1
|
Cavalcante JS, de Almeida DEG, Santos-Filho NA, Sartim MA, de Almeida Baldo A, Brasileiro L, Albuquerque PL, Oliveira SS, Sachett JAG, Monteiro WM, Ferreira RS. Crosstalk of Inflammation and Coagulation in Bothrops Snakebite Envenoming: Endogenous Signaling Pathways and Pathophysiology. Int J Mol Sci 2023; 24:11508. [PMID: 37511277 PMCID: PMC10380640 DOI: 10.3390/ijms241411508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 07/30/2023] Open
Abstract
Snakebite envenoming represents a major health problem in tropical and subtropical countries. Considering the elevated number of accidents and high morbidity and mortality rates, the World Health Organization reclassified this disease to category A of neglected diseases. In Latin America, Bothrops genus snakes are mainly responsible for snakebites in humans, whose pathophysiology is characterized by local and systemic inflammatory and degradative processes, triggering prothrombotic and hemorrhagic events, which lead to various complications, organ damage, tissue loss, amputations, and death. The activation of the multicellular blood system, hemostatic alterations, and activation of the inflammatory response are all well-documented in Bothrops envenomings. However, the interface between inflammation and coagulation is still a neglected issue in the toxinology field. Thromboinflammatory pathways can play a significant role in some of the major complications of snakebite envenoming, such as stroke, venous thromboembolism, and acute kidney injury. In addition to exacerbating inflammation and cell interactions that trigger vaso-occlusion, ischemia-reperfusion processes, and, eventually, organic damage and necrosis. In this review, we discuss the role of inflammatory pathways in modulating coagulation and inducing platelet and leukocyte activation, as well as the inflammatory production mediators and induction of innate immune responses, among other mechanisms that are altered by Bothrops venoms.
Collapse
Affiliation(s)
- Joeliton S Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Denis Emanuel Garcia de Almeida
- Department of Bioprocess and Biotechnology, School of Agriculture, Agronomic Sciences School, São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Norival A Santos-Filho
- Institute of Chemistry, São Paulo State University (UNESP-Univ Estadual Paulista), Araraquara 14800-900, São Paulo, Brazil
| | - Marco Aurélio Sartim
- Laboratory of Bioprospection, University Nilton Lins, Manaus 69058-030, Amazonas, Brazil
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Amanda de Almeida Baldo
- Institute of Biosciences, São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Lisele Brasileiro
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Polianna L Albuquerque
- Toxicological Information and Assistance Center, Instituto Doutor Jose Frota Hospital, Fortaleza 60025-061, Ceará, Brazil
- Faculty of Medicine, University of Fortaleza, Fortaleza 60430-140, Ceará, Brazil
| | - Sâmella S Oliveira
- Research Management, Hospital Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-001, Amazonas, Brazil
| | - Jacqueline Almeida Gonçalves Sachett
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Wuelton Marcelo Monteiro
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Rui Seabra Ferreira
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
- Center for Translational Science and Development of Biopharmaceuticals FAPESP/CEVAP-UNESP, Botucatu 18610-307, São Paulo, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18610-307, São Paulo, Brazil
| |
Collapse
|
2
|
Dias ÊR, de Oliveira LA, Sales Lauria PS, Bordon KDCF, Rodrigues Domênico AM, da Silva Guerreiro ML, Wiezel GA, Cardoso IA, Rossini BC, Marino CL, Pimenta DC, Arantes EC, Casais-e-Silva LL, Branco A, dos Santos LD, Biondi I. Bothrops leucurus snake venom protein profile, isolation and biological characterization of its major toxin PLA2s-likeds. Toxicon 2022; 213:27-42. [DOI: 10.1016/j.toxicon.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022]
|
3
|
Abstract
Snake and spider venom is a complex mixture that contains proteins, peptides, and small organic and inorganic compounds. In contrast to spider venom, snake venom proteins are well known both functionally and structurally. This work describes methods for purification and crystallization of snake and spider venom toxins and their three-dimensional structure determination by X-ray crystallography.
Collapse
|
4
|
Garcia Denegri ME, Bustillo S, Gay CC, Van De Velde A, Gomez G, Echeverría S, Gauna Pereira MDC, Maruñak S, Nuñez S, Bogado F, Sanchez M, Teibler GP, Fusco L, Leiva LCA. Venoms and Isolated Toxins from Snakes of Medical Impact in the Northeast Argentina: State of the Art. Potential Pharmacological Applications. Curr Top Med Chem 2019; 19:1962-1980. [PMID: 31345151 DOI: 10.2174/1568026619666190725094851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/05/2019] [Accepted: 07/01/2019] [Indexed: 11/22/2022]
Abstract
Among the ophidians that inhabit the Northeast of Argentina, the genus Bothrops such as B. alternatus and B. diporus species (also known as yararás) and Crotalus durisus terrificus (named cascabel), represent the most studied snake venom for more than thirty years. These two genera of venomous snakes account for the majority of poisonous snake envenomations and therefore, constitute a medical emergency in this region. This review presents a broad description of the compiled knowledge about venomous snakebite: its pathophysiological action, protein composition, isolated toxins, toxin synergism, toxin-antitoxin cross-reaction assays. Properties of some isolated toxins support a potential pharmacological application.
Collapse
Affiliation(s)
- María Emilia Garcia Denegri
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Soledad Bustillo
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Claudia Carolina Gay
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Andrea Van De Velde
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Gabriela Gomez
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Silvina Echeverría
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - María Del Carmen Gauna Pereira
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Silvana Maruñak
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Sandra Nuñez
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Fabián Bogado
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Matías Sanchez
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Gladys Pamela Teibler
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Luciano Fusco
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Laura Cristina Ana Leiva
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| |
Collapse
|
5
|
Ullah A, Ullah K, Ali H, Betzel C, Ur Rehman S. The Sequence and a Three-Dimensional Structural Analysis Reveal Substrate Specificity Among Snake Venom Phosphodiesterases. Toxins (Basel) 2019; 11:E625. [PMID: 31661911 PMCID: PMC6891707 DOI: 10.3390/toxins11110625] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
(1) Background. Snake venom phosphodiesterases (SVPDEs) are among the least studied venom enzymes. In envenomation, they display various pathological effects, including induction of hypotension, inhibition of platelet aggregation, edema, and paralysis. Until now, there have been no 3D structural studies of these enzymes, thereby preventing structure-function analysis. To enable such investigations, the present work describes the model-based structural and functional characterization of a phosphodiesterase from Crotalusadamanteus venom, named PDE_Ca. (2) Methods. The PDE_Ca structure model was produced and validated using various software (model building: I-TESSER, MODELLER 9v19, Swiss-Model, and validation tools: PROCHECK, ERRAT, Molecular Dynamic Simulation, and Verif3D). (3) Results. The proposed model of the enzyme indicates that the 3D structure of PDE_Ca comprises four domains, a somatomedin B domain, a somatomedin B-like domain, an ectonucleotide pyrophosphatase domain, and a DNA/RNA non-specific domain. Sequence and structural analyses suggest that differences in length and composition among homologous snake venom sequences may account for their differences in substrate specificity. Other properties that may influence substrate specificity are the average volume and depth of the active site cavity. (4) Conclusion. Sequence comparisons indicate that SVPDEs exhibit high sequence identity but comparatively low identity with mammalian and bacterial PDEs.
Collapse
Affiliation(s)
- Anwar Ullah
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan.
| | - Kifayat Ullah
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan.
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan.
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY. Build. 22a, Notkestrasse 85, 22607 Hamburg, Germany.
| | - Shafiq Ur Rehman
- Department of Botany, University of Okara, Okara, Punjab 56300, Pakistan.
| |
Collapse
|
6
|
De Novo Assessment and Review of Pan-American Pit Viper Anticoagulant and Procoagulant Venom Activities via Kinetomic Analyses. Toxins (Basel) 2019; 11:toxins11020094. [PMID: 30736322 PMCID: PMC6409967 DOI: 10.3390/toxins11020094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/25/2019] [Accepted: 02/02/2019] [Indexed: 12/17/2022] Open
Abstract
Snakebite with hemotoxic venom continues to be a major source of morbidity and mortality worldwide. Our laboratory has characterized the coagulopathy that occurs in vitro in human plasma via specialized thrombelastographic methods to determine if venoms are predominantly anticoagulant or procoagulant in nature. Further, the exposure of venoms to carbon monoxide (CO) or O-phenylhydroxylamine (PHA) modulate putative heme groups attached to key enzymes has also provided mechanistic insight into the multiple different activities contained in one venom. The present investigation used these techniques to characterize fourteen different venoms obtained from snakes from North, Central, and South America. Further, we review and present previous thrombelastographic-based analyses of eighteen other species from the Americas. Venoms were found to be anticoagulant and procoagulant (thrombin-like activity, thrombin-generating activity). All prospectively assessed venom activities were determined to be heme-modulated except two, wherein both CO and its carrier molecule were found to inhibit activity, while PHA did not affect activity (Bothriechis schlegelii and Crotalus organus abyssus). When divided by continent, North and Central America contained venoms with mostly anticoagulant activities, several thrombin-like activities, with only two thrombin-generating activity containing venoms. In contrast, most venoms with thrombin-generating activity were located in South America, derived from Bothrops species. In conclusion, the kinetomic profiles of venoms obtained from thirty-two Pan-American Pit Viper species are presented. It is anticipated that this approach will be utilized to identify clinically relevant hemotoxic venom enzymatic activity and assess the efficacy of locally delivered CO or systemically administered antivenoms.
Collapse
|
7
|
Amorim FG, Menaldo DL, Carone SEI, Silva TA, Sartim MA, De Pauw E, Quinton L, Sampaio SV. New Insights on Moojase, a Thrombin-Like Serine Protease from Bothrops moojeni Snake Venom. Toxins (Basel) 2018; 10:toxins10120500. [PMID: 30487389 PMCID: PMC6316876 DOI: 10.3390/toxins10120500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023] Open
Abstract
Snake venom serine proteases (SVSPs) are enzymes that are capable of interfering in various parts of the blood coagulation cascade, which makes them interesting candidates for the development of new therapeutic drugs. Herein, we isolated and characterized Moojase, a potent coagulant enzyme from Bothrops moojeni snake venom. The toxin was isolated from the crude venom using a two-step chromatographic procedure. Moojase is a glycoprotein with N-linked glycans, molecular mass of 30.3 kDa and acidic character (pI 5.80⁻6.88). Sequencing of Moojase indicated that it is an isoform of Batroxobin. Moojase was able to clot platelet-poor plasma and fibrinogen solutions in a dose-dependent manner, indicating thrombin-like properties. Moojase also rapidly induced the proteolysis of the Aα chains of human fibrinogen, followed by the degradation of the Bβ chains after extended periods of incubation, and these effects were inhibited by PMSF, SDS and DTT, but not by benzamidine or EDTA. RP-HPLC analysis of its fibrinogenolysis confirmed the main generation of fibrinopeptide A. Moojase also induced the fibrinolysis of fibrin clots formed in vitro, and the aggregation of washed platelets, as well as significant amidolytic activity on substrates for thrombin, plasma kallikrein, factor Xia, and factor XIIa. Furthermore, thermofluor analyses and the esterase activity of Moojase demonstrated its very high stability at different pH buffers and temperatures. Thus, studies such as this for Moojase should increase knowledge on SVSPs, allowing their bioprospection as valuable prototypes in the development of new drugs, or as biotechnological tools.
Collapse
Affiliation(s)
- Fernanda G Amorim
- Laboratório de Toxinologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil.
| | - Danilo L Menaldo
- Laboratório de Toxinologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil.
| | - Sante E I Carone
- Laboratório de Toxinologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil.
| | - Thiago A Silva
- Laboratório de Toxinologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil.
| | - Marco A Sartim
- Laboratório de Toxinologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil.
| | - Edwin De Pauw
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, 4000 Liège, Belgium.
| | - Loic Quinton
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, 4000 Liège, Belgium.
| | - Suely V Sampaio
- Laboratório de Toxinologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil.
| |
Collapse
|
8
|
Ullah A, Masood R, Ali I, Ullah K, Ali H, Akbar H, Betzel C. Thrombin-like enzymes from snake venom: Structural characterization and mechanism of action. Int J Biol Macromol 2018; 114:788-811. [PMID: 29604354 DOI: 10.1016/j.ijbiomac.2018.03.164] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/08/2018] [Accepted: 03/23/2018] [Indexed: 01/15/2023]
Abstract
Snake venom thrombin-like enzymes (SVTLEs) constitute the major portion (10-24%) of snake venom and these are the second most abundant enzymes present in the crude venom. During envenomation, these enzymes had shown prominently the various pathological effects, such as disturbance in hemostatic system, fibrinogenolysis, fibrinolysis, platelet aggregation, thrombosis, neurologic disorders, activation of coagulation factors, coagulant, procoagulant etc. These enzymes also been used as a therapeutic agent for the treatment of various diseases such as congestive heart failure, ischemic stroke, thrombotic disorders etc. Although the crystal structures of five SVTLEs are available in the Protein Data Bank (PDB), there is no single article present in the literature that has described all of them. The current work describes the structural aspects, structure-based mechanism of action, processing and inhibition of these enzymes. The sequence analysis indicates that these enzymes show a high sequence identity (57-85%) with each other and low sequence identity with trypsin (36-43%), human alpha-thrombin (29-36%) and other snake venom serine proteinases (57-85%). Three-dimensional structural analysis indicates that the loops surrounding the active site are variable both in amino acids composition and length that may convey variable substrate specificity to these enzymes. The surface charge distributions also vary in these enzymes. Docking analysis with suramin shows that this inhibitor preferably binds to the C-terminal region of these enzymes and causes the destabilization of their three-dimensional structure.
Collapse
Affiliation(s)
- Anwar Ullah
- Department of Biosciences, COMSATS Institute of Information Technology Park Road, Islamabad 45550, Pakistan.
| | - Rehana Masood
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan
| | - Ijaz Ali
- Department of Biosciences, COMSATS Institute of Information Technology Park Road, Islamabad 45550, Pakistan
| | - Kifayat Ullah
- Department of Biosciences, COMSATS Institute of Information Technology Park Road, Islamabad 45550, Pakistan
| | - Hamid Ali
- Department of Biosciences, COMSATS Institute of Information Technology Park Road, Islamabad 45550, Pakistan
| | - Haji Akbar
- Department of Biosciences, COMSATS Institute of Information Technology Park Road, Islamabad 45550, Pakistan
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| |
Collapse
|
9
|
de Oliveira LA, Ferreira RS, Barraviera B, de Carvalho FCT, de Barros LC, Dos Santos LD, Pimenta DC. Crotalus durissus terrificus crotapotin naturally displays preferred positions for amino acid substitutions. J Venom Anim Toxins Incl Trop Dis 2017; 23:46. [PMID: 29209361 PMCID: PMC5704381 DOI: 10.1186/s40409-017-0136-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/16/2017] [Indexed: 11/16/2022] Open
Abstract
Background Classically, Crotalus durissus terrificus (Cdt) venom can be described, according to chromatographic criteria, as a simple venom, composed of four major toxins, namely: gyroxin, crotamine, crotoxin and convulxin. Crotoxin is a non-covalent heterodimeric neurotoxin constituted of two subunits: an active phospholipase A2 and a chaperone protein, termed crotapotin. This molecule is composed of three peptide chains connected by seven disulfide bridges. Naturally occurring variants/isoforms of either crotoxin or crotapotin itself have already been reported. Methods The crude Cdt venom was separated by using RP-HPLC and the toxins were identified by mass spectrometry (MS). Crotapotin was purified, reduced and alkylated in order to separate the peptide chains that were further analyzed by mass spectrometry and de novo peptide sequencing. Results The RP-HPLC profile of the isolated crotapotin chains already indicated that the α chain would present isoforms, which was corroborated by the MS and tandem mass spectrometry analyses. Conclusion It was possible to observe that the Cdt crotapotin displays a preferred amino acid substitution pattern present in the α chain, at positions 31 and 40. Moreover, substitutions could also be observed in β and γ chains (one for each). The combinations of these four different peptides, with the already described chains, would produce ten different crotapotins, which is compatible to our previous observations for the Cdt venom.
Collapse
Affiliation(s)
- Laudicéia Alves de Oliveira
- Postgraduate Program in Tropical Diseases, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP Brazil
| | - Rui Seabra Ferreira
- Postgraduate Program in Tropical Diseases, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP Brazil.,Center for the Studies of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP Brazil
| | - Benedito Barraviera
- Postgraduate Program in Tropical Diseases, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP Brazil.,Center for the Studies of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP Brazil
| | | | - Luciana Curtolo de Barros
- Center for the Studies of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP Brazil
| | - Lucilene Delazari Dos Santos
- Postgraduate Program in Tropical Diseases, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP Brazil.,Center for the Studies of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP Brazil
| | - Daniel Carvalho Pimenta
- Postgraduate Program in Tropical Diseases, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP Brazil.,Laboratory of Biochemistry and Biophysics, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| |
Collapse
|
10
|
Serine proteinases from Bothrops snake venom activates PI3K/Akt mediated angiogenesis. Toxicon 2016; 124:63-72. [DOI: 10.1016/j.toxicon.2016.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 11/23/2022]
|
11
|
de Oliveira F, de Sousa BB, Mamede CCN, de Morais NCG, de Queiroz MR, da Cunha Pereira DF, Matias MS, Homi Brandeburgo MI. Biochemical and functional characterization of BmooSP, a new serine protease from Bothrops moojeni snake venom. Toxicon 2016; 111:130-8. [PMID: 26797102 DOI: 10.1016/j.toxicon.2016.01.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 12/30/2015] [Accepted: 01/10/2016] [Indexed: 09/30/2022]
Abstract
In this work, we describe the purification and characterization of a new serine protease enzyme from Bothrops moojeni snake venom (BmooSP). On SDS-PAGE, BmooSP was found to be a single-chain protein with an apparent molecular mass of 36,000 and 32,000 under reduced and non-reduced conditions, respectively. Mass spectrometry analysis showed that the BmooSP is composed by two isoforms with molecular mass of 30,363 and 30,070, respectively. The purified enzyme consists of 277 amino acid residues, disregarding the cysteine and tryptophan residues that have been degraded by acid hydrolysis, and its N-terminal sequence showed similarity with other serine protease enzymes. BmooSP induced blood-clotting in vitro, defibrination in vivo, caseinolytic and fibrin(ogen)olytic activities. The enzyme is stable at high temperatures (up to 100 °C) and shows maximum activity at pH around 7.0. Preliminary results show that BmooSP can induce the formation of a stable fibrin clot for more than 10 days. BmooSP presents medical interest because it can be used as biodegradable fibrin glue and for the treatment and prevention of cardiovascular disorders because of its ability to promote the defibrination in vivo, decreasing blood viscosity and improving blood circulation.
Collapse
Affiliation(s)
- Fábio de Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte MG, Brazil.
| | - Bruna Barbosa de Sousa
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte MG, Brazil
| | - Carla Cristine Neves Mamede
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte MG, Brazil
| | - Nadia Cristina Gomes de Morais
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte MG, Brazil
| | - Mayara Ribeiro de Queiroz
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte MG, Brazil
| | | | - Mariana S Matias
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia MG, Brazil
| | | |
Collapse
|
12
|
Amel KS, Fatima LD. Purification and Characterization of a New Serine Protease (VLCII) Isolated fromVipera lebetinaVenom: Its Role in Hemostasis. J Biochem Mol Toxicol 2015; 29:388-97. [DOI: 10.1002/jbt.21709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/12/2015] [Accepted: 03/25/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Kadi-Saci Amel
- USTHB, Faculty of Biological Sciences; Laboratory of Cellular and Molecular Biology; BP32 El-Alia Bab Ezzouar Algiers Algeria
| | - Laraba-Djebari Fatima
- USTHB, Faculty of Biological Sciences; Laboratory of Cellular and Molecular Biology; BP32 El-Alia Bab Ezzouar Algiers Algeria
| |
Collapse
|