1
|
Nundes RNC, Almeida AECC, Moura WC, Gonzalez MS, Araújo HP. A Cytotoxicity Assay as an Alternative to the Murine Model for the Potency Testing of Bothrops jararaca Venom and Antivenom: An Intralaboratory Pre-validation Study. Altern Lab Anim 2024; 52:82-93. [PMID: 38438161 DOI: 10.1177/02611929241237518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Antivenom therapy is the only specific treatment for snakebite envenomation, and antivenom potency determination is key in the efficacy assurance quality control process. Nowadays, this process relies on the in vivo murine model - thus, the development of alternative in vitro methods is imperative. In the current study, the principle of the proposed method is the ability of Bothrops venom to induce cytotoxic effects in Vero cells, and the capacity to evaluate the inhibition of this cytotoxicity by the respective antivenom. After exposure to the venom/antivenom, the relative proportions of adherent (viable) cells were evaluated by direct staining with Coomassie Blue. The optical density (OD) of the lysed cell eluate was directly proportional to the number of adherent cells. This cytotoxicity-based alternative method could represent a potential candidate for validation as a replacement for the current in vivo test. The in vitro-determined cytotoxicity of the Brazilian Bothrops reference venom (expressed as the 50% effective concentration; EC50) was 3.61 μg/ml; the in vitro-determined 50% inhibitory concentration (IC50) of the Brazilian Bothrops reference antivenom was 0.133 μl/ml. From these two values, it was possible to calculate the potency of the reference antivenom. The results from the assays exhibited a good linear response, indicating that the method could be a potential candidate replacement method for use in antivenom quality control prior to lot release, subject to further validation.
Collapse
Affiliation(s)
- Renata N C Nundes
- Oswaldo Cruz Foundation, National Institute for Quality Control in Health, Rio de Janeiro, Brazil
- Post-Graduate Programmes in Science and Biotechnology, Federal Fluminense University (UFF), Niterói, Brazil
| | - Antonio E C C Almeida
- Oswaldo Cruz Foundation, National Institute for Quality Control in Health, Rio de Janeiro, Brazil
| | - Wlamir C Moura
- Oswaldo Cruz Foundation, National Institute for Quality Control in Health, Rio de Janeiro, Brazil
- BraCVAM (Brazilian Center for Validation of Alternative Methods), Rio de Janeiro, Brazil
| | - Marcelo S Gonzalez
- Post-Graduate Programmes in Science and Biotechnology, Federal Fluminense University (UFF), Niterói, Brazil
- Science and Technology National Institute in Molecular Entomology (INCT-EM, CNPq), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Post-Graduate Programmes in Applied Physics, Physics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Humberto P Araújo
- Oswaldo Cruz Foundation, National Institute for Quality Control in Health, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Liu CC, Lin CC, Liou MH, Hsiao YC, Chu LJ, Wang PJ, Liu CH, Wang CY, Chen CH, Yu JS. Development of antibody-detection ELISA based on beta-bungarotoxin for evaluation of the neutralization potency of equine plasma against Bungarus multicinctus in Taiwan. Int J Biol Macromol 2024; 262:130080. [PMID: 38354918 DOI: 10.1016/j.ijbiomac.2024.130080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/17/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Animal testing has been the primary approach to assess the neutralization potency of antivenom for decades. However, the necessity to sacrifice large numbers of experimental animals during this process has recently raised substantial welfare concerns. Furthermore, the laborious and expensive nature of animal testing highlights the critical need to develop alternative in vitro assays. Here, we developed an antibody-detection enzyme-linked immunosorbent assay (ELISA) technique as an alternative approach to evaluate the neutralization potency of hyperimmunized equine plasma against B. multicinctus, a medically important venomous snake in Taiwan. Firstly, five major protein components of B. multicinctus venom, specifically, α-BTX, β-BTX, γ-BTX, MTX, and NTL, were isolated. To rank their relative medical significance, a toxicity score system was utilized. Among the proteins tested, β-BTX presenting the highest score was regarded as the major toxic component. Subsequently, antibody-detection ELISA was established based on the five major proteins and used to evaluate 55 hyperimmunized equine plasma samples with known neutralization potency. ELISA based on β-BTX, the most lethal protein according to the toxicity score, exhibited the best sensitivity (75.6 %) and specificity (100 %) in discriminating between high-potency and low-potency plasma, supporting the hypothesis that highly toxic proteins offer better discriminatory power for potency evaluation. Additionally, a phospholipase A2 (PLA2) competition process was implemented to eliminate the antibodies targeting toxicologically irrelevant domains. This optimization greatly enhanced the performance of our assay, resulting in sensitivity of 97.6 % and specificity of 92.9 %. The newly developed antibody-detection ELISA presents a promising alternative to in vivo assays to determine the neutralization potency of antisera against B. multicinctus during the process of antivenom production.
Collapse
Affiliation(s)
- Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Chuan Lin
- Department of Emergency Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Ming-Han Liou
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yung-Chin Hsiao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Po-Jung Wang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chien-Hsin Liu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 11561, Taiwan
| | - Cyong-Yi Wang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 11561, Taiwan
| | - Chao-Hung Chen
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 11561, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan; Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan..
| |
Collapse
|
3
|
Larréché S, Bousquet A, Chevillard L, Gahoual R, Jourdi G, Dupart AL, Bachelot-Loza C, Gaussem P, Siguret V, Chippaux JP, Mégarbane B. Bothrops atrox and Bothrops lanceolatus Venoms In Vitro Investigation: Composition, Procoagulant Effects, Co-Factor Dependency, and Correction Using Antivenoms. Toxins (Basel) 2023; 15:614. [PMID: 37888645 PMCID: PMC10611193 DOI: 10.3390/toxins15100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Bothrops venoms are rich in enzymes acting on platelets and coagulation. This action is dependent on two major co-factors, i.e., calcium and phospholipids, while antivenoms variably neutralize venom-related coagulopathy effects. Our aims were (i) to describe the composition of B. atrox and B. lanceolatus venoms; (ii) to study their activity on the whole blood using rotational thromboelastometry (ROTEM); (iii) to evaluate the contribution of calcium and phospholipids in their activity; and (iv) to compare the effectiveness of four antivenoms (Bothrofav™, Inoserp™ South America, Antivipmyn™ TRI, and PoliVal-ICP™) on the procoagulant activity of these two venoms. Venom composition was comparable. Both venoms exhibited hypercoagulant effects. B. lanceolatus venom was completely dependent on calcium but less dependent on phospholipids than B. atrox venom to induce in vitro coagulation. The four antivenoms neutralized the procoagulant activity of the two venoms; however, with quantitative differences. Bothrofav™ was more effective against both venoms than the three other antivenoms. The relatively similar venom-induced effects in vitro were unexpected considering the opposite clinical manifestations resulting from envenomation (i.e., systemic bleeding with B. atrox and thrombosis with B. lanceolatus). In vivo studies are warranted to better understand the pathophysiology of systemic bleeding and thrombosis associated with Bothrops bites.
Collapse
Affiliation(s)
- Sébastien Larréché
- Inserm, UMRS-1144, Université Paris Cité, F-75006 Paris, France;
- Department of Medical Biology, Bégin Military Teaching Hospital, F-94160 Saint-Mandé, France; (A.B.); (A.-L.D.)
| | - Aurore Bousquet
- Department of Medical Biology, Bégin Military Teaching Hospital, F-94160 Saint-Mandé, France; (A.B.); (A.-L.D.)
| | - Lucie Chevillard
- Inserm, UMRS-1144, Université Paris Cité, F-75006 Paris, France;
| | - Rabah Gahoual
- Chemical and Biological Technologies for Health Unit, CNRS UMR 8258, Inserm, Université Paris Cité, F-75006 Paris, France;
| | - Georges Jourdi
- Innovative Therapies in Hemostasis, Inserm, Université Paris Cité, F-75006 Paris, France; (G.J.); (C.B.-L.); (P.G.); (V.S.)
- Department of Biological Hematology, Lariboisière Hospital, Assistance Publique–Hôpitaux de Paris, F-75010 Paris, France
| | - Anne-Laure Dupart
- Department of Medical Biology, Bégin Military Teaching Hospital, F-94160 Saint-Mandé, France; (A.B.); (A.-L.D.)
| | - Christilla Bachelot-Loza
- Innovative Therapies in Hemostasis, Inserm, Université Paris Cité, F-75006 Paris, France; (G.J.); (C.B.-L.); (P.G.); (V.S.)
| | - Pascale Gaussem
- Innovative Therapies in Hemostasis, Inserm, Université Paris Cité, F-75006 Paris, France; (G.J.); (C.B.-L.); (P.G.); (V.S.)
- Department of Hematology, Georges Pompidou European Hospital, Assistance Publique–Hôpitaux de Paris, F-75015 Paris, France
| | - Virginie Siguret
- Innovative Therapies in Hemostasis, Inserm, Université Paris Cité, F-75006 Paris, France; (G.J.); (C.B.-L.); (P.G.); (V.S.)
- Department of Biological Hematology, Lariboisière Hospital, Assistance Publique–Hôpitaux de Paris, F-75010 Paris, France
| | - Jean-Philippe Chippaux
- French National Research Institute for Sustainable Development, Université Paris Cité, F-75006 Paris, France;
| | - Bruno Mégarbane
- Inserm, UMRS-1144, Université Paris Cité, F-75006 Paris, France;
- Department of Medical and Toxicological Critical Care, Federation of Toxicology, Lariboisière Hospital, Assistance Publique–Hôpitaux de Paris, F-75010 Paris, France
| |
Collapse
|
4
|
Camacho E, Ramírez-Vargas G, Vargas K, Rucavado A, Escalante T, Vargas M, Segura Á, Argüello I, Campos M, Guerrero G, Méndez ML, Gutiérrez JM. Neutralization, by a polyspecific antivenom, of the coagulopathy induced by the venom of Bothrops asper: Assessment by standard coagulation tests and rotational thromboelastometry in a murine model. Toxicon 2023; 234:107301. [PMID: 37741576 DOI: 10.1016/j.toxicon.2023.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/10/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Venom-induced consumption coagulopathy and thrombocytopenia are common and potentially severe manifestations of viperid snakebite envenoming since they contribute to local and systemic hemorrhage. Therefore, the assessment of the efficacy of antivenoms to neutralize coagulopathic and thrombocytopenic toxins should be part of the preclinical evaluation of these drugs. To evaluate the efficacy of the polyvalent (Crotalinae) antivenom produced in Costa Rica, in this study we have used a mouse model of coagulopathy and thrombocytopenia induced by the venom of Bothrops asper, based on the bolus intravenous (i.v.) injection of venom. When venom and antivenom were incubated before injection, or when antivenom was administered i.v. immediately after venom injection, venom-induced hemostatic alterations were largely abrogated. We also studied the recovery rate of clotting parameters in conditions where antivenom was administered when mice were coagulopathic. Some parameters recovered more rapidly in antivenom-treated mice than in control envenomed animals, but others showed a spontaneous recovery without antivenom. This is due to a rapid clearance of plasma venom levels in these experimental conditions. This implies that models based on the bolus i.v. injection of venom have limitations for assessing the effect of antivenom in the recovery of clotting alterations once coagulopathy has developed. It is suggested that alternative models should be developed based on a slower systemic absorption of venom. Overall, our findings provide a protocol for the preclinical evaluation of antivenoms and demonstrate that the polyvalent antivenom is effective in neutralizing the toxins of B. asper venom responsible for coagulopathy and thrombocytopenia.
Collapse
Affiliation(s)
- Erika Camacho
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Gabriel Ramírez-Vargas
- Laboratorio de Hematología, Hospital Nacional de Niños 'Dr Carlos Sáenz Herrera', Caja Costarricense Del Seguro Social, San José, Costa Rica
| | - Karol Vargas
- Laboratorio de Hematología, Hospital Nacional de Niños 'Dr Carlos Sáenz Herrera', Caja Costarricense Del Seguro Social, San José, Costa Rica
| | - Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Mariángela Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Ivette Argüello
- Laboratorio de Hematología, Hospital Nacional de Niños 'Dr Carlos Sáenz Herrera', Caja Costarricense Del Seguro Social, San José, Costa Rica
| | - Marlen Campos
- Laboratorio de Hematología, Hospital Nacional de Niños 'Dr Carlos Sáenz Herrera', Caja Costarricense Del Seguro Social, San José, Costa Rica
| | - German Guerrero
- Unidad de Trauma y Emergencias Quirúrgicas, Hospital Nacional de Niños 'Dr Carlos Sáenz Herrera', Caja Costarricense Del Seguro Social, San José, Costa Rica
| | | | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| |
Collapse
|
5
|
Cummings CO, Eisenbarth J, deLaforcade A. Viscoelastic Coagulation Testing in Exotic Animals. Vet Clin North Am Exot Anim Pract 2022; 25:597-612. [PMID: 36122942 DOI: 10.1016/j.cvex.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Whole blood viscoelastic coagulation testing (VCT) allows global assessment of hemostasis and fibrinolysis. Although not widely used in exotic animal practice, VCT has been used in exotic animal research settings. Differences in patient demographics and analytical variables can result in dramatically different results with the same analyzer. To improve the utility of VCT in exotic animal medicine, standardization of protocols is necessary to facilitate the establishment of reference intervals. Despite these challenges, the quantitative/qualitative nature of VCT has already proved its real-world value to some clinicians.
Collapse
Affiliation(s)
- Charles O Cummings
- Tufts Clinical and Translational Science Institute, Tufts Medical Center, 35 Kneeland Street Suite 8, Boston, MA 0211, USA.
| | - Jessica Eisenbarth
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Armelle deLaforcade
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| |
Collapse
|
6
|
Rucavado A, Chacón M, Villalobos D, Argüello I, Campos M, Guerrero G, Méndez ML, Escalante T, Gutiérrez JM. Coagulopathy induced by viperid snake venoms in a murine model: Comparison of standard coagulation tests and rotational thromboelastometry. Toxicon 2022; 214:121-129. [DOI: 10.1016/j.toxicon.2022.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/27/2022]
|
7
|
Baudou FG, Rodriguez JP, Fusco L, de Roodt AR, De Marzi MC, Leiva L. South American snake venoms with abundant neurotoxic components. Composition and toxicological properties. A literature review. Acta Trop 2021; 224:106119. [PMID: 34481791 DOI: 10.1016/j.actatropica.2021.106119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/18/2023]
Abstract
In South America there are three snake genera with predominantly neurotoxic venoms: Crotalus, Micrurus and Hydrophis, which include nine species/subspecies, 97 species and a single marine species, respectively. Although accidents with neurotoxic venoms are less frequent than those with anticoagulant, cytotoxic or necrotic venoms (e.g. from Bothrops), they are of major public health importance. Venoms from genus Crotalus have been extensively studied, while data on the venoms from the other two genera are very limited, especially for Hydrophis. The venoms of North and South American Crotalus species show biochemical and physiopathological differences. The former species cause bothrops-like envenomation symptoms, while the latter mainly have neurotoxic and myotoxic effects, leading to respiratory paralysis and, occasionally, renal failure by myoglobinuria and death, often with no local lesions. Micrurus and Hydrophis also cause neurotoxic envenomations. Many studies have isolated, identified and characterized new enzymes and toxins, thus expanding the knowledge of snake venom composition. The present review summarizes the currently available information on neurotoxic venoms from South American snakes, with a focus on protein composition and toxicological properties. It also includes some comments concerning potential medical applications of elapid and crotalic toxins.
Collapse
Affiliation(s)
- Federico G Baudou
- Universidad Nacional de Luján (UNLu), Depto. de Ciencias Básicas, Luján, Buenos Aires, Argentina; Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES), UNLu-CONICET, Luján, Buenos Aires, Argentina.
| | - Juan P Rodriguez
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes, Argentina
| | - Luciano Fusco
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA (UNNE, CONICET), FaCENA, (UNNE), Corrientes, Argentina
| | - Adolfo R de Roodt
- Área Investigación y Desarrollo-Venenos, Instituto Nacional de Producción de Biológicos, Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Ministerio de Salud de la Nación, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Argentina; Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Mauricio C De Marzi
- Universidad Nacional de Luján (UNLu), Depto. de Ciencias Básicas, Luján, Buenos Aires, Argentina; Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES), UNLu-CONICET, Luján, Buenos Aires, Argentina
| | - Laura Leiva
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA (UNNE, CONICET), FaCENA, (UNNE), Corrientes, Argentina
| |
Collapse
|
8
|
Individual Variability in Bothropsatrox Snakes Collected from Different Habitats in the Brazilian Amazon: New Findings on Venom Composition and Functionality. Toxins (Basel) 2021; 13:toxins13110814. [PMID: 34822598 PMCID: PMC8618853 DOI: 10.3390/toxins13110814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
Differences in snake venom composition occur across all taxonomic levels and it has been argued that this variation represents an adaptation that has evolved to facilitate the capture and digestion of prey and evasion of predators. Bothrops atrox is a terrestrial pitviper that is distributed across the Amazon region, where it occupies different habitats. Using statistical analyses and functional assays that incorporate individual variation, we analyzed the individual venom variability in B. atrox snakes from four different habitats (forest, pasture, degraded area, and floodplain) in and around the Amazon River in Brazil. We observed venom differentiation between spatially distinct B. atrox individuals from the different habitats, with venom variation due to both common (high abundance) and rare (low abundance) proteins. Moreover, differences in the composition of the venoms resulted in individual variability in functionality and heterogeneity in the lethality to mammals and birds, particularly among the floodplain snakes. Taken together, the data obtained from individual venoms of B. atrox snakes, captured in different habitats from the Brazilian Amazon, support the hypothesis that the differential distribution of protein isoforms results in functional distinctiveness and the ability of snakes with different venoms to have variable toxic effects on different prey.
Collapse
|
9
|
Okumu MO, Mbaria JM, Gikunju JK, Mbuthia PG, Madadi VO, Ochola FO, Jepkorir MS. Artemia salina as an animal model for the preliminary evaluation of snake venom-induced toxicity. Toxicon X 2021; 12:100082. [PMID: 34471870 PMCID: PMC8390515 DOI: 10.1016/j.toxcx.2021.100082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Lethality and cytotoxicity assays of snake venoms and their neutralization by antivenom require many mice for the experiments. Recent developments have prompted researchers to seek alternative strategies that minimize the use of mice in line with Russel and Burch's 3Rs philosophy (Replacement, Reduction, and Refinement). Artemia salina is an animal model widely used for toxicity screening. However, its use in snake venom toxinology is limited by a lack of data. The present study compared the toxicity of venoms from Bitis arietans, Naja ashei, and Naja subfulva using mice and Artemia salina. In the Artemia salina test at 24 h and the dermonecrotic test in mice, the toxicity of the venoms was in the order Naja ashei ~ Naja subfulva > Bitis arietans. In the lethality test in mice, the toxicity of the venoms was in the order Naja subfulva > Naja ashei > Bitis arietans. These findings suggest that the toxicity of the venoms in Artemia salina and the dermonecrotic bioassay in mice have a similar trend but differ from the lethality test in mice. Therefore, it may be relevant to further explore the Artemia salina bioassay as a potential surrogate test of dermonecrosis in mice. Studies with more venoms may be needed to establish the correlation between the Artemia salina bioassay and the dermonecrotic assay in mice.
Collapse
Affiliation(s)
- Mitchel Otieno Okumu
- Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, Kenya
| | - James Mucunu Mbaria
- Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, Kenya
| | - Joseph Kangangi Gikunju
- Department of Medical Laboratory Science, Jomo Kenyatta University of Agriculture and Technology, Kenya
| | - Paul Gichohi Mbuthia
- Department of Veterinary Pathology, Microbiology, and Parasitology, University of Nairobi, Kenya
| | | | | | - Mercy Seroney Jepkorir
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Kenya
| |
Collapse
|
10
|
Seneci L, Zdenek CN, Chowdhury A, Rodrigues CFB, Neri-Castro E, Bénard-Valle M, Alagón A, Fry BG. A Clot Twist: Extreme Variation in Coagulotoxicity Mechanisms in Mexican Neotropical Rattlesnake Venoms. Front Immunol 2021; 12:612846. [PMID: 33815366 PMCID: PMC8011430 DOI: 10.3389/fimmu.2021.612846] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Rattlesnakes are a diverse clade of pit vipers (snake family Viperidae, subfamily Crotalinae) that consists of numerous medically significant species. We used validated in vitro assays measuring venom-induced clotting time and strength of any clots formed in human plasma and fibrinogen to assess the coagulotoxic activity of the four medically relevant Mexican rattlesnake species Crotalus culminatus, C. mictlantecuhtli, C. molossus, and C. tzabcan. We report the first evidence of true procoagulant activity by Neotropical rattlesnake venom in Crotalus culminatus. This species presented a strong ontogenetic coagulotoxicity dichotomy: neonates were strongly procoagulant via Factor X activation, whereas adults were pseudo-procoagulant in that they converted fibrinogen into weak, unstable fibrin clots that rapidly broke down, thereby likely contributing to net anticoagulation through fibrinogen depletion. The other species did not activate clotting factors or display an ontogenetic dichotomy, but depleted fibrinogen levels by cleaving fibrinogen either in a destructive (non-clotting) manner or via a pseudo-procoagulant mechanism. We also assessed the neutralization of these venoms by available antivenom and enzyme-inhibitors to provide knowledge for the design of evidence-based treatment strategies for envenomated patients. One of the most frequently used Mexican antivenoms (Bioclon Antivipmyn®) failed to neutralize the potent procoagulant toxic action of neonate C. culminatus venom, highlighting limitations in snakebite treatment for this species. However, the metalloprotease inhibitor Prinomastat substantially thwarted the procoagulant venom activity, while 2,3-dimercapto-1-propanesulfonic acid (DMPS) was much less effective. These results confirm that venom-induced Factor X activation (a procoagulant action) is driven by metalloproteases, while also suggesting Prinomastat as a more promising potential adjunct treatment than DMPS for this species (with the caveat that in vivo studies are necessary to confirm this potential clinical use). Conversely, the serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) inhibited the direct fibrinogen cleaving actions of C. mictlantecuhtli venom, thereby revealing that the pseudo-procoagulant action is driven by kallikrein-type serine proteases. Thus, this differential ontogenetic variation in coagulotoxicity patterns poses intriguing questions. Our results underscore the need for further research into Mexican rattlesnake venom activity, and also highlights potential limitations of current antivenom treatments.
Collapse
Affiliation(s)
- Lorenzo Seneci
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia.,Institute of Biology Leiden (IBL), Leiden University, Leiden, Netherlands
| | - Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Abhinandan Chowdhury
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Caroline F B Rodrigues
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia.,Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
| | - Edgar Neri-Castro
- Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, Mexico
| | - Melisa Bénard-Valle
- Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, Mexico
| | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, Mexico
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
11
|
Gutiérrez JM, Vargas M, Segura Á, Herrera M, Villalta M, Solano G, Sánchez A, Herrera C, León G. In Vitro Tests for Assessing the Neutralizing Ability of Snake Antivenoms: Toward the 3Rs Principles. Front Immunol 2021; 11:617429. [PMID: 33505403 PMCID: PMC7829219 DOI: 10.3389/fimmu.2020.617429] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
There is an urgent need to strengthen the implementation of the 3Rs principle (Replacement, Reduction and Refinement) in the use of experimental animals in toxinological research and in the assessment of the neutralizing efficacy of snake antivenoms. This is a challenging task owing to the inherent complexity of snake venoms. The state of the art on this topic is hereby reviewed, with emphasis on the studies in which a correlation has been observed between in vivo toxicity tests and in vitro surrogate assays, particularly in the study of lethal activity of venoms and its neutralization. Correlations have been described with some venoms-antivenoms when using: (a) enzyme immunoassays, (b) hemagglutination, (c) enzyme assays (proteinase, phospholipase A2), (d) in vitro coagulant effect on plasma, (e) cell culture assays for cytotoxicity, (f) functional assays for assessing neurotoxicity in vitro, (g) use of hens' eggs, and (h) antivenomics. Additionally, the routine introduction of analgesia in these assays and the design of more 'humane' protocols for the lethality test are being pursued. It is expected that the next years will witness a growing awareness of the relevance of the 3Rs principles in antivenom testing, and that new in vitro alternatives and more 'humane' experimental designs will emerge in this field.
Collapse
Affiliation(s)
| | - Mariángela Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Mauren Villalta
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Gabriela Solano
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Andrés Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Cristina Herrera
- Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| |
Collapse
|
12
|
Chowdhury A, Zdenek CN, Dobson JS, Bourke LA, Soria R, Fry BG. Clinical implications of differential procoagulant toxicity of the palearctic viperid genus Macrovipera, and the relative neutralization efficacy of antivenoms and enzyme inhibitors. Toxicol Lett 2021; 340:77-88. [PMID: 33412251 DOI: 10.1016/j.toxlet.2020.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Abstract
Species within the viperid genus Macrovipera are some of the most dangerous snakes in the Eurasian region, injecting copious amounts of potent venom. Despite their medical importance, the pathophysiological actions of their venoms have been neglected. Particularly poorly known are the coagulotoxic effects and thus the underlying mechanisms of lethal coagulopathy. In order to fill this knowledge gap, we ascertained the effects of venom upon human plasma for Macrovipera lebetina cernovi, M. l. lebetina, M. l. obtusa, M. l. turanica, and M. schweizeri using diverse coagulation analysing protocols. All five were extremely potent in their ability to promote clotting but varied in their relative activation of Factor X, being equipotent in this study to the venom of the better studied, and lethal, species Daboia russelii. The Insoserp European viper antivenom was shown to be highly effective against all the Macrovipera venoms, but performed poorly against the D. russelii venom. Reciprocally, while Daboia antivenoms performed well against D. russelii venom, they failed against Macrovipera venom. Thus despite the two genera sharing a venom phenotype (Factor X activation) driven by the same toxin type (P-IIId snake venom metalloproteases), the surface biochemistries of the toxins differed significantly enough to impede antivenom cross- neutralization. The differences in venom biochemistry were reflected in coagulation co-factor dependence. While both genera were absolutely dependent upon calcium for the activation of Factor X, dependence upon phospholipid varied. The Macrovipera venoms had low levels of dependence upon phospholipid while the Daboia venom was three times more dependent upon phospholipid for the activation of Factor X. This suggests that the sites on the molecular surface responsible for phospholipid dependence, are the same differential sites that prevent inter-genera antivenom cross- neutralization. Due to cold-chain requirements, antivenoms may not be stocked in rural settings where the need is at the greatest. Thus we tested the efficacy of enzyme inhibitor Prinomastat as a field-deployable treatment to stabilise patients while being transported to antivenom stocks, and showed that it was extremely effective in blocking the Factor X activating pathophysiological actions. Marimastat however was less effective. These results thus not only shed light on the coagulopathic mechanisms of Macrovipera venoms, but also provide data critical for evidence-based design of snakebite management strategies.
Collapse
Affiliation(s)
- Abhinandan Chowdhury
- Toxin Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, 4072, Australia; Department of Biochemistry & Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Christina N Zdenek
- Toxin Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - James S Dobson
- Toxin Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Lachlan A Bourke
- Toxin Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Raul Soria
- Inosan Biopharma, S.A. Arbea Campus Empresarial, Edificio 2, Planta 2, Carretera Fuencarral a Alcobendas, Km 3.8, 28108, Madrid, Spain
| | - Bryan G Fry
- Toxin Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
13
|
Factor XII-Deficient Chicken Plasma as a Useful Target for Screening of Pro- and Anticoagulant Animal Venom Toxins. Toxins (Basel) 2020; 12:toxins12020079. [PMID: 31979411 PMCID: PMC7076771 DOI: 10.3390/toxins12020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 11/24/2022] Open
Abstract
The sensitivity of vertebrate citrated plasma to pro- and anticoagulant venom or toxins occurs on a microscale level (micrograms). Although it improves responses to agonists, recalcification triggers a relatively fast thrombin formation process in mammalian plasma. As it has a natural factor XII deficiency, the recalcification time (RT) of chicken plasma (CP) is comparatively long [≥ 1800 seconds (s)]. Our objective was to compare the ability of bee venom phospholipase A2 (bvPLA2) to neutralize clot formation induced by an activator of coagulation (the aPTT clot) in recalcified human and chicken plasmas, through rotational thromboelastometry. The strategy used in this study was to find doses of bvPLA2 that were sufficient enough to prolong the clotting time (CT) of these activated plasmas to values within their normal RT range. The CT of CP was prolonged in a dose-dependent manner by bvPLA2, with 17 ± 2.8 ng (n = 6) being sufficient to displace the CT values of the activated samples to ≥ 1800 s. Only amounts up to 380 ± 41 ng (n = 6) of bvPLA2 induced the same effect in activated human plasma samples. In conclusion, the high sensitivity of CP to agonists and rotational thromboelastometry could be useful. For example, during screening procedures for assaying the effects of toxins in several stages of the coagulation pathway, such as clot initiation, formation, stability, strength, or dissolution.
Collapse
|
14
|
Thromboelastographic study of the snakebite-related coagulopathy in Djibouti. Blood Coagul Fibrinolysis 2018; 29:196-204. [PMID: 29369078 DOI: 10.1097/mbc.0000000000000702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
: Hemostasis disorders are one of the major clinical conditions of snakebites and are because of mechanisms which may disrupt vessels, platelets, clotting factors and fibrinolysis. Thromboelastography (TEG) could help to understand these effects in the clinical practice. A retrospective study reports a series of patients presenting a snakebite-related coagulopathy, treated with antivenom and monitored with conventional tests and TEG in a French military treatment facility (Republic of Djibouti, East Africa) between August 2011 and September 2013. Conventional coagulation assays (platelets, prothrombin time, activated partial thromboplastin time, fibrinogen) and TEG measurements were taken on arrival and at various times during the first 72 h of hospitalization, at the discretion of the physician. The study included 14 patients (median age 28 years). Bleedings were present in five patients. All patients received antivenom. A coagulopathy was present in all patients and was detected by both conventional assays and TEG. None exhibited thrombocytopenia. Prothrombin time and fibrinogen remained abnormal for most of patients during the first 72 h. The TEG profiles of 11 patients (79%) showed incoagulability at admission (R-time > 60 min). TEG distinguished 10 patients with a generalized clotting factor deficiency and 4 patients with an isolated fibrinogen deficiency after an initial profile of incoagulability. Hyperfibrinolysis was evident for 12 patients (86%) after Hour 6. Snake envenomations in Djibouti involve a consumption coagulopathy in conjunction with delayed hyperfibrinolysis. TEG could improve medical management of the condition and assessment of additional therapeutics associated with the antivenom.
Collapse
|
15
|
A functional and thromboelastometric-based micromethod for assessing crotoxin anticoagulant activity and antiserum relative potency against Crotalus durissus terrificus venom. Toxicon 2018; 148:26-32. [PMID: 29654870 DOI: 10.1016/j.toxicon.2018.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 11/20/2022]
Abstract
The assessment of the capacity of antivenoms to neutralize the lethal activity of snake venoms still relies on traditional rodent in vivo lethality assay. ED50 and LD50 assays require large quantities of venoms and antivenoms, and besides leading to animal suffering. Therefore, in vitro tests should be introduced for assessing antivenom neutralizing capacity in intermediary steps of antivenom production. This task is facilitated when one key lethal toxin is identified. A good example is crotoxin, a β-neurotoxin phospholipase A2-like toxin that presents anticoagulant activity in vitro and is responsible for the lethality of venoms of Crotalus durissus snakes. By using rotational thromboelastometry, we reported recently one sensitive coagulation assay for assessing relative potency of the anti-bothropic serum in neutralizing procoagulant activity of Bothrops jararaca venom upon recalcified factor-XII-deficient chicken plasma samples (CPS). In this study, we stablished conditions for determining relative potency of four batches of the anti-crotalic serum (ACS) (antagonist) in inactivating crotoxin anticoagulant activity in CPS (target) simultaneously treated with one classical activator of coagulation (agonists). The correlation coefficient (r) between values related the ACS potency in inactivating both in vitro crotoxin anticoagulant activity and the in vivo lethality of whole venom (ED50) was 0.94 (p value < 0.05). In conclusion, slowness in spontaneous thrombin/fibrin generation even after recalcification elicit time lapse sufficient for elaboration of one dose-response curve to pro- or anti-coagulant agonists in CPS. We propose this methodology as an alternative and sensitive assay for assessing antivenom neutralizing ability in plasma of immunized horses as well as for in-process quality control.
Collapse
|
16
|
Preclinical assessment of the neutralizing efficacy of snake antivenoms in Latin America and the Caribbean: A review. Toxicon 2018; 146:138-150. [DOI: 10.1016/j.toxicon.2018.02.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/28/2018] [Indexed: 11/19/2022]
|
17
|
Soares KSR, Gláucia-Silva F, Daniele-Silva A, Torres-Rêgo M, Araújo NKD, Menezes YASD, Damasceno IZ, Tambourgi DV, da Silva-Júnior AA, Fernandes-Pedrosa MDF. Antivenom Production against Bothrops jararaca and Bothrops erythromelas Snake Venoms Using Cross-Linked Chitosan Nanoparticles as an Immunoadjuvant. Toxins (Basel) 2018; 10:toxins10040158. [PMID: 29659491 PMCID: PMC5923324 DOI: 10.3390/toxins10040158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022] Open
Abstract
In Brazil, envenomation by snakes of the genus Bothrops is clinically relevant, particularly for the species Bothrops jararaca and B. erythromelas. The most effective treatment for envenomation by snakes is the administration of antivenoms associated with adjuvants. Novel adjuvants are required to reduce side effects and maximize the efficiency of conventional serum and vaccine formulations. The polymer chitosan has been shown to have immunoadjuvant properties, and it has been used as a platform for delivery systems. In this context, we evaluated the potential immunoadjuvant properties of chitosan nanoparticles (CNPs) loaded with B. jararaca and B. erythromelas venoms in the production of sera against these venoms. Stable CNPs were obtained by ionic gelation, and mice were immunized subcutaneously for 6 weeks with 100 µL of each snake venom at concentrations of 5.0 or 10.0% (w/w), encapsulated in CNPs or associated with aluminium hydroxide (AH). The evaluation of protein interactions with the CNPs revealed their ability to induce antibody levels equivalent to those of AH, even with smaller doses of antigen. In addition, the CNPs were less inflammatory due to their modified release of proteins. CNPs provide a promising approach for peptide/protein delivery from snake venom and will be useful for new vaccines.
Collapse
Affiliation(s)
- Karla Samara Rocha Soares
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| | - Fiamma Gláucia-Silva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| | - Alessandra Daniele-Silva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| | - Manoela Torres-Rêgo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| | - Nathália Kelly de Araújo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| | - Yamara Arruda Silva de Menezes
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| | - Igor Zumba Damasceno
- Department of Materials Engineering, Technology Center, University Campus, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.
| | | | - Arnóbio Antônio da Silva-Júnior
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| | | |
Collapse
|
18
|
Oulion B, Dobson JS, Zdenek CN, Arbuckle K, Lister C, Coimbra FCP, Op den Brouw B, Debono J, Rogalski A, Violette A, Fourmy R, Frank N, Fry BG. Factor X activating Atractaspis snake venoms and the relative coagulotoxicity neutralising efficacy of African antivenoms. Toxicol Lett 2018; 288:119-128. [PMID: 29462691 DOI: 10.1016/j.toxlet.2018.02.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/19/2022]
Abstract
Atractaspis snake species are enigmatic in their natural history, and venom effects are correspondingly poorly described. Clinical reports are scarce but bites have been described as causing severe hypertension, profound local tissue damage leading to amputation, and deaths are on record. Clinical descriptions have largely concentrated upon tissue effects, and research efforts have focused upon the blood-pressure affecting sarafotoxins. However, coagulation disturbances suggestive of procoagulant functions have been reported in some clinical cases, yet this aspect has been uninvestigated. We used a suite of assays to investigate the coagulotoxic effects of venoms from six different Atractaspis specimens from central Africa. The procoagulant function of factor X activation was revealed, as was the pseudo-procoagulant function of direct cleavage of fibrinogen into weak clots. The relative neutralization efficacy of South African Antivenom Producer's antivenoms on Atractaspis venoms was boomslang>>>polyvalent>saw-scaled viper. While the boomslang antivenom was the most effective on Atractaspis venoms, the ability to neutralize the most potent Atractaspis species in this study was up to 4-6 times less effective than boomslang antivenom neutralizes boomslang venom. Therefore, while these results suggest cross-reactivity of boomslang antivenom with the unexpectedly potent coagulotoxic effects of Atractaspis venoms, a considerable amount of this rare antivenom may be needed. This report thus reveals potent venom actions upon blood coagulation that may lead to severe clinical effects with limited management strategies.
Collapse
Affiliation(s)
- Brice Oulion
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - James S Dobson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Kevin Arbuckle
- Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK
| | - Callum Lister
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Francisco C P Coimbra
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Bianca Op den Brouw
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Jordan Debono
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Aymeric Rogalski
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Aude Violette
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium
| | - Rudy Fourmy
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium
| | | | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
19
|
Sousa LF, Portes-Junior JA, Nicolau CA, Bernardoni JL, Nishiyama-Jr MY, Amazonas DR, Freitas-de-Sousa LA, Mourão RHV, Chalkidis HM, Valente RH, Moura-da-Silva AM. Functional proteomic analyses of Bothrops atrox venom reveals phenotypes associated with habitat variation in the Amazon. J Proteomics 2017; 159:32-46. [DOI: 10.1016/j.jprot.2017.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 12/17/2022]
|
20
|
The lethality test used for estimating the potency of antivenoms against Bothrops asper snake venom: Pathophysiological mechanisms, prophylactic analgesia, and a surrogate in vitro assay. Toxicon 2015; 93:41-50. [DOI: 10.1016/j.toxicon.2014.11.223] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/31/2014] [Accepted: 11/05/2014] [Indexed: 11/20/2022]
|