1
|
Freitas GGD, Barbosa JM, Santana CJCD, Magalhães ACM, Macedo KWR, Souza JOD, Castro JSD, Vasconcelos IAD, Souza AA, Freitas SMD, Báo SN, Costa SR, Brand GD, Chaves IDM, Costa VV, Fontes W, Pires Júnior OR, Castro MS. Purification and Biological Properties of Raniseptins-3 and -6, Two Antimicrobial Peptides from Boana raniceps (Cope, 1862) Skin Secretion. Biomolecules 2023; 13:biom13030576. [PMID: 36979510 PMCID: PMC10046390 DOI: 10.3390/biom13030576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
The number of multidrug-resistant pathogenic microorganisms has been growing in recent years, most of which is due to the inappropriate use of the commercial antibiotics that are currently available. The dissemination of antimicrobial resistance represents a serious global public health problem. Thus, it is necessary to search for and develop new drugs that can act as antimicrobial agents. Antimicrobial peptides are a promising alternative for the development of new therapeutic drugs. Anurans' skin glands are a rich source of broad-spectrum antimicrobial compounds and hylids, a large and diverse family of tree frogs, are known as an important source of antimicrobial peptides. In the present study, two novel antimicrobial peptides, named Raniseptins-3 and -6, were isolated from Boana raniceps skin secretion and their structural and biological properties were evaluated. Raniseptins-3 and -6 are cationic, rich in hydrophobic residues, and adopt an α-helix conformation in the presence of SDS (35 mM). Both peptides are active against Gram-negative bacteria and Gram-positive pathogens, with low hemolytic activity at therapeutic concentrations. No activity was observed for yeasts, but the peptides are highly cytotoxic against B16F10 murine melanoma cells and NIH3T3 mouse fibroblast cells. None of the tested compounds showed improvement trends in the MTT and LDH parameters of MHV-3 infected cells at the concentrations tested.
Collapse
Affiliation(s)
- Gabriel Gonçalves de Freitas
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - João Martins Barbosa
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Carlos José Correia de Santana
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Ana Carolina Martins Magalhães
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Keven Wender Rodrigues Macedo
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Jéssica Oliveira de Souza
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Jessica Schneider de Castro
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Isadora Alves de Vasconcelos
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Amanda Araújo Souza
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil
| | - Sonia Maria de Freitas
- Laboratory of Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Sônia Nair Báo
- Electron Microscopy Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Samuel Ribeiro Costa
- Laboratory of Synthesis and Analysis of Biomolecules, Institute of Chemistry, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Guilherme Dotto Brand
- Laboratory of Synthesis and Analysis of Biomolecules, Institute of Chemistry, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Ian de Meira Chaves
- Center for Research and Development of Pharmaceuticals, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Vivian Vasconcelos Costa
- Center for Research and Development of Pharmaceuticals, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Osmindo Rodrigues Pires Júnior
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| | - Mariana S Castro
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70.910-900, DF, Brazil
| |
Collapse
|
2
|
Aguilar S, Brunetti AE, Garay AV, Santos LC, Perez LO, Moreira D, Cancelarich NL, Barbosa EA, Basso NG, de Freitas SM, Faivovich J, Brand G, Cabrera GM, Leite JRSA, Marani MM. Structure and function of cationic hylin bioactive peptides from the tree frog Boana pulchella in interaction with lipid membranes. Peptides 2023; 159:170900. [PMID: 36336169 DOI: 10.1016/j.peptides.2022.170900] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
Amphibians have a great diversity of bioactive peptides in their skin. The cDNA prepro-peptide sequencing allowed the identification of five novel mature peptides expressed in the skin of Boana pulchella, four with similar sequences to hylin peptides having a cationic amphipathic-helical structure. Whole mature peptides and some of their fragments were chemically-synthesized and tested against Gram-positive and Gram-negative bacterial strains. The mature peptide hylin-Pul3 was the most active, with a MIC= 14 µM against Staphylococcus aureus. Circular dichroism assays indicated that peptides are mostly unstructured in buffer solutions. Still, adding large unilamellar vesicles composed of dimyristoyl phosphatidylcholine and dimyristoylphosphatidylglycerol increased the α-helix content of novel hylins. These results demonstrate the strong influence of the environment on peptide conformation and highlight its significance while addressing the pharmacology of peptides and their biological function in frogs.
Collapse
Affiliation(s)
- Silvana Aguilar
- IPEEC-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, U9120ACD Puerto Madryn, Argentina
| | - Andrés E Brunetti
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, N3300LQH Posadas, Argentina; Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências Biomoleculares, Universidade de São Paulo, 14040-903 Ribeirão Preto, Brazil
| | - Aisel Valle Garay
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Biofísica Molecular, Universidade de Brasília (UnB), Brasília, DF 70910-900, Brazil
| | - Liem Canet Santos
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Biofísica Molecular, Universidade de Brasília (UnB), Brasília, DF 70910-900, Brazil
| | - Luis O Perez
- IPCSH-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn, Argentina
| | - Daniel Moreira
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, 70910-900, Brazil
| | - Natalia L Cancelarich
- IPEEC-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, U9120ACD Puerto Madryn, Argentina
| | - Eder Alves Barbosa
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, 70910-900, Brazil
| | - Néstor G Basso
- IDEAus-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, U9120ACD Puerto Madryn, Argentina
| | - Sonia Maria de Freitas
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Biofísica Molecular, Universidade de Brasília (UnB), Brasília, DF 70910-900, Brazil
| | - Julián Faivovich
- División Herpetología, Museo Argentino de Ciencias Naturales 'Bernardino Rivadavia' (CONICET), Buenos Aires, Argentina
| | - Guilherme Brand
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília (UnB), Brasília, DF 70910-900, Brazil
| | - Gabriela M Cabrera
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - José R S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, 70910-900, Brazil; Laboratorio de Síntese e Análise de Biomolećulas, Instituto de Química, Universidade de Brasília, Brazil; Laboratorio de Espectrometria de Massa, EMBRAPA Recursos Genéticos e Biotecnología, Brasil, Instituto de Química, Universidade de Brasília, Brazil
| | - Mariela M Marani
- IPEEC-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, U9120ACD Puerto Madryn, Argentina.
| |
Collapse
|
3
|
Biological Characterization of Natural Peptide BcI-1003 from Boana cordobae (anura): Role in Alzheimer’s Disease and Microbial Infections. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10472-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Picturins and Pictuseptins, two novel antimicrobial peptide families from the skin secretions of the Chachi treefrog, Boana picturata. J Proteomics 2022; 264:104633. [DOI: 10.1016/j.jprot.2022.104633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/24/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022]
|
5
|
Brunetti AE, Bunk B, Lyra ML, Fuzo CA, Marani MM, Spröer C, Haddad CFB, Lopes NP, Overmann J. Molecular basis of a bacterial-amphibian symbiosis revealed by comparative genomics, modeling, and functional testing. THE ISME JOURNAL 2022; 16:788-800. [PMID: 34601502 PMCID: PMC8857215 DOI: 10.1038/s41396-021-01121-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023]
Abstract
The molecular bases for the symbiosis of the amphibian skin microbiome with its host are poorly understood. Here, we used the odor-producer Pseudomonas sp. MPFS and the treefrog Boana prasina as a model to explore bacterial genome determinants and the resulting mechanisms facilitating symbiosis. Pseudomonas sp. MPFS and its closest relatives, within a new clade of the P. fluoresens Group, have large genomes and were isolated from fishes and plants, suggesting environmental plasticity. We annotated 16 biosynthetic gene clusters from the complete genome sequence of this strain, including those encoding the synthesis of compounds with known antifungal activity and of odorous methoxypyrazines that likely mediate sexual interactions in Boana prasina. Comparative genomics of Pseudomonas also revealed that Pseudomonas sp. MPFS and its closest relatives have acquired specific resistance mechanisms against host antimicrobial peptides (AMPs), specifically two extra copies of a multidrug efflux pump and the same two-component regulatory systems known to trigger adaptive resistance to AMPs in P. aeruginosa. Subsequent molecular modeling indicated that these regulatory systems interact with an AMP identified in Boana prasina through the highly acidic surfaces of the proteins comprising their sensory domains. In agreement with a symbiotic relationship and a highly selective antibacterial function, this AMP did not inhibit the growth of Pseudomonas sp. MPFS but inhibited the growth of another Pseudomonas species and Escherichia coli in laboratory tests. This study provides deeper insights into the molecular interaction of the bacteria-amphibian symbiosis and highlights the role of specific adaptive resistance toward AMPs of the hosts.
Collapse
Affiliation(s)
- Andrés E. Brunetti
- grid.11899.380000 0004 1937 0722Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, SP Brazil ,grid.412223.40000 0001 2179 8144Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET – UNaM), Facultad de Ciencias Exactas, Universidad Nacional de Misiones, N3300 Posadas, Argentina
| | - Boyke Bunk
- grid.420081.f0000 0000 9247 8466Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Mariana L. Lyra
- grid.410543.70000 0001 2188 478XDepartamento de Biodiversidade e Centro de Aquicultura, Instituto de Biociências, Universidade Estadual Paulista, 13506-900 Rio Claro, SP Brazil
| | - Carlos A. Fuzo
- grid.11899.380000 0004 1937 0722Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, SP Brazil
| | - Mariela M. Marani
- grid.423606.50000 0001 1945 2152IPEEC-CONICET, Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas, U9120ACD Puerto Madryn, Argentina
| | - Cathrin Spröer
- grid.420081.f0000 0000 9247 8466Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Célio F. B. Haddad
- grid.410543.70000 0001 2188 478XDepartamento de Biodiversidade e Centro de Aquicultura, Instituto de Biociências, Universidade Estadual Paulista, 13506-900 Rio Claro, SP Brazil
| | - Norberto P. Lopes
- grid.11899.380000 0004 1937 0722Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, SP Brazil
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124, Braunschweig, Germany. .,Mikrobiologie, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| |
Collapse
|
6
|
Cuesta SA, Reinoso C, Morales F, Pilaquinga F, Morán-Marcillo G, Proaño-Bolaños C, Blasco-Zúñiga A, Rivera M, Meneses L. Novel antimicrobial cruzioseptin peptides extracted from the splendid leaf frog, Cruziohyla calcarifer. Amino Acids 2021; 53:853-868. [PMID: 33942149 DOI: 10.1007/s00726-021-02986-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/21/2021] [Indexed: 11/25/2022]
Abstract
Antimicrobial peptides (AMPs) constitute part of a broad range of bioactive compounds present on diverse organisms, including frogs. Peptides, produced in the granular glands of amphibian skin, constitute a component of their innate immune response, providing protection against pathogenic microorganisms. In this work, two novel cruzioseptins peptides, cruzioseptin-16 and -17, extracted from the splendid leaf frog Cruziohyla calcarifer are presented. These peptides were identified using molecular cloning and tandem mass spectrometry. Later, peptides were synthetized using solid-phase peptide synthesis, and their minimal inhibitory concentration and haemolytic activity were tested. Furthermore, these two cruzioseptins plus three previously reported (CZS-1, CZS-2, CZS-3) were computationally characterized. Results show that cruzioseptins are 21-23 residues long alpha helical cationic peptides, with antimicrobial activity against E. coli, S. aureus, and C. albicans and low haemolytic effect. Docking results agree with the principal action mechanism of cationic AMPs that goes through cell membrane disruption due to electrostatic interactions between cationic residues in the cruzioseptins and negative phosphate groups in the pathogen cell membrane. An action mechanism through enzymes inhibition was also tried, but no conclusive results about this mechanism were obtained.
Collapse
Affiliation(s)
- Sebastian A Cuesta
- Laboratorio de Química Computacional, Escuela de Ciencias Químicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 Apartado: 17-01-2184, Quito, Ecuador
| | - Camila Reinoso
- Laboratorio de Química Computacional, Escuela de Ciencias Químicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 Apartado: 17-01-2184, Quito, Ecuador
| | - Felipe Morales
- Laboratorio de Química Computacional, Escuela de Ciencias Químicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 Apartado: 17-01-2184, Quito, Ecuador
| | - Fernanda Pilaquinga
- Laboratorio de Química Computacional, Escuela de Ciencias Químicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 Apartado: 17-01-2184, Quito, Ecuador
| | - Giovanna Morán-Marcillo
- Laboratory of Molecular Biology and Biochemistry, Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 ½ vía Muyuna, 150150, Tena, Ecuador
| | - Carolina Proaño-Bolaños
- Laboratory of Molecular Biology and Biochemistry, Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 ½ vía Muyuna, 150150, Tena, Ecuador
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, Northern Ireland, UK
| | - Ailín Blasco-Zúñiga
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Facultad de Ciencias Exactas y Naturales, Centro de Investigación para la Salud en América Latina-CISeAL, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 Apartado: 17-01-2184, Quito, Ecuador
- Dirección Nacional de Biodiversidad, Ministerio del Ambiente del Ecuador, Madrid 1159 y Andalucía, Quito, Ecuador
| | - Miryan Rivera
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Facultad de Ciencias Exactas y Naturales, Centro de Investigación para la Salud en América Latina-CISeAL, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 Apartado: 17-01-2184, Quito, Ecuador
| | - Lorena Meneses
- Laboratorio de Química Computacional, Escuela de Ciencias Químicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 Apartado: 17-01-2184, Quito, Ecuador.
| |
Collapse
|
7
|
Figainin 1, a Novel Amphibian Skin Peptide with Antimicrobial and Antiproliferative Properties. Antibiotics (Basel) 2020; 9:antibiotics9090625. [PMID: 32967114 PMCID: PMC7559428 DOI: 10.3390/antibiotics9090625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 01/10/2023] Open
Abstract
Amphibian skin secretions are abundant in bioactive compounds, especially antimicrobial peptides. These molecules are generally cationic and rich in hydrophobic amino acids, have an amphipathic structure and adopt an α-helical conformation when in contact with microorganisms membranes. In this work, we purified and characterized Figainin 1, a novel antimicrobial and antiproliferative peptide from the cutaneous secretion of the frog Boana raniceps. Figainin 1 is a cationic peptide with eighteen amino acid residues—rich in leucine and isoleucine, with an amidated C-terminus—and adopts an α-helical conformation in the presence of trifluoroethanol (TFE). It displayed activity against Gram-negative and especially Gram-positive bacteria, with MIC values ranging from 2 to 16 µM, and showed an IC50 value of 15.9 µM against epimastigote forms of T. cruzi; however, Figanin 1 did not show activity against Candida species. This peptide also showed cytolytic effects against human erythrocytes with an HC50 of 10 µM, in addition to antiproliferative activity against cancer cells and murine fibroblasts, with IC50 values ranging from 10.5 to 13.7 µM. Despite its adverse effects on noncancerous cells, Figainin 1 exhibits interesting properties for the development of new anticancer agents and anti-infective drugs against pathogenic microorganisms.
Collapse
|
8
|
Santana CJC, Magalhães ACM, Prías-Márquez CA, Falico DA, dos Santos Júnior ACM, Lima BD, Ricart CAO, de Pilger DRB, Bonotto RM, Moraes CB, Freitas-Júnior LH, Álvares ADCM, Freitas SM, Luz IS, Pires Jr. OR, Fontes W, Castro MS. Biological Properties of a Novel Multifunctional Host Defense Peptide from the Skin Secretion of the Chaco Tree Frog, Boana raniceps. Biomolecules 2020; 10:E790. [PMID: 32443921 PMCID: PMC7277517 DOI: 10.3390/biom10050790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/10/2023] Open
Abstract
In recent years, the number of new antimicrobial drugs launched on the market has decreased considerably even though there has been an increase in the number of resistant microbial strains. Thus, antimicrobial resistance has become a serious public health problem. Amphibian skin secretions are a rich source of host defense peptides, which generally are cationic and hydrophobic molecules, with a broad-spectrum of activity. In this study, one novel multifunctional defense peptide was isolated from the skin secretion of the Chaco tree frog, Boana raniceps. Figainin 2 (1FLGAILKIGHALAKTVLPMVTNAFKPKQ28) is cationic and hydrophobic, adopts an α-helical structure in 50% (v/v) trifluoroethanol (TFE), and is thermally stable. This peptide exhibited activity against Gram-negative and Gram-positive pathogenic bacteria arboviruses, T. cruzi epimastigotes; however, it did not show activity against yeasts. Figainin 2 also showed antiproliferative activity on cancer cells, is moderately active on human erythrocytes, and activates the oxidative burst in human neutrophils.
Collapse
Affiliation(s)
- Carlos José Correia Santana
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biology, University of Brasília, Brasília 70.910-900, Brazil; (C.J.C.S.); (A.C.M.M.); (C.A.P.-M.); (D.A.F.); (O.R.P.J.)
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília 70.910-900, Brazil; (A.C.M.d.S.J.); (C.A.O.R.); (I.S.L.); (W.F.)
| | - Ana Carolina Martins Magalhães
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biology, University of Brasília, Brasília 70.910-900, Brazil; (C.J.C.S.); (A.C.M.M.); (C.A.P.-M.); (D.A.F.); (O.R.P.J.)
| | - César Augusto Prías-Márquez
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biology, University of Brasília, Brasília 70.910-900, Brazil; (C.J.C.S.); (A.C.M.M.); (C.A.P.-M.); (D.A.F.); (O.R.P.J.)
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília 70.910-900, Brazil; (A.C.M.d.S.J.); (C.A.O.R.); (I.S.L.); (W.F.)
| | - Diego A. Falico
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biology, University of Brasília, Brasília 70.910-900, Brazil; (C.J.C.S.); (A.C.M.M.); (C.A.P.-M.); (D.A.F.); (O.R.P.J.)
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília 70.910-900, Brazil; (A.C.M.d.S.J.); (C.A.O.R.); (I.S.L.); (W.F.)
| | - Agenor C. M. dos Santos Júnior
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília 70.910-900, Brazil; (A.C.M.d.S.J.); (C.A.O.R.); (I.S.L.); (W.F.)
- Laboratory of Gene Biology, Department of Cell Biology, University of Brasília, Brasília 70.910-900, Brazil;
| | - Beatriz D. Lima
- Laboratory of Gene Biology, Department of Cell Biology, University of Brasília, Brasília 70.910-900, Brazil;
| | - Carlos André Ornelas Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília 70.910-900, Brazil; (A.C.M.d.S.J.); (C.A.O.R.); (I.S.L.); (W.F.)
| | - Denise Regina Bairros de Pilger
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05.508-900, Brazil; (D.R.B.d.P.); (R.M.B.); (C.B.M.); (L.H.F.-J.)
| | - Rafaela Milan Bonotto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05.508-900, Brazil; (D.R.B.d.P.); (R.M.B.); (C.B.M.); (L.H.F.-J.)
| | - Carolina Borsoi Moraes
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05.508-900, Brazil; (D.R.B.d.P.); (R.M.B.); (C.B.M.); (L.H.F.-J.)
| | - Lúcio H. Freitas-Júnior
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05.508-900, Brazil; (D.R.B.d.P.); (R.M.B.); (C.B.M.); (L.H.F.-J.)
| | - Alice da Cunha Morales Álvares
- Laboratory of Biophysics, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília 70.910-900, Brazil; (A.d.C.M.Á.); (S.M.F.)
| | - Sonia Maria Freitas
- Laboratory of Biophysics, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília 70.910-900, Brazil; (A.d.C.M.Á.); (S.M.F.)
| | - Isabelle S. Luz
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília 70.910-900, Brazil; (A.C.M.d.S.J.); (C.A.O.R.); (I.S.L.); (W.F.)
| | - Osmindo Rodrigues Pires Jr.
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biology, University of Brasília, Brasília 70.910-900, Brazil; (C.J.C.S.); (A.C.M.M.); (C.A.P.-M.); (D.A.F.); (O.R.P.J.)
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília 70.910-900, Brazil; (A.C.M.d.S.J.); (C.A.O.R.); (I.S.L.); (W.F.)
| | - Mariana S. Castro
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biology, University of Brasília, Brasília 70.910-900, Brazil; (C.J.C.S.); (A.C.M.M.); (C.A.P.-M.); (D.A.F.); (O.R.P.J.)
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília 70.910-900, Brazil; (A.C.M.d.S.J.); (C.A.O.R.); (I.S.L.); (W.F.)
| |
Collapse
|
9
|
Aragón-Muriel A, Ausili A, Sánchez K, Rojas A OE, Londoño Mosquera J, Polo-Cerón D, Oñate-Garzón J. Studies on the Interaction of Alyteserin 1c Peptide and Its Cationic Analogue with Model Membranes Imitating Mammalian and Bacterial Membranes. Biomolecules 2019; 9:biom9100527. [PMID: 31557903 PMCID: PMC6843542 DOI: 10.3390/biom9100527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 01/17/2023] Open
Abstract
Antimicrobial peptides (AMPs) are effector molecules of the innate immune system and have been isolated from multiple organisms. Their antimicrobial properties are due to the fact that they interact mainly with the anionic membrane of the microorganisms, permeabilizing it and releasing the cytoplasmic content. Alyteserin 1c (+2), an AMP isolated from Alytes obstetricans and its more cationic and hydrophilic analogue (+5) were synthesized using the solid phase method, in order to study the interaction with model membranes by calorimetric and spectroscopic assays. Differential scanning calorimetry (DSC) showed that both peptides had a strong effect when the membrane contained phosphatidylcholine (PC) alone or was mixed with phosphatidylglycerol (PG), increasing membrane fluidization. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used to study the secondary structure of the peptide. Peptide +2 exhibited a transition from β-sheet/turns to β-sheet/α-helix structures after binding with model membranes, whereas peptide +5 had a transition from aggregation/unordered to β-sheet/α-helix structures after binding with membrane-contained PC. Interestingly, the latter showed a β-sheet structure predominantly in the presence of PG lipids. Additionally, molecular dynamics (MD) results showed that the carboxy-terminal of the peptide +5 has the ability to insert into the surface of the PC/PG membranes, resulting in the increase of the membrane fluidity.
Collapse
Affiliation(s)
- Alberto Aragón-Muriel
- Facultad de Ciencias Naturales y Exactas, Departmento de Química, Laboratorio of Investigación en Catalisis and Procesos (LICAP), Universidad del Valle, Cali 760001, Colombia.
| | - Alessio Ausili
- Departmento de Bioquímica y Biología Molecular-A, Facultad de Medicina Veterinaria, Campus of International Excellence Mare, Universidad de Murcia, E-30100 Murcia, Spain.
| | - Kevin Sánchez
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760031, Colombia.
| | - Oscar E Rojas A
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760031, Colombia.
| | - Juan Londoño Mosquera
- Facultad de Ciencias Naturales y Exactas, Departmento de Química, Laboratorio of Investigación en Catalisis and Procesos (LICAP), Universidad del Valle, Cali 760001, Colombia.
| | - Dorian Polo-Cerón
- Facultad de Ciencias Naturales y Exactas, Departmento de Química, Laboratorio of Investigación en Catalisis and Procesos (LICAP), Universidad del Valle, Cali 760001, Colombia.
| | - Jose Oñate-Garzón
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760031, Colombia.
| |
Collapse
|
10
|
Aranda MIR, Gómez GAT, de Barros M, Dos Santos MH, de Oliveira LL, Pena JL, Moreira MAS. Antimicrobial and Synergistic Activity of 2,2',4-Trihydroxybenzophenone Against Bacterial Pathogens of Poultry. Front Microbiol 2019; 10:490. [PMID: 30949140 PMCID: PMC6435495 DOI: 10.3389/fmicb.2019.00490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/26/2019] [Indexed: 11/13/2022] Open
Abstract
In poultry farming, the spread of bacterial pathogens results in disease outbreaks causing significant economic losses to this industry. Many of these pathogenic bacteria are zoonotic and have a substantial impact on public health. Antimicrobials are essential for the prevention and treatment of these bacterial infections. However, the indiscriminate use of these agents provides favorable conditions for selection, propagation and persistence of bacteria and development of antimicrobial resistance. We developed a new antimicrobial candidate that could be used alone or in synergy with research protocols for therapeutic, prophylactic and growth promoter uses in the poultry industry. The present study aimed at evaluating the antimicrobial activity of the synthetic compound 2,2′,4-trihydroxybenzophenone against pathogenic bacteria that cause important diseases in poultry and public health. We tested the hemolytic effect of this compound, studied its synergistic effect with conventional antimicrobials and analyzed the site of action on the bacteria. The results of our study showed antimicrobial activity of benzophenone against Gram-positive and Gram-negative bacteria with a similar effect in ATCC (American type culture collection) and field isolates. This compound was non-hemolytic. 2,2′,4-trihydroxybenzophenone acted on the bacterial cell wall. We identified the synergistic effect between 2,2′,4-trihydroxybenzophenone and bacitracin, this effect indicate that antimicrobial synergism may be useful for the treatment of necrotic enteritis in poultry. This compound may also be used as a growth promoter by reducing the dose of bacitracin and thus decreasing the pressure of bacterial resistance in poultry which would circumvent the development of cross-resistance in humans.
Collapse
Affiliation(s)
- Martha Isabel Realpe Aranda
- Departamento de Veterinária, Laboratório de Doenças Bacterianas, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Mariana de Barros
- Departamento de Veterinária, Laboratório de Doenças Bacterianas, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Marcelo Henrique Dos Santos
- Departamento de Química, Laboratório de Síntese de Agroquímicos, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Leandro Licursi de Oliveira
- Departamento de Biologia Geral, Laboratório de Imunoquímica e Glicobiologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Junnia Luisa Pena
- Departamento de Veterinária, Laboratório de Doenças Bacterianas, Universidade Federal de Viçosa, Viçosa, Brazil
| | | |
Collapse
|
11
|
Popov CSFC, Magalhães BS, Goodfellow BJ, Bocca AL, Pereira DM, Andrade PB, Valentão P, Pereira PJB, Rodrigues JE, de Holanda Veloso PH, Rezende TMB. Host-defense peptides AC12, DK16 and RC11 with immunomodulatory activity isolated from Hypsiboas raniceps skin secretion. Peptides 2019; 113:11-21. [PMID: 30610885 DOI: 10.1016/j.peptides.2018.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 01/07/2023]
Abstract
Inflammation is a natural defense mechanism of the immune system; however, when unregulated, it can lead to chronic illness. Glucocorticoids are the most commonly used agents to effectively treat inflammatory conditions, including autoimmune diseases, however these substances can trigger a number of side effects. Thus, viable alternatives to the use of these drugs would be advantageous. In this study, we have analyzed the anti-inflammatory profile of three synthetic peptides first identified in skin secretion of the tree frog Hypsiboas raniceps. Structural characterization was performed using NMR spectroscopy and Mass Spectrometry, and the peptides were tested in vitro in RAW 264.7 cells and in vivo in Balb/c mice for their functional properties. The samples did not show a significant antimicrobial profile. NMR spectroscopy indicated that AC12 (ACFLTRLGTYVC) has a disulfide bond between C2 and C11 and a β-sheet-turn-β-sheet conformation in aqueous solution. This peptide showed no cytotoxic effect in mammalian cells and it was the most effective in reducing anti-inflammatory markers, such as NO, TNF-α and IL-12. Peptide DK16 (DKERPICSNTFRGRKC) demonstrated anti-inflammatory properties in vitro, while RC11 (RCFRRRGKLTC) significantly altered the cell viability in RAW 264.7 but was shown to be safe in Balb/c erythrocytes. Our results indicate that, of the three peptides studied, AC12 is the most efficient in reducing anti-inflammatory markers, and it could be a potential agent for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Cláudia S F C Popov
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia da Universidade Católica de Brasília, Brasília, Brazil
| | - Beatriz Simas Magalhães
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia da Universidade Católica de Brasília, Brasília, Brazil
| | | | - Anamélia Lorenzetti Bocca
- Laboratório de Imunologia Aplicada, Departamento de Ciências Biológicas, Instituto de Ciências Biológicas da Universidade de Brasília, Brasília, Brazil
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Pedro José Barbosa Pereira
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | | | - Paulo H de Holanda Veloso
- Laboratório de Imunologia Aplicada, Departamento de Ciências Biológicas, Instituto de Ciências Biológicas da Universidade de Brasília, Brasília, Brazil
| | - Taia M B Rezende
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia da Universidade Católica de Brasília, Brasília, Brazil; Curso de Odontologia, Universidade Católica de Brasília, Brasília, Brazil; Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Brazil.
| |
Collapse
|
12
|
Liu Y, Du Q, Ma C, Xi X, Wang L, Zhou M, Burrows JF, Chen T, Wang H. Structure-activity relationship of an antimicrobial peptide, Phylloseptin-PHa: balance of hydrophobicity and charge determines the selectivity of bioactivities. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:447-458. [PMID: 30774309 PMCID: PMC6350648 DOI: 10.2147/dddt.s191072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Antimicrobial peptides (AMPs) from the skin secretions of amphibians are now considered as a potential alternative to conventional antibiotics. Phylloseptins are a family of AMPs identified in the skin secretions of Phyllomedusinae tree frogs which exhibit highly conserved structural characteristics. This study examines the structure–activity relationship of the newly discovered phylloseptin, Phylloseptin-PHa (PSPHa) from Pithecopus hypochondrialis. Materials and methods PSPHa and modified analogs were produced by solid phase synthesis and purified by reverse-phase HPLC. Rationally designed modified analogs incorporating changes in significant physicochemical parameters such as hydrophobicity, hydrophobic moment and net charge were investigated to determine their influence on secondary structure, antimicrobial activity, membrane permeabilization and cytotoxicity. Results Overall, we found that when rationally designing AMPs by altering their primary structure it is important to keep a balance between hydrophobicity and charge. Conclusion This study provides new insights which will help in the future development of AMPs as alternatives to conventional antibiotics for the treatment of Staphylococcus aureus and methicillin-resistant S. aureus infections.
Collapse
Affiliation(s)
- Yuzhang Liu
- School of Pharmacy, China Medical University, Shenyang 110001, Liaoning, China, .,Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Qiang Du
- School of Pharmacy, China Medical University, Shenyang 110001, Liaoning, China,
| | - Chengbang Ma
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Xinping Xi
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Lei Wang
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Mei Zhou
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - James F Burrows
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Tianbao Chen
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Hui Wang
- School of Pharmacy, China Medical University, Shenyang 110001, Liaoning, China,
| |
Collapse
|
13
|
Rončević T, Gerdol M, Spazzali F, Florian F, Mekinić S, Tossi A, Pallavicini A. Parallel identification of novel antimicrobial peptide sequences from multiple anuran species by targeted DNA sequencing. BMC Genomics 2018; 19:827. [PMID: 30458708 PMCID: PMC6245896 DOI: 10.1186/s12864-018-5225-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/06/2018] [Indexed: 12/20/2022] Open
Abstract
Background Antimicrobial peptides (AMPs) are multifunctional effector molecules that often combine direct antimicrobial activities with signaling or immunomodulatory functions. The skin secretions of anurans contain a variety of such bioactive peptides. The identification of AMPs from frog species often requires sacrificing several specimens to obtain small quantities of crude peptides, followed by activity based fractionation to identify the active principles. Results We report an efficient alternative approach to selectively amplify AMP-coding transcripts from very small amounts of tissue samples, based on RNA extraction and cDNA synthesis, followed by PCR amplification and high-throughput sequencing of size-selected amplicons. This protocol exploits the highly conserved signal peptide region of the AMP precursors from Ranidae, Hylidae and Bombinatoridae for the design of family-specific, forward degenerate primers, coupled with a reverse primer targeting the mRNA poly-A tail. Conclusions Analysis of the assembled sequencing output allowed to identify more than a hundred full-length mature peptides, mostly from Ranidae species, including several novel potential AMPs for functional characterization. This (i) confirms the effectiveness of the experimental approach and indicates points for protocol optimization to account for particular cases, and (ii) encourages the application of the same methodology to other multigenic AMP families, also from other genera, sharing common features as in anuran AMPs. Electronic supplementary material The online version of this article (10.1186/s12864-018-5225-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomislav Rončević
- Department of Physics, Faculty of Science, University of Split, 21000, Split, Croatia.
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Francesca Spazzali
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Fiorella Florian
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Stjepan Mekinić
- Public Institution for the Management of Protected Areas in the County of Split and Dalmatia - "Sea and karst", 21000, Split, Croatia
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | | |
Collapse
|
14
|
Brunetti AE, Marani MM, Soldi RA, Mendonça JN, Faivovich J, Cabrera GM, Lopes NP. Cleavage of Peptides from Amphibian Skin Revealed by Combining Analysis of Gland Secretion and in Situ MALDI Imaging Mass Spectrometry. ACS OMEGA 2018; 3:5426-5434. [PMID: 30023919 PMCID: PMC6044630 DOI: 10.1021/acsomega.7b02029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Peptides from skin secretions of amphibians are considered important components of their immune system and also play a relevant role in their defense mechanism against predators. Herein, by using mass spectrometry (MS), we characterize the sequence of 13 peptides from the gland secretion of the hylid tree frog, Boana punctata. Using in situ matrix-assisted laser desorption ionization imaging MS of a transverse section of the skin tissue, we show that some peptides are stored as longer molecules that are cleaved after being secreted, whereas others do not undergo any modification. Sequence comparison with peptides from other Boana species and analysis of the three-dimensional theoretical structure indicate that this cleavage depends on both the presence of a specific sequence motif and the secondary structure. The fact that peptides undergo a rapid cleavage upon secretion suggests that stored and secreted peptides may have distinct roles for anuran survival, including defense against pathogens and predators.
Collapse
Affiliation(s)
- Andrés E. Brunetti
- Faculty
of Pharmaceutical Sciences of Ribeirão Preto, Department of
Physics and Chemistry, University of São
Paulo, Avenida do Café,
s/no, 14040-903 Ribeirão Preto, Brazil
- Facultad
de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 3° piso, C1428EHA Buenos Aires, Argentina
- División
Herpetología, Museo Argentino de Ciencias Naturales “Bernardino
Rivadavia”, Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), Avenue Angel Gallardo 490, C1405DJR Ciudad de Buenos Aires, Argentina
| | - Mariela M. Marani
- IPEEC—CONICET,
Consejo Nacional de Investigaciones Científicas y Técnicas, Bvd. Brown 2915, U9120ACD Puerto Madryn, Argentina
| | - Rafael A. Soldi
- Faculty
of Pharmaceutical Sciences of Ribeirão Preto, Department of
Physics and Chemistry, University of São
Paulo, Avenida do Café,
s/no, 14040-903 Ribeirão Preto, Brazil
| | - Jacqueline Nakau Mendonça
- Faculty
of Pharmaceutical Sciences of Ribeirão Preto, Department of
Physics and Chemistry, University of São
Paulo, Avenida do Café,
s/no, 14040-903 Ribeirão Preto, Brazil
| | - Julián Faivovich
- División
Herpetología, Museo Argentino de Ciencias Naturales “Bernardino
Rivadavia”, Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), Avenue Angel Gallardo 490, C1405DJR Ciudad de Buenos Aires, Argentina
- Facultad
de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología
Experimental, Universidad de Buenos Aires,
Ciudad Universitaria, Pabellón II, 4° piso, C1428EHA Ciudad de Buenos Aires, Argentina
| | - Gabriela M. Cabrera
- Facultad
de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 3° piso, C1428EHA Buenos Aires, Argentina
- Facultad
de Ciencias Exactas y Naturales, Unidad de Microanálisis y
Métodos Físicos aplicados a la Química Orgánica
(UMYMFOR), CONICET—Universidad de
Buenos Aires, Ciudad Universitaria, Pabellón II, 3° piso, C1428EHA Buenos Aires, Argentina
| | - Norberto P. Lopes
- Faculty
of Pharmaceutical Sciences of Ribeirão Preto, Department of
Physics and Chemistry, University of São
Paulo, Avenida do Café,
s/no, 14040-903 Ribeirão Preto, Brazil
| |
Collapse
|
15
|
The antimicrobial peptide HS-1 inhibits dengue virus infection. Virology 2017; 514:79-87. [PMID: 29153860 DOI: 10.1016/j.virol.2017.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 11/20/2022]
Abstract
Dengue virus (DENV) is an arbovirus that belongs to the Flaviviridae family. Studies reveal that peptides secreted by amphibians have many functions, such as antiviral and antimicrobial activities. As there is no antiviral drug effective against the DENV, the antiviral activity of a synthetic peptide called HS-1, derived from the secretion of the anuran Hypsiboas semilineatus, has been evaluated. The assays of neutralization in the Vero cells show a complete inhibition of infection of the serotypes 2 and 3. Furthermore, the direct action of peptides on the viral particle can be observed through atomic force microscopy. In vivo tests display 80% protection against the dengue-2 virus due to the presence of HS-1, which reveals its potential as an antiviral against the DENV.
Collapse
|
16
|
Discovery of Novel Bacterial Cell-Penetrating Phylloseptins in Defensive Skin Secretions of the South American Hylid Frogs, Phyllomedusa duellmani and Phyllomedusa coelestis. Toxins (Basel) 2016; 8:toxins8090255. [PMID: 27589802 PMCID: PMC5037481 DOI: 10.3390/toxins8090255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/22/2016] [Indexed: 02/03/2023] Open
Abstract
Phylloseptin (PS) peptides, derived from South American hylid frogs (subfamily Phyllomedusinae), have been found to have broad-spectrum antimicrobial activities and relatively low haemolytic activities. Although PS peptides have been identified from several well-known and widely-distributed species of the Phyllomedusinae, there remains merit in their study in additional, more obscure and specialised members of this taxon. Here, we report the discovery of two novel PS peptides, named PS-Du and PS-Co, which were respectively identified for the first time and isolated from the skin secretions of Phyllomedusa duellmani and Phyllomedusa coelestis. Their encoding cDNAs were cloned, from which it was possible to deduce the entire primary structures of their biosynthetic precursors. Reversed-phase high-performance liquid chromatography (RP-HPLC) and tandem mass spectrometry (MS/MS) analyses were employed to isolate and structurally-characterise respective encoded PS peptides from skin secretions. The peptides had molecular masses of 2049.7 Da (PS-Du) and 1972.8 Da (PS-Co). They shared typical N-terminal sequences and C-terminal amidation with other known phylloseptins. The two peptides exhibited growth inhibitory activity against E. coli (NCTC 10418), as a standard Gram-negative bacterium, S. aureus (NCTC 10788), as a standard Gram-positive bacterium and C. albicans (NCPF 1467), as a standard pathogenic yeast, all as planktonic cultures. Moreover, both peptides demonstrated the capability of eliminating S. aureus biofilm.
Collapse
|