1
|
Michira BB, Wang Y, Mwangi J, Wang K, Asmamaw D, Tadese DA, Gao J, Khalid M, Lu QM, Lai R, Li J. A Tachyplesin Antimicrobial Peptide from Theraphosidae Spiders with Potent Antifungal Activity Against Cryptococcus neoformans. Microorganisms 2024; 12:2648. [PMID: 39770850 PMCID: PMC11728142 DOI: 10.3390/microorganisms12122648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
The venoms of Theraphosidae spiders have evolved into diverse natural pharmacopeias through selective pressures. Cryptococcus neoformans is a global health threat that frequently causes life-threatening meningitis and fungemia, particularly in immunocompromised patients. In this study, we identify a novel anti-C. neoformans peptide, QS18 (QCFKVCFRKRCFTKCSRS), from the venom gland of China's native spider species Chilobrachys liboensis by utilizing bioinformatic tools. QS18 shares over 50% sequence similarity with tachyplesin peptides, previously identified only in horseshoe crab hemocytes, expanding the known repertoire of the tachyplesin family to terrestrial arachnids. The oxidative folding of QS18 notably enhances its antifungal activity and stability, resulting in a minimum inhibitory concentration of 1.4 µM. The antimicrobial mechanism of QS18 involves cell membrane disruption. QS18 exhibits less than 5% hemolysis in human erythrocytes, indicating microbial selectivity and a favorable safety profile for therapeutic use. Furthermore, mouse model studies highlight QS18's ability as an antifungal agent with notable anti-inflammatory activity. Our study demonstrates QS18 as both a promising template for spider venom peptide research and a novel candidate for the development of peptide antifungals.
Collapse
Affiliation(s)
- Brenda B. Michira
- Key Laboratory of Genetic Evolution & Animal Models, Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China; (B.B.M.); (J.M.); (K.W.); (D.A.); (D.A.T.); (J.G.); (M.K.); (Q.-M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Yi Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China;
| | - James Mwangi
- Key Laboratory of Genetic Evolution & Animal Models, Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China; (B.B.M.); (J.M.); (K.W.); (D.A.); (D.A.T.); (J.G.); (M.K.); (Q.-M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Kexin Wang
- Key Laboratory of Genetic Evolution & Animal Models, Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China; (B.B.M.); (J.M.); (K.W.); (D.A.); (D.A.T.); (J.G.); (M.K.); (Q.-M.L.)
- Medical College of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Demeke Asmamaw
- Key Laboratory of Genetic Evolution & Animal Models, Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China; (B.B.M.); (J.M.); (K.W.); (D.A.); (D.A.T.); (J.G.); (M.K.); (Q.-M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Dawit Adisu Tadese
- Key Laboratory of Genetic Evolution & Animal Models, Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China; (B.B.M.); (J.M.); (K.W.); (D.A.); (D.A.T.); (J.G.); (M.K.); (Q.-M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Jinai Gao
- Key Laboratory of Genetic Evolution & Animal Models, Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China; (B.B.M.); (J.M.); (K.W.); (D.A.); (D.A.T.); (J.G.); (M.K.); (Q.-M.L.)
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Mehwish Khalid
- Key Laboratory of Genetic Evolution & Animal Models, Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China; (B.B.M.); (J.M.); (K.W.); (D.A.); (D.A.T.); (J.G.); (M.K.); (Q.-M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Qiu-Min Lu
- Key Laboratory of Genetic Evolution & Animal Models, Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China; (B.B.M.); (J.M.); (K.W.); (D.A.); (D.A.T.); (J.G.); (M.K.); (Q.-M.L.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ren Lai
- Key Laboratory of Genetic Evolution & Animal Models, Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China; (B.B.M.); (J.M.); (K.W.); (D.A.); (D.A.T.); (J.G.); (M.K.); (Q.-M.L.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Juan Li
- Key Laboratory of Genetic Evolution & Animal Models, Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China; (B.B.M.); (J.M.); (K.W.); (D.A.); (D.A.T.); (J.G.); (M.K.); (Q.-M.L.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
2
|
Zha Z, Ge F, Li N, Zhang S, Wang C, Gong F, Miao J, Chen W. Effects of Na V1.5 and Rac1 on the Epithelial-Mesenchymal Transition in Breast Cancer. Cell Biochem Biophys 2024:10.1007/s12013-024-01625-x. [PMID: 39673684 DOI: 10.1007/s12013-024-01625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 12/16/2024]
Abstract
Breast cancer is a disease that seriously endangers the health of women. However, it is difficult to treat due to the emergence of metastasis and drug resistance. Exploring the metastasis mechanism of breast cancer is helpful to aim for the appropriate target. The epithelial-mesenchymal transition (EMT) is an important mechanism of breast cancer metastasis. Sodium channel 1.5(NaV1.5) and the GTPase Rac1 are factors related to the degree of malignancy of breast tumors. The expression of NaV1.5 and the activation of Rac1 are both involved in EMT. In addition, NaV1.5 can change the plasma membrane potential (Vm) by promoting the inflow of Na+ to depolarize the cell membrane, induce the activation of Rac1 and produce a cascade of reactions that lead to EMT in breast cancer cells; this sequence of events further induces the movement, migration and invasion of tumor cells and affects the prognosis of breast cancer patients. In this paper, the roles of NaV1.5 and Rac1 in EMT-mediated breast cancer progression were reviewed.
Collapse
Affiliation(s)
- Zhuocen Zha
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
- Oncology department, Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guiyang, Guizhou, 550000, China
| | - Fei Ge
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Na Li
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Shijun Zhang
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Chenxi Wang
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Fuhong Gong
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Jingge Miao
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Wenlin Chen
- First-Class Discipline Team of Kunming Medical University, Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China.
| |
Collapse
|
3
|
Chen M, Lu M, Feng X, Wu M, Luo X, Xiang R, Luo R, Wu H, Liu Z, Wang M, Zhou X. LmNaTx15, a novel scorpion toxin, enhances the activity of Nav channels and induces pain in mice. Toxicon 2023; 236:107331. [PMID: 37918718 DOI: 10.1016/j.toxicon.2023.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
Polypeptide toxins are major bioactive components found in venomous animals. Many polypeptide toxins can specifically act on targets, such as ion channels and voltage-gated sodium (Nav) channels, in the nervous, muscle, and cardiovascular systems of the recipient to increase defense and predation efficiency. In this study, a novel polypeptide toxin, LmNaTx15, was isolated from the venom of the scorpion Lychas mucronatus, and its activity was analyzed. LmNaTx15 slowed the fast inactivation of Nav1.2, Nav1.3, Nav1.4, Nav1.5, and Nav1.7 and inhibited the peak current of Nav1.5, but it did not affect Nav1.8. In addition, LmNaTx15 altered the voltage-dependent activation and inactivation of these Nav channel subtypes. Furthermore, like site 3 neurotoxins, LmNaTx15 induced pain in mice. These results show a novel scorpion toxin with a modulatory effect on specific Nav channel subtypes and pain induction in mice. Therefore, LmNaTx15 may be a key bioactive component for scorpion defense and predation. Besides, this study provides a basis for analyzing structure-function relationships of the scorpion toxins affecting Nav channel activity.
Collapse
Affiliation(s)
- Minzhi Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Minjuan Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xujun Feng
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Meijing Wu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiaoqing Luo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ruiqi Xiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ren Luo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Hang Wu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Meichi Wang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
4
|
Lopez L, De Waard S, Meudal H, Caumes C, Khakh K, Peigneur S, Oliveira-Mendes B, Lin S, De Waele J, Montnach J, Cestèle S, Tessier A, Johnson JP, Mantegazza M, Tytgat J, Cohen C, Béroud R, Bosmans F, Landon C, De Waard M. Structure-function relationship of new peptides activating human Na v1.1. Biomed Pharmacother 2023; 165:115173. [PMID: 37453200 DOI: 10.1016/j.biopha.2023.115173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Nav1.1 is an important pharmacological target as this voltage-gated sodium channel is involved in neurological and cardiac syndromes. Channel activators are actively sought to try to compensate for haploinsufficiency in several of these pathologies. Herein we used a natural source of new peptide compounds active on ion channels and screened for drugs capable to inhibit channel inactivation as a way to compensate for decreased channel function. We discovered that JzTx-34 is highly active on Nav1.1 and subsequently performed a full structure-activity relationship investigation to identify its pharmacophore. These experiments will help interpret the mechanism of action of this and formerly identified peptides as well as the future identification of new peptides. We also reveal structural determinants that make natural ICK peptides active against Nav1.1 challenging to synthesize. Altogether, the knowledge gained by this study will help facilitate the discovery and development of new compounds active on this critical ion channel target.
Collapse
Affiliation(s)
- Ludivine Lopez
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Smartox Biotechnology, Saint-Egrève, France
| | - Stephan De Waard
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; LabEx "Ion Channels, Science and Therapeutics", Valbonne, France
| | - Hervé Meudal
- Center for Molecular Biophysics, CNRS, rue Charles Sadron, CS 80054, Orléans 45071, France
| | | | - Kuldip Khakh
- Xenon Pharmaceuticals, Burnaby, British Columbia, Canada
| | | | | | - Sophia Lin
- Xenon Pharmaceuticals, Burnaby, British Columbia, Canada
| | - Jolien De Waele
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Jérôme Montnach
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Sandrine Cestèle
- Université Cote d'Azur, CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis, France
| | - Agnès Tessier
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - J P Johnson
- Xenon Pharmaceuticals, Burnaby, British Columbia, Canada
| | - Massimo Mantegazza
- Université Cote d'Azur, CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis, France
| | - Jan Tytgat
- University of Leuven, 3000 Leuven, Belgium
| | - Charles Cohen
- Xenon Pharmaceuticals, Burnaby, British Columbia, Canada
| | | | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Céline Landon
- Center for Molecular Biophysics, CNRS, rue Charles Sadron, CS 80054, Orléans 45071, France
| | - Michel De Waard
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Smartox Biotechnology, Saint-Egrève, France; LabEx "Ion Channels, Science and Therapeutics", Valbonne, France.
| |
Collapse
|
5
|
Peng S, Chen M, Xiao Z, Xiao X, Luo S, Liang S, Zhou X, Liu Z. A Novel Spider Toxin Inhibits Fast Inactivation of the Na v1.9 Channel by Binding to Domain III and Domain IV Voltage Sensors. Front Pharmacol 2021; 12:778534. [PMID: 34938190 PMCID: PMC8685421 DOI: 10.3389/fphar.2021.778534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Venomous animals have evolved to produce peptide toxins that modulate the activity of voltage-gated sodium (Nav) channels. These specific modulators are powerful probes for investigating the structural and functional features of Nav channels. Here, we report the isolation and characterization of δ-theraphotoxin-Gr4b (Gr4b), a novel peptide toxin from the venom of the spider Grammostola rosea. Gr4b contains 37-amino acid residues with six cysteines forming three disulfide bonds. Patch-clamp analysis confirmed that Gr4b markedly slows the fast inactivation of Nav1.9 and inhibits the currents of Nav1.4 and Nav1.7, but does not affect Nav1.8. It was also found that Gr4b significantly shifts the steady-state activation and inactivation curves of Nav1.9 to the depolarization direction and increases the window current, which is consistent with the change in the ramp current. Furthermore, analysis of Nav1.9/Nav1.8 chimeric channels revealed that Gr4b preferentially binds to the voltage-sensor of domain III (DIII VSD) and has additional interactions with the DIV VSD. The site-directed mutagenesis analysis indicated that N1139 and L1143 in DIII S3-S4 linker participate in toxin binding. In sum, this study reports a novel spider peptide toxin that may slow the fast inactivation of Nav1.9 by binding to the new neurotoxin receptor site-DIII VSD. Taken together, these findings provide insight into the functional role of the Nav channel DIII VSD in fast inactivation and activation.
Collapse
Affiliation(s)
- Shuijiao Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhen Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xin Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Sen Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xi Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
6
|
Spider Knottin Pharmacology at Voltage-Gated Sodium Channels and Their Potential to Modulate Pain Pathways. Toxins (Basel) 2019; 11:toxins11110626. [PMID: 31671792 PMCID: PMC6891507 DOI: 10.3390/toxins11110626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels (NaVs) are a key determinant of neuronal signalling. Neurotoxins from diverse taxa that selectively activate or inhibit NaV channels have helped unravel the role of NaV channels in diseases, including chronic pain. Spider venoms contain the most diverse array of inhibitor cystine knot (ICK) toxins (knottins). This review provides an overview on how spider knottins modulate NaV channels and describes the structural features and molecular determinants that influence their affinity and subtype selectivity. Genetic and functional evidence support a major involvement of NaV subtypes in various chronic pain conditions. The exquisite inhibitory properties of spider knottins over key NaV subtypes make them the best lead molecules for the development of novel analgesics to treat chronic pain.
Collapse
|
7
|
Abstract
Voltage-gated sodium channels (VGSCs) are critical in generation and conduction of electrical signals in multiple excitable tissues. Natural toxins, produced by animal, plant, and microorganisms, target VGSCs through diverse strategies developed over millions of years of evolutions. Studying of the diverse interaction between VGSC and VGSC-targeting toxins has been contributing to the increasing understanding of molecular structure and function, pharmacology, and drug development potential of VGSCs. This chapter aims to summarize some of the current views on the VGSC-toxin interaction based on the established receptor sites of VGSC for natural toxins.
Collapse
Affiliation(s)
- Yonghua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, China.
| |
Collapse
|
8
|
Animal toxins for channelopathy treatment. Neuropharmacology 2017; 132:83-97. [PMID: 29080794 DOI: 10.1016/j.neuropharm.2017.10.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/09/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022]
Abstract
Ion channels are transmembrane proteins that allow passive flow of ions inside and/or outside of cells or cell organelles. Except mutations lead to nonfunctional protein production or abolished receptor entrance on the membrane surface an altered channel may have two principal conditions that can be corrected. The channel may conduct fewer ions through (loss-of-function mutations) or too many ions (gain-of-function mutations) compared to a normal channel. Toxins from animal venoms are specialised molecules that are generally oriented toward interactions with ion channels. This is a result of long coevolution between predators and their prey. On the molecular level, toxins activate or inhibit ion channels, so they are ideal molecules for restoring conductance in mutated channels. Another aspect of this long coevolution is that a broad variety of toxins have been fine tuned to recognize the channels of different species, keeping many amino acids substitution among sequences. Many peptide ligands with high selectivity to specific receptor subtypes have been isolated from animal venoms, some of which are absolutely non-toxic to humans and mammalians. It is expected that molecules that are selective to each known receptor can be found in animal venoms, but the pool of toxins currently does not override all receptors described as being involved in channelopathies. Modern investigating methods have enhanced the search process for selective ligands. One prominent method is a site-directed mutagenesis of existing toxins to change the selectivity or/and affinity to the selected receptor, which has shown positive results. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
|
9
|
Wingerd JS, Mozar CA, Ussing CA, Murali SS, Chin YKY, Cristofori-Armstrong B, Durek T, Gilchrist J, Vaughan CW, Bosmans F, Adams DJ, Lewis RJ, Alewood PF, Mobli M, Christie MJ, Rash LD. The tarantula toxin β/δ-TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity. Sci Rep 2017; 7:974. [PMID: 28428547 PMCID: PMC5430537 DOI: 10.1038/s41598-017-01129-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/27/2017] [Indexed: 11/09/2022] Open
Abstract
Voltage-gated sodium (NaV) channels are essential for the transmission of pain signals in humans making them prime targets for the development of new analgesics. Spider venoms are a rich source of peptide modulators useful to study ion channel structure and function. Here we describe β/δ-TRTX-Pre1a, a 35-residue tarantula peptide that selectively interacts with neuronal NaV channels inhibiting peak current of hNaV1.1, rNaV1.2, hNaV1.6, and hNaV1.7 while concurrently inhibiting fast inactivation of hNaV1.1 and rNaV1.3. The DII and DIV S3-S4 loops of NaV channel voltage sensors are important for the interaction of Pre1a with NaV channels but cannot account for its unique subtype selectivity. Through analysis of the binding regions we ascertained that the variability of the S1-S2 loops between NaV channels contributes substantially to the selectivity profile observed for Pre1a, particularly with regards to fast inactivation. A serine residue on the DIV S2 helix was found to be sufficient to explain Pre1a’s potent and selective inhibitory effect on the fast inactivation process of NaV1.1 and 1.3. This work highlights that interactions with both S1-S2 and S3-S4 of NaV channels may be necessary for functional modulation, and that targeting the diverse S1-S2 region within voltage-sensing domains provides an avenue to develop subtype selective tools.
Collapse
Affiliation(s)
- Joshua S Wingerd
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christine A Mozar
- Discipline of Pharmacology, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Christine A Ussing
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.,Novo Nordisk A/S, Copenhagen Area, Capital Region, Denmark
| | - Swetha S Murali
- Discipline of Pharmacology, University of Sydney, Camperdown, NSW, 2006, Australia.,Harvard Medical School, Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, United States
| | - Yanni K-Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ben Cristofori-Armstrong
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - John Gilchrist
- Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Christopher W Vaughan
- Pain Management Research Institute, University of Sydney, St Leonards, NSW, 2006, Australia
| | - Frank Bosmans
- Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - David J Adams
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging & School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Macdonald J Christie
- Discipline of Pharmacology, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Lachlan D Rash
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia. .,School of Biomedical Sciences, The University of Queensland, St Lucia, 4072, QLD, Australia.
| |
Collapse
|
10
|
Tao H, Chen X, Deng M, Xiao Y, Wu Y, Liu Z, Zhou S, He Y, Liang S. Interaction site for the inhibition of tarantula Jingzhaotoxin-XI on voltage-gated potassium channel Kv2.1. Toxicon 2016; 124:8-14. [PMID: 27810559 DOI: 10.1016/j.toxicon.2016.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 01/27/2023]
Abstract
Jingzhaotoxin-XI (JZTX-XI) is a 34-residue peptide from the Chinese tarantula Chilobrachys jingzhao venom that potently inhibits both voltage-gated sodium channel Nav1.5 and voltage-gated potassium channel Kv2.1. In the present study, we further showed that JZTX-XI blocked Kv2.1 currents with the IC50 value of 0.39 ± 0.06 μM. JZTX-XI significantly shifted the current-voltage (I-V) curves and normalized conductance-voltage (G-V) curves of Kv2.1 channel to more depolarized voltages. Ala-scanning mutagenesis analyses demonstrated that mutants I273A, F274A, and E277A reduced toxin binding affinity by 10-, 16-, and 18-fold, respectively, suggesting that three common residues (I273, F274, E277) in the Kv2.1 S3b segment contribute to the formation of JZTX-XI receptor site, and the acidic residue Glu at the position 277 in Kv2.1 is the most important residue for JZTX-XI sensitivity. A single replacement of E277 with Asp(D) increased toxin inhibitory activity. These results establish that JZTX-XI inhibits Kv2.1 activation by trapping the voltage sensor in the rested state through a similar mechanism to that of HaTx1, but these two toxins have small differences in the most crucial molecular determinant. Furthermore, the in-depth investigation of the subtle differences in molecular determinants may be useful for increasing our understanding of the molecular details regarding toxin-channel interactions.
Collapse
Affiliation(s)
- Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Xia Chen
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Meichun Deng
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yucheng Xiao
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuanyuan Wu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhonghua Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Sainan Zhou
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yingchun He
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Songping Liang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.
| |
Collapse
|
11
|
Paiva ALB, Matavel A, Peigneur S, Cordeiro MN, Tytgat J, Diniz MRV, de Lima ME. Differential effects of the recombinant toxin PnTx4(5-5) from the spider Phoneutria nigriventer on mammalian and insect sodium channels. Biochimie 2015; 121:326-35. [PMID: 26747232 DOI: 10.1016/j.biochi.2015.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/28/2015] [Indexed: 01/30/2023]
Abstract
The toxin PnTx4(5-5) from the spider Phoneutria nigriventer is extremely toxic/lethal to insects but has no macroscopic behavioral effects observed in mice after intracerebral injection. Nevertheless, it was demonstrated that it inhibits the N-methyl-d-aspartate (NMDA) - subtype of glutamate receptors of cultured rat hippocampal neurons. PnTx4(5-5) has 63% identity to PnTx4(6-1), another insecticidal toxin from P. nigriventer, which can slow down the sodium current inactivation in insect central nervous system, but has no effect on Nav1.2 and Nav1.4 rat sodium channels. Here, we have cloned and heterologous expressed the toxin PnTx4(5-5) in Escherichia coli. The recombinant toxin rPnTx4(5-5) was tested on the sodium channel NavBg from the cockroach Blatella germanica and on mammalian sodium channels Nav1.2-1.6, all expressed in Xenopus leavis oocytes. We showed that the toxin has different affinity and mode of action on insect and mammalian sodium channels. The most remarkable effect was on NavBg, where rPnTx4(5-5) strongly slowed down channel inactivation (EC50 = 212.5 nM), and at 1 μM caused an increase on current peak amplitude of 105.2 ± 3.1%. Interestingly, the toxin also inhibited sodium current on all the mammalian channels tested, with the higher current inhibition on Nav1.3 (38.43 ± 8.04%, IC50 = 1.5 μM). Analysis of activation curves on Nav1.3 and Nav1.5 showed that the toxin shifts channel activation to more depolarized potentials, which can explain the sodium current inhibition. Furthermore, the toxin also slightly slowed down sodium inactivation on Nav1.3 and Nav1.6 channels. As far as we know, this is the first araneomorph toxin described which can shift the sodium channel activation to more depolarized potentials and also slows down channel inactivation.
Collapse
Affiliation(s)
- Ana L B Paiva
- Departamento de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil; Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra Matavel
- Departamento de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | | | - Marta N Cordeiro
- Departamento de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Leuven, Belgium
| | - Marcelo R V Diniz
- Departamento de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Elena de Lima
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Tao H, Chen X, Lu M, Wu Y, Deng M, Zeng X, Liu Z, Liang S. Molecular determinant for the tarantula toxin Jingzhaotoxin-I slowing the fast inactivation of voltage-gated sodium channels. Toxicon 2015; 111:13-21. [PMID: 26721415 DOI: 10.1016/j.toxicon.2015.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/23/2015] [Accepted: 12/16/2015] [Indexed: 12/19/2022]
Abstract
Peptide toxins often have divergent pharmacological functions and are powerful tools for a deep review on the current understanding of the structure-function relationships of voltage-gated sodium channels (VGSCs). However, knowing about the interaction of site 3 toxins from tarantula venoms with VGSCs is not sufficient. In the present study, using whole-cell patch clamp technique, we determined the effects of Jingzhaotoxin-I (JZTX-I) on five VGSC subtypes expressed in HEK293 cells. The results showed that JZTX-I could inhibit the inactivation of rNav1.2, rNav1.3, rNav1.4, hNav1.5 and hNav1.7 channels with the IC50 of 870 ± 8 nM, 845 ± 4 nM, 339 ± 5 nM, 335 ± 9 nM, and 348 ± 6 nM, respectively. The affinity of the toxin interaction with subtypes (rNav1.4, hNav1.5, and hNav1.7) was only 2-fold higher than that for subtypes (rNav1.2 and rNav1.3). The toxin delayed the inactivation of VGSCs without affecting the activation and steady-state inactivation kinetics in the physiological range of voltages. Site-directed mutagenesis indicated that the toxin interacted with site 3 located at the extracellular S3-S4 linker of domain IV, and the acidic residue Asp at the position1609 in hNav1.5 was crucial for JZTX-I activity. Our results provide new insights in single key residue that allows toxins to recognize distinct ion channels with similar potency and enhance our understanding of the structure-function relationships of toxin-channel interactions.
Collapse
Affiliation(s)
- Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China.
| | - Xia Chen
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Min Lu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yuanyuan Wu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Meichun Deng
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha 410013, Hunan, China
| | - Xiongzhi Zeng
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Zhonghua Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Songping Liang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
13
|
Huang Y, Zhou X, Tang C, Zhang Y, Tao H, Chen P, Liu Z. Molecular basis of the inhibition of the fast inactivation of voltage-gated sodium channel Nav1.5 by tarantula toxin Jingzhaotoxin-II. Peptides 2015; 68:175-82. [PMID: 25817910 DOI: 10.1016/j.peptides.2015.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 02/07/2023]
Abstract
Jingzhaotoxin-II (JZTX-II) is a 32-residue peptide from the Chinese tarantula Chilobrachys jingzhao venom, and preferentially inhibits the fast inactivation of the voltage-gated sodium channels (VGSCs) in rat cardiac myocytes. In the present study, we elucidated the action mechanism of JZTX-II inhibiting hNav1.5, a VGSC subtype mainly distributed in human cardiac myocytes. Among the four VGSC subtypes tested, hNav1.5 was the most sensitive to JZTX-II (EC50=125±4nM). Although JZTX-II had little or no effect on steady-state inactivation of the residual currents conducted by hNav1.5, it caused a 10mV hyperpolarized shift of activation. Moreover, JZTX-II increased the recovery rate of hNav1.5 channels, which should lead to a shorter transition from the inactivation to closed state. JZTX-II dissociated from toxin-channel complex via extreme depolarization and subsequently rebound to the channel upon repolarization. Mutagenesis analyses showed that the domain IV (DIV) voltage-sensor domain (VSD) was critical for JZTX-II binding to hNav1.5 and some mutations located in S1-S2 and S3-S4 extracellular loops of hNav1.5 DIV additively reduced the toxin sensitivity of hNav1.5. Our data identified the mechanism underlying JZTX-II inhibiting hNav1.5, similar to scorpion α-toxins, involving binding to neurotoxin receptor site 3.
Collapse
Affiliation(s)
- Ying Huang
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Xi Zhou
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Cheng Tang
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yunxiao Zhang
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Ping Chen
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Zhonghua Liu
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|