1
|
Vaz-Rodrigues R, Mazuecos L, Villar M, Contreras M, González-García A, Bonini P, Scimeca RC, Mulenga A, de la Fuente J. Tick salivary proteome and lipidome with low glycan content correlate with allergic type reactions in the zebrafish model. Int J Parasitol 2024; 54:649-659. [PMID: 39074655 DOI: 10.1016/j.ijpara.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Ticks, as hematophagous ectoparasites, can manipulate host immune and metabolic processes, causing tick-borne allergies such as α-Gal syndrome (AGS). Glycolipids with bound galactose-alpha-1-3-galactose (α-Gal) are potential allergenic molecules associated with AGS. Nevertheless, proteins and lipids lacking α-Gal modifications may contribute to tick salivary allergies and be linked to AGS. In this study, we characterized the effect of deglycosylated tick salivary proteins without lipids on treated zebrafish fed with dog food formulated with mammalian (beef, lamb, pork) meat by quantitative proteomics analysis of intestinal samples. The characterization and functional annotations of tick salivary lipids with low representation of glycolipids was conducted using a lipidomics approach. Results showed a significant effect of treatment with saliva and saliva deglycosylated protein fraction on zebrafish abnormal or no feeding (p < 0.005). Treatment with this fraction affected multiple metabolic pathways, defense responses to pathogens and protein metabolism, which correlated with abnormal or no feeding. Lipidomics analysis identified 23 lipid classes with low representation of glycolipids (0.70% of identified lipids). The lipid class with highest representation was phosphatidylcholine (PC; 26.66%) and for glycolipids it corresponded to diacylglycerol (DG; 0.48%). Qualitative analysis of PC antibodies revealed that individuals bitten by ticks were more likely to produce PC-IgG antibodies (p < 0.001). DG levels were significantly higher in tick salivary glands (p < 0.05) compared with tick saliva and salivary fractions. The α-Gal content was higher in tick saliva than in deglycosylated saliva and lipid fractions. These results support a possible role for tick salivary proteins and lipids without α-Gal modifications in AGS.
Collapse
Affiliation(s)
- Rita Vaz-Rodrigues
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Lorena Mazuecos
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Almudena González-García
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Paolo Bonini
- oloBion SL, Av. Dr. Marañón 8, 08028Barcelona, Spain
| | - Ruth C Scimeca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Albert Mulenga
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
2
|
The in vitro anticancer effects of FS48 from salivary glands of Xenopsylla cheopis on NCI-H460 cells via its blockage of voltage-gated K + channels. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:145-155. [PMID: 36692462 DOI: 10.2478/acph-2023-0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 01/25/2023]
Abstract
Voltage-gated K+ (Kv) channels play a role in the cellular processes of various cancer cells, including lung cancer cells. We previously identified and reported a salivary protein from the Xenopsylla cheopis, FS48, which exhibited inhibitory activity against Kv1.1-1.3 channels when assayed in HEK 293T cells. However, whether FS48 has an inhibitory effect on cancer cells expressing Kv channels is unclear. The present study aims to reveal the effects of FS48 on the Kv channels and the NCI-H460 human lung cancer cells through patch clamp, MTT, wound healing, transwell, gelatinase zymography, qRT-PCR and WB assays. The results demonstrated that FS48 can be effective in suppressing the Kv currents, migration, and invasion of NCI-H460 cells in a dose-dependent manner, despite the failure to inhibit the proliferation. Moreover, the expression of Kv1.1 and Kv1.3 mRNA and protein were found to be significantly reduced. Finally, FS48 decreases the mRNA level of MMP-9 while increasing TIMP-1 mRNA level. The present study highlights for the first time that blood-sucking arthropod saliva-derived protein can inhibit the physiological activities of tumour cells via the Kv channels. Furthermore, FS48 can be taken as a hit compound against the tumour cells expressing Kv channels.
Collapse
|
3
|
Bovine fecal chemistry changes with progression of Southern Cattle Tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) infestation. Vet Parasitol 2022; 303:109679. [DOI: 10.1016/j.vetpar.2022.109679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/22/2022]
|
4
|
In-vitro effects of the FS50 protein from salivary glands of Xenopsylla cheopis on voltage-gated sodium channel activity and motility of MDA-MB-231 human breast cancer cells. Anticancer Drugs 2019; 29:880-889. [PMID: 29912729 DOI: 10.1097/cad.0000000000000662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Voltage-gated sodium channel activity enhances the motility and oncogene expression of metastasic cancer cells that express a neonatal alternatively spliced form of the NaV1.5 isoform. We reported previously that FS50, a salivary protein from Xenopsylla cheopis, showed inhibitory activity against the NaV1.5 channel when assayed in HEK 293T cells and antiarrhythmia effects on rats and monkeys after induction of arrhythmia by BaCl2. This study aims to identify the effect of FS50 on voltage-gated sodium channel activity and the motility of MDA-MB-231 human breast cancer cells in vitro. NaV1.5 was abnormally expressed in the highly metastatic breast cancer cell line MDA-MB-231, but not in the MCF-7 cell line. FS50 significantly inhibited sodium current, migration, and invasion in a dose-dependent manner, but had no effect on the proliferation of MDA-MB-231 cells at the working concentrations (1.5-12 μmol/l) after a long-term treatment for 48 h. Meanwhile, FS50 decreased NaV1.5 mRNA expression without altering the total protein level in MDA-MB-231 cells. Correspondingly, the results also showed that MMP-9 activity and the ratio of MMP-9 mRNA to TIMP-1 mRNA were markedly decreased by FS50. Taken together, our findings highlighted for the first time an inhibitory effect of a salivary protein from a blood-feeding arthropod on breast cancer cells through the NaV1.5 channel. Furthermore, this study provided a new candidate leading molecule against antitumor cells expressing NaV1.5.
Collapse
|
5
|
Štibrániová I, Bartíková P, Holíková V, Kazimírová M. Deciphering Biological Processes at the Tick-Host Interface Opens New Strategies for Treatment of Human Diseases. Front Physiol 2019; 10:830. [PMID: 31333488 PMCID: PMC6617849 DOI: 10.3389/fphys.2019.00830] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022] Open
Abstract
Ticks are obligatory blood-feeding ectoparasites, causing blood loss and skin damage in their hosts. In addition, ticks also transmit a number of various pathogenic microorganisms that cause serious diseases in humans and animals. Ticks evolved a wide array of salivary bioactive compounds that, upon injection into the host skin, inhibit or modulate host reactions such as hemostasis, inflammation and wound healing. Modulation of the tick attachment site in the host skin involves mainly molecules which affect physiological processes orchestrated by cytokines, chemokines and growth factors. Suppressing host defense reactions is crucial for tick survival and reproduction. Furthermore, pharmacologically active compounds in tick saliva have a promising therapeutic potential for treatment of some human diseases connected with disorders in hemostasis and immune system. These disorders are often associated to alterations in signaling pathways and dysregulation or overexpression of specific cytokines which, in turn, affect mechanisms of angiogenesis, cell motility and cytoskeletal regulation. Moreover, tick salivary molecules were found to exert cytotoxic and cytolytic effects on various tumor cells and have anti-angiogenic properties. Elucidation of the mode of action of tick bioactive molecules on the regulation of cell processes in their mammalian hosts could provide new tools for understanding the complex changes leading to immune disorders and cancer. Tick bioactive molecules may also be exploited as new pharmacological inhibitors of the signaling pathways of cytokines and thus help alleviate patient discomfort and increase patient survival. We review the current knowledge about tick salivary peptides and proteins that have been identified and functionally characterized in in vitro and/or in vivo models and their therapeutic perspective.
Collapse
Affiliation(s)
- Iveta Štibrániová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavlína Bartíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viera Holíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
6
|
Nascimento TGD, Vieira PS, Cogo SC, Dias-Netipanyj MF, França Junior ND, Câmara DAD, Porcacchia AS, Mendonça RZ, Moreno-Amaral AN, Sá Junior PLD, Simons SM, Zischler L, Elifio-Esposito S. Antitumoral effects of Amblyomma sculptum Berlese saliva in neuroblastoma cell lines involve cytoskeletal deconstruction and cell cycle arrest. ACTA ACUST UNITED AC 2019; 28:126-133. [PMID: 30785557 DOI: 10.1590/s1984-296120180098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/18/2018] [Indexed: 11/22/2022]
Abstract
The antitumor properties of ticks salivary gland extracts or recombinant proteins have been reported recently, but little is known about the antitumor properties of the secreted components of saliva. The goal of this study was to investigate the in vitro effect of the saliva of the hard tick Amblyomma sculptum on neuroblastoma cell lines. SK-N-SK, SH-SY5Y, Be(2)-M17, IMR-32, and CHLA-20 cells were susceptible to saliva, with 80% reduction in their viability compared to untreated controls, as demonstrated by the methylene blue assay. Further investigation using CHLA-20 revealed apoptosis, with approximately 30% of annexin-V positive cells, and G0/G1-phase accumulation (>60%) after treatment with saliva. Mitochondrial membrane potential (Δψm) was slightly, but significantly (p < 0.05), reduced and the actin cytoskeleton was disarranged, as indicated by fluorescent microscopy. The viability of human fibroblast (HFF-1 cells) used as a non-tumoral control decreased by approximately 40%. However, no alterations in cell cycle progression, morphology, and Δψm were observed in these cells. The present work provides new perspectives for the characterization of the molecules present in saliva and their antitumor properties.
Collapse
Affiliation(s)
| | - Priscilla Santos Vieira
- Escola de Ciências da Vida, Pontifícia Universidade Católica do Paraná - PUCPR, Curitiba, PR, Brasil
| | - Sheron Campos Cogo
- Programa de Ciências da Saúde, Pontifícia Universidade Católica do Paraná - PUCPR, Curitiba, PR, Brasil
| | | | - Nilton de França Junior
- Programa de Ciências da Saúde, Pontifícia Universidade Católica do Paraná - PUCPR, Curitiba, PR, Brasil
| | | | | | | | | | | | | | - Luciana Zischler
- Escola de Ciências da Vida, Pontifícia Universidade Católica do Paraná - PUCPR, Curitiba, PR, Brasil
| | - Selene Elifio-Esposito
- Programa de Ciências da Saúde, Pontifícia Universidade Católica do Paraná - PUCPR, Curitiba, PR, Brasil
| |
Collapse
|
7
|
de Sá Junior PL, Dias Câmara DA, Sciani JM, Porcacchia AS, Moreira Fonseca PM, Mendonça RZ, Elifio-Esposito S, Simons SM. Antiproliferative and antiangiogenic effect of Amblyomma sculptum (Acari: Ixodidae) crude saliva in endothelial cells in vitro. Biomed Pharmacother 2019; 110:353-361. [DOI: 10.1016/j.biopha.2018.11.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/30/2018] [Accepted: 11/25/2018] [Indexed: 01/22/2023] Open
|
8
|
Suppan J, Engel B, Marchetti-Deschmann M, Nürnberger S. Tick attachment cement - reviewing the mysteries of a biological skin plug system. Biol Rev Camb Philos Soc 2018; 93:1056-1076. [PMID: 29119723 PMCID: PMC5947171 DOI: 10.1111/brv.12384] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 11/14/2022]
Abstract
The majority of ticks in the family Ixodidae secrete a substance anchoring their mouthparts to the host skin. This substance is termed cement. It has adhesive properties and seals the lesion during feeding. The particular chemical composition and the curing process of the cement are unclear. This review summarizes the literature, starting with a historical overview, briefly introducing the different hypotheses on the origin of the adhesive and how the tick salivary glands have been identified as its source. Details on the sequence of cement deposition, the curing process and detachment are provided. Other possible functions of the cement, such as protection from the host immune system and antimicrobial properties, are presented. Histochemical and ultrastructural data of the intracellular granules in the salivary gland cells, as well as the secreted cement, suggest that proteins constitute the main material, with biochemical data revealing glycine to be the dominant amino acid. Applied methods and their restrictions are discussed. Tick cement is compared with adhesives of other animals such as barnacles, mussels and sea urchins. Finally, we address the potential of tick cement for the field of biomaterial research and in particular for medical applications in future.
Collapse
Affiliation(s)
- Johannes Suppan
- Department of Trauma Surgery, Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Benedikt Engel
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, A-1060, Vienna, Austria
| | | | - Sylvia Nürnberger
- Department of Trauma Surgery, Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| |
Collapse
|
9
|
Shaw DK, Kotsyfakis M, Pedra JHF. For Whom the Bell Tolls (and Nods): Spit-acular Saliva. CURRENT TROPICAL MEDICINE REPORTS 2016; 3:40-50. [PMID: 27547699 DOI: 10.1007/s40475-016-0072-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Having emerged during the early part of the Cretaceous period, ticks are an ancient group of hematophagous ectoparasites with significant veterinary and public health importance worldwide. The success of their life strategy can be attributed, in part, to saliva. As we enter into a scientific era where the collection of massive data sets and structures for biological application is possible, we suggest that understanding the molecular mechanisms that govern the life cycle of ticks is within grasp. With this in mind, we discuss what is currently known regarding the manipulation of Toll-like (TLR) and Nod-like (NLR) receptor signaling pathways by tick salivary proteins, and how these molecules impact pathogen transmission.
Collapse
Affiliation(s)
- Dana K Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Budweis, Czech Republic
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
10
|
Oliver JD, Lynn GE, Burkhardt NY, Price LD, Nelson CM, Kurtti TJ, Munderloh UG. Infection of Immature Ixodes scapularis (Acari: Ixodidae) by Membrane Feeding. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:409-15. [PMID: 26721866 PMCID: PMC5853672 DOI: 10.1093/jme/tjv241] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/07/2015] [Indexed: 05/28/2023]
Abstract
A reduction in the use of animals in infectious disease research is desirable for animal welfare as well as for simplification and standardization of experiments. An artificial silicone-based membrane-feeding system was adapted for complete engorgement of adult and nymphal Ixodes scapularis Say (Acari: Ixodidae), and for infecting nymphs with pathogenic, tick-borne bacteria. Six wild-type and genetically transformed strains of four species of bacteria were inoculated into sterile bovine blood and fed to ticks. Pathogens were consistently detected in replete nymphs by polymerase chain reaction. Adult ticks that ingested bacteria as nymphs were evaluated for transstadial transmission. Borrelia burgdorferi and Ehrlichia muris-like agent showed high rates of transstadial transmission to adult ticks, whereas Anaplasma phagocytophilum and Rickettsia monacensis demonstrated low rates of transstadial transmission/maintenance. Artificial membrane feeding can be used to routinely maintain nymphal and adult I. scapularis, and infect nymphs with tick-borne pathogens.
Collapse
Affiliation(s)
- Jonathan D. Oliver
- Department of Entomology, University of Minnesota, 1980 Folwell Ave., 219 Hodson Hall, St. Paul, MN 55108 (
,
,
,
,
,
,
)
| | - Geoffrey E. Lynn
- Department of Entomology, University of Minnesota, 1980 Folwell Ave., 219 Hodson Hall, St. Paul, MN 55108 (
,
,
,
,
,
,
)
| | - Nicole Y. Burkhardt
- Department of Entomology, University of Minnesota, 1980 Folwell Ave., 219 Hodson Hall, St. Paul, MN 55108 (
,
,
,
,
,
,
)
| | - Lisa D. Price
- Department of Entomology, University of Minnesota, 1980 Folwell Ave., 219 Hodson Hall, St. Paul, MN 55108 (
,
,
,
,
,
,
)
| | - Curtis M. Nelson
- Department of Entomology, University of Minnesota, 1980 Folwell Ave., 219 Hodson Hall, St. Paul, MN 55108 (
,
,
,
,
,
,
)
| | - Timothy J. Kurtti
- Department of Entomology, University of Minnesota, 1980 Folwell Ave., 219 Hodson Hall, St. Paul, MN 55108 (
,
,
,
,
,
,
)
| | - Ulrike G. Munderloh
- Department of Entomology, University of Minnesota, 1980 Folwell Ave., 219 Hodson Hall, St. Paul, MN 55108 (
,
,
,
,
,
,
)
| |
Collapse
|