protein was successfully expressed in E. coli with hyaluronidase activity. A recombinant mutant type with the double point mutation, Asp107Asn and Glu109Gln, completely lost this activity. The hyaluronidase from crude venom exhibited activity from pH 2 to 7. The recombinant wild type showed its maximal activity at pH 2 but decreased rapidly to nearly zero at pH 3 and was completely lost at pH 4. Conclusion The recombinant wild-type protein showed its maximal activity at pH 2, more acidic pH than that found in the crude venom. The glycosylation was predicted to be responsible for the pH optimum and thermal stability of the enzymes activity.
Collapse
Affiliation(s)
- Prapenpuksiri Rungsa
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.,Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Piyapon Janpan
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.,Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Yutthakan Saengkun
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.,Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Rina Patramanon
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nunthawun Uawonggul
- Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Jureerut Daduang
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.,Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
8
|
Proteomic Analysis of Novel Components of Nemopilema nomurai Jellyfish Venom: Deciphering the Mode of Action. Toxins (Basel) 2019; 11:toxins11030153. [PMID: 30857234 PMCID: PMC6468547 DOI: 10.3390/toxins11030153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
Nowadays, proliferation of jellyfish has become a severe matter in many coastal areas around the world. Jellyfish Nemopilema nomurai is one of the most perilous organisms and leads to significant deleterious outcomes such as harm to the fishery, damage the coastal equipment, and moreover, its envenomation can be hazardous to the victims. Till now, the components of Nemopilema nomurai venom (NnV) are unknown owing to scant transcriptomics and genomic data. In the current research, we have explored a proteomic approach to identify NnV components and their interrelation with pathological effects caused by the jellyfish sting. Altogether, 150 proteins were identified, comprising toxins and other distinct proteins that are substantial in nematocyst genesis and nematocyte growth by employing two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI/TOF/MS). The identified toxins are phospholipase A2, phospholipase D Li Sic Tox beta IDI, a serine protease, putative Kunitz-type serine protease inhibitor, disintegrin and metalloproteinase, hemolysin, leukotoxin, three finger toxin MALT0044C, allergens, venom prothrombin activator trocarin D, tripeptide Gsp 9.1, and along with other toxin proteins. These toxins are relatively well characterized in the venoms of other poisonous species to induce pathogenesis, hemolysis, inflammation, proteolysis, blood coagulation, cytolysis, hemorrhagic activity, and type 1 hypersensitivity, suggesting that these toxins in NnV can also cause similar deleterious consequences. Our proteomic works indicate that NnV protein profile represents valuable source which leads to better understanding the clinical features of the jellyfish stings. As one of the largest jellyfish in the world, Nemopilema nomurai sting is considered to be harmful to humans due to its potent toxicity. The identification and functional characterization of its venom components have been poorly described and are beyond our knowledge. Here is the first report demonstrating the methodical overview of NnV proteomics research, providing significant information to understand the mechanism of NnV envenomation. Our proteomics findings can provide a platform for novel protein discovery and development of practical ways to deal with jellyfish stings on human beings.
Collapse
|
9
|
Möller C, Davis WC, Clark E, DeCaprio A, Marí F. Conodipine-P1-3, the First Phospholipases A 2 Characterized from Injected Cone Snail Venom. Mol Cell Proteomics 2019; 18:876-891. [PMID: 30765458 DOI: 10.1074/mcp.ra118.000972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 02/06/2019] [Indexed: 12/30/2022] Open
Abstract
The phospholipase A2 (PLA2s) superfamily are ubiquitous small enzymes that catalyze the hydrolysis of phospholipids at the sn-2 ester bond. PLA2s in the venom of cone snails (conodipines, Cdpi) are composed of two chains termed as alpha and beta subunits. Conodipines are categorized within the group IX of PLA2s. Here we describe the purification and biochemical characterization of three conodipines (Cdpi-P1, -P2 and -P3) isolated from the injected venom of Conus purpurascens Using proteomics methods, we determined the full sequences of all three conodipines. Conodipine-P1-3 have conserved consensus catalytic domain residues, including the Asp/His dyad. Additionally, these enzymes are expressed as a mixture of proline hydroxylated isoforms. The activities of the native Conodipine-Ps were evaluated by conventional colorimetric and by MS-based methods, which provide the first detailed cone snail venom conodipine activity monitored by mass spectrometry. Conodipines can have medicinal applications such inhibition of cancer proliferation, bacterial and viral infections among others.
Collapse
Affiliation(s)
- Carolina Möller
- From the ‡Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina, 29412
| | - W Clay Davis
- From the ‡Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina, 29412
| | - Evan Clark
- §Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, Florida, 33431
| | - Anthony DeCaprio
- ¶Department of Chemistry and Biochemistry, Florida International University, SW 8th St, Miami, Florida, 33119
| | - Frank Marí
- From the ‡Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina, 29412;.
| |
Collapse
|
10
|
Isolation and characterization of Conohyal-P1, a hyaluronidase from the injected venom of Conus purpurascens. J Proteomics 2017; 164:73-84. [PMID: 28479398 DOI: 10.1016/j.jprot.2017.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/13/2017] [Accepted: 05/02/2017] [Indexed: 11/21/2022]
Abstract
Hyaluronidases are ubiquitous enzymes commonly found in venom and their main function is to degrade hyaluran, which is the major glycosaminoglycan of the extracellular matrix in animal tissues. Here we describe the purification and characterization of a 60kDa hyaluronidase found in the injected venom from Conus purpurascens, Conohyal-P1. Using a combined strategy based on transcriptomic and proteomic analysis, we determined the Conohyal-P1 sequence. Conohyal-P1 has conserved consensus catalytic and positioning domain residues characteristic of hyaluronidases and a C-terminus EGF-like domain. Additionally, the enzyme is expressed as a mixture of glycosylated isoforms at five asparagine sites. The activity of the native Conohyal-P1 was assess MS-based methods and confirmed by classical turbidimetric methods. The MS-based assay is particularly sensitive and provides the first detailed analysis of a venom hyaluronidase activity monitored with this method. The discovery of new hyaluronidases and the development of techniques to evaluate their performance can advance several therapeutic procedures, as these enzymes are widely used for enhanced drug delivery applications. BIOLOGICAL SIGNIFICANCE Cone snail venom is a remarkable source of therapeutically important molecules, as is the case of conotoxins, which have undergone extensive clinical trials for several applications. In addition to the conotoxins, a large array of proteins have been reported in the venom of several species of cone snails, including enzymes that were found in dissected and injected Conus venom. Here we describe the isolation and characterization of the hyaluronidase Conohyal-P1 from the injected venom of C. purpurascens. We employed a combined transcriptomic and proteomic analysis to obtain the full sequence of this hyaluronidase. The activity of Conohyal-P1 was assessed by a mass spectrometry-based method, which provide the first detailed venom hyaluronidase activity analysis monitored by mass spectrometry allowing the visualization of the substrate degradation by the enzyme.
Collapse
|
11
|
Aili SR, Touchard A, Petitclerc F, Dejean A, Orivel J, Padula MP, Escoubas P, Nicholson GM. Combined Peptidomic and Proteomic Analysis of Electrically Stimulated and Manually Dissected Venom from the South American Bullet Ant Paraponera clavata. J Proteome Res 2017; 16:1339-1351. [DOI: 10.1021/acs.jproteome.6b00948] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Samira R. Aili
- Neurotoxin
Research Group, School of Life Sciences, University of Technology Sydney, New South Wales 2007, Australia
| | - Axel Touchard
- CNRS,
UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech,
Cirad, INRA, Université des Antilles, Université de Guyane, Université des Antilles, 97310 Kourou, France
| | - Frédéric Petitclerc
- CNRS,
UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech,
Cirad, INRA, Université des Antilles, Université de Guyane, Université des Antilles, 97310 Kourou, France
| | - Alain Dejean
- CNRS,
UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech,
Cirad, INRA, Université des Antilles, Université de Guyane, Université des Antilles, 97310 Kourou, France
- Ecolab, Université de Toulouse, CNRS, INPT, UPS, 31400 Toulouse, France
| | - Jérôme Orivel
- CNRS,
UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech,
Cirad, INRA, Université des Antilles, Université de Guyane, Université des Antilles, 97310 Kourou, France
| | - Matthew P. Padula
- Proteomics
Core Facility, Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| | - Pierre Escoubas
- VenomeTech, 473 Route des Dolines — Villa
3, Valbonne 06560, France
| | - Graham M. Nicholson
- Neurotoxin
Research Group, School of Life Sciences, University of Technology Sydney, New South Wales 2007, Australia
| |
Collapse
|
12
|
Intraspecific variations in Conus purpurascens injected venom using LC/MALDI-TOF-MS and LC-ESI-TripleTOF-MS. Anal Bioanal Chem 2015; 407:6105-16. [PMID: 26048056 DOI: 10.1007/s00216-015-8787-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/07/2015] [Accepted: 05/18/2015] [Indexed: 12/31/2022]
Abstract
The venom of cone snails is composed of highly modified peptides (conopeptides) that target a variety of ion channels and receptors. The venom of these marine gastropods represents a largely untapped resource of bioactive compounds of potential pharmaceutical value. Here, we use a combination of bioanalytical techniques to uncover the extent of venom expression variability in Conus purpurascens, a fish-hunting cone snail species. The injected venom of nine specimens of C. purpurascens was separated by reversed-phase high-performance liquid chromatography (RP-HPLC), and fractions were analyzed using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) in parallel with liquid chromatography-electrospray ionization (LC-ESI)-TripleTOF-MS to compare standard analytical protocols used in preparative bioassay-guided fractionations with a deeper peptidomic analysis. Here, we show that C. purpurascens exhibits pronounced intraspecific venom variability. RP-HPLC fractionation followed by MALDI-TOF-MS analysis of the injected venom of these nine specimens identified 463 distinct masses, with none common to all specimens. Using LC-ESI-TripleTOF-MS, the injected venom of these nine specimens yielded a total of 5517 unique masses. We also compare the injected venom of two specimens with their corresponding dissected venom. We found 2566 and 1990 unique masses for the dissected venom compared to 941 and 1959 masses in their corresponding injected venom. Of these, 742 and 1004 masses overlapped between the dissected and injected venom, respectively. The results indicate that larger conopeptide libraries can be assessed by studying multiple individuals of a given cone snail species. This expanded library of conopeptides enhances the opportunities for discovery of molecular modulators with direct relevance to human therapeutics. Graphical Abstract The venom of cone snails are extraordinarily complex mixtures of highly modified peptides. Venom analysis requires separation through RP-HPLC followed by MALDI-TOF mass spectrometry or direct analysis using LC-ESI-TripleTOF-MS. Using these techniques, venom intraspecific variability and comparison between injected and dissected were assessed.
Collapse
|
13
|
Kumar PS, Kumar DS, Umamaheswari S. A perspective on toxicology of Conus venom peptides. ASIAN PAC J TROP MED 2015; 8:337-51. [PMID: 26003592 DOI: 10.1016/s1995-7645(14)60342-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The evolutionarily unique and ecologically diverse family Conidae presents fundamental opportunities for marine pharmacology research and drug discovery. The focus of this investigation is to summarize the worldwide distribution of Conus and their species diversity with special reference to the Indian coast. In addition, this study will contribute to understanding the structural properties of conotoxin and therapeutic application of Conus venom peptides. Cone snails can inject a mix of various conotoxins and these venoms are their major weapon for prey capture, and may also have other biological purposes, and some of these conotoxins fatal to humans. Conus venoms contain a remarkable diversity of pharmacologically active small peptides; their targets are an iron channel and receptors in the neuromuscular system. Interspecific divergence is pronounced in venom peptide genes, which is generally attributed to their species specific biotic interactions. There is a notable interspecific divergence observed in venom peptide genes, which can be justified as of biotic interactions that stipulate species peculiar habitat and ecology of cone snails. There are several conopeptides used in clinical trials and one peptide (Ziconotide) has received FDA approval for treatment of pain. This perspective provides a comprehensive overview of the distribution of cone shells and focus on the molecular approach in documenting their taxonomy and diversity with special reference to geographic distribution of Indian cone snails, structure and properties of conopeptide and their pharmacological targets and future directions.
Collapse
Affiliation(s)
| | - Dhanabalan Senthil Kumar
- Department of Zoology, Kandaswami Kandar College, Paramathi Velur-638 182, Namakkal, Tamil Nadu, India
| | - Sundaresan Umamaheswari
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchurapalli, Tamil Nadu 620024, India
| |
Collapse
|
14
|
Biass D, Violette A, Hulo N, Lisacek F, Favreau P, Stöcklin R. Uncovering Intense Protein Diversification in a Cone Snail Venom Gland Using an Integrative Venomics Approach. J Proteome Res 2015; 14:628-38. [DOI: 10.1021/pr500583u] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Daniel Biass
- Atheris Laboratories, case postale
314, CH-1233 Bernex-Geneva, Switzerland
| | - Aude Violette
- Atheris Laboratories, case postale
314, CH-1233 Bernex-Geneva, Switzerland
| | - Nicolas Hulo
- Atheris Laboratories, case postale
314, CH-1233 Bernex-Geneva, Switzerland
| | - Frédérique Lisacek
- Proteome
Informatics Group, Swiss Institute of Bioinformatics, rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
- Section
of Biology, University of Geneva, CH-1211 Geneva
4, Switzerland
| | - Philippe Favreau
- Atheris Laboratories, case postale
314, CH-1233 Bernex-Geneva, Switzerland
| | - Reto Stöcklin
- Atheris Laboratories, case postale
314, CH-1233 Bernex-Geneva, Switzerland
| |
Collapse
|
15
|
Jin AH, Dutertre S, Kaas Q, Lavergne V, Kubala P, Lewis RJ, Alewood PF. Transcriptomic messiness in the venom duct of Conus miles contributes to conotoxin diversity. Mol Cell Proteomics 2013; 12:3824-33. [PMID: 24043424 DOI: 10.1074/mcp.m113.030353] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Marine cone snails have developed sophisticated chemical strategies to capture prey and defend themselves against predators. Among the vast array of bioactive molecules in their venom, peptide components called conotoxins or conopeptides dominate, with many binding with high affinity and selectivity to a broad range of cellular targets, including receptors and transporters of the nervous system. Whereas the conopeptide gene precursor organization has a conserved topology, the peptides in the venom duct are highly processed. Indeed, deep sequencing transcriptomics has uncovered on average fewer than 100 toxin gene precursors per species, whereas advanced proteomics has revealed >10-fold greater diversity at the peptide level. In the present study, second-generation sequencing technologies coupled to highly sensitive mass spectrometry methods were applied to rapidly uncover the conopeptide diversity in the venom of a worm-hunting species, Conus miles. A total of 662 putative conopeptide encoded sequences were retrieved from transcriptomic data, comprising 48 validated conotoxin sequences that clustered into 10 gene superfamilies, including 3 novel superfamilies and a novel cysteine framework (C-C-C-CCC-C-C) identified at both transcript and peptide levels. A surprisingly large number of conopeptide gene sequences were expressed at low levels, including a series of single amino acid variants, as well as sequences containing deletions and frame and stop codon shifts. Some of the toxin variants generate alternative cleavage sites, interrupted or elongated cysteine frameworks, and highly variable isoforms within families that could be identified at the peptide level. Together with the variable peptide processing identified previously, background genetic and phenotypic levels of biological messiness in venoms contribute to the hypervariability of venom peptides and their ability to evolve rapidly.
Collapse
Affiliation(s)
- Ai-hua Jin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Safavi-Hemami H, Möller C, Marí F, Purcell AW. High molecular weight components of the injected venom of fish-hunting cone snails target the vascular system. J Proteomics 2013; 91:97-105. [PMID: 23872086 DOI: 10.1016/j.jprot.2013.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/26/2013] [Accepted: 07/10/2013] [Indexed: 11/29/2022]
Abstract
UNLABELLED The venom of marine cone snails is a rich source of pharmacotherapeutic compounds with striking target specificity and functional diversity. Small, disulfide-rich peptide toxins are the most well characterized active compounds in cone snail venom. However, reports on the presence of larger polypeptides have recently emerged. The majority of these studies have focused on the content of the dissected venom gland rather than the injected venom itself. Recent breakthroughs in the sensitivity of protein and nucleotide sequencing techniques allow for the exploration of the proteomic diversity of injected venom. Using mass spectrometric analysis of injected venoms of the two fish-hunting cone snails Conus purpurascens and Conus ermineus, we demonstrate the presence of angiotensin-converting enzyme-1 (ACE-1) and endothelin converting enzyme-1 (ECE-1), metalloproteases that activate potent vasoconstrictive peptides. ACE activity was confirmed in the venom of C. purpurascens and was significantly reduced in venom preincubated with the ACE inhibitor captopril. Reverse-transcription PCR demonstrated that these enzymes are expressed in the venom glands of other cone snail species with different prey preferences. These findings strongly suggest that cone snails employ compounds that cause disruption of cardiovascular function as part of their complex envenomation strategy, leading to the enhancement of neurotropic peptide toxin activity. BIOLOGICAL SIGNIFICANCE To our knowledge, this is the first study to show the presence of ACE and ECE in the venom of cone snails. Identification of these vasoactive peptide-releasing proteases in the injected venoms of two fish-hunting cone snails highlights their role in envenomation and enhances our understanding of the complex hunting strategies utilized by these marine predators. Our findings on the expression of these enzymes in other cone snail species suggests an important biological role of ACE and ECE in these animals and points towards recruitment into venom from general physiological processes.
Collapse
Affiliation(s)
- Helena Safavi-Hemami
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010 Victoria, Australia.
| | | | | | | |
Collapse
|