1
|
Averin A, Starkov V, Tsetlin V, Utkin Y. Effects of the Heterodimeric Neurotoxic Phospholipase A 2 from the Venom of Vipera nikolskii on the Contractility of Rat Papillary Muscles and Thoracic Aortas. Toxins (Basel) 2024; 16:100. [PMID: 38393179 PMCID: PMC10891809 DOI: 10.3390/toxins16020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Phospholipases A2 (PLA2s) are a large family of snake toxins manifesting diverse biological effects, which are not always related to phospholipolytic activity. Snake venom PLA2s (svPLA2s) are extracellular proteins with a molecular mass of 13-14 kDa. They are present in venoms in the form of monomers, dimers, and larger oligomers. The cardiovascular system is one of the multiple svPLA2 targets in prey organisms. The results obtained previously on the cardiovascular effects of monomeric svPLA2s were inconsistent, while the data on the dimeric svPLA2 crotoxin from the rattlesnake Crotalus durissus terrificus showed that it significantly reduced the contractile force of guinea pig hearts. Here, we studied the effects of the heterodimeric svPLA2 HDP-1 from the viper Vipera nikolskii on papillary muscle (PM) contractility and the tension of the aortic rings (ARs). HDP-1 is structurally different from crotoxin, and over a wide range of concentrations, it produced a long-term, stable, positive inotropic effect in PMs, which did not turn into contractures at the concentrations studied. This also distinguishes HDP-1 from the monomeric svPLA2s, which at high concentrations inhibited cardiac function. HDP-1, when acting on ARs preconstricted with 10 μM phenylephrine, induced a vasorelaxant effect, similar to some other svPLA2s. These are the first indications of the cardiac and vascular effects of true vipers' heterodimeric svPLA2s.
Collapse
Affiliation(s)
- Alexey Averin
- Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center of Biological Research”, Pushchino Branch, Russian Academy of Sciences, Pushchino 142290, Russia;
| | - Vladislav Starkov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (V.S.); (V.T.)
| | - Victor Tsetlin
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (V.S.); (V.T.)
| | - Yuri Utkin
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (V.S.); (V.T.)
| |
Collapse
|
2
|
Romanelli MA, Soeiro PA, Silva RCD, Taveira-da-Silva R, Melo PA, Lara LS. Revisiting the acute kidney injury in Wistar rats experimentally envenomated wity Bothrops jararacussu venom. Toxicon 2021; 199:117-126. [PMID: 34116084 DOI: 10.1016/j.toxicon.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/24/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022]
Abstract
There is no consensus on whether serotherapy prevents acute kidney injury (AKI) and there is no pharmacotherapy to impede the disease. We aimed to elaborate an AKI model induced by the administration of Bothrops jararacussu (Bj) venom for preclinical studies. Male Wistar rats were randomly divided into 3 different groups: (1) Bj-IV: intravenous administration of 0.4 mg/kg Bj; (2) Bj-IP: intraperitoneal administration of 2.0 mg/kg Bj; (3) Bj-IM: intramuscular administration of 3.5 mg/kg Bj. For each corresponding control group, a 0.9% saline solution was administered. Kidneys, blood and urine samples were collected 24 or 72 h after administration of the Bj venom for renal function analysis. The IV- and IP-Bj groups presented a moderate tubular injury (score 3) and a time-dependent kidney dysfunction. In the Bj-IM group, renal tubular injury was aggravated (score 4) with collagen deposition and renal dysfunction was observed in the first 24 h: hyperfiltration, proteinuria, albuminuria and decreased fractional sodium excretion (FENa), regardless of the administered dose. Over time, the glomerular lesion was intensified, with a decrease in glomerular filtration rate (GFR; 67%), blood urea-nitrogen (BUN; 68%) and urine volume decrease (71%). Proteinuria and tubular function returned to control levels after 72 h. We attributed the pronounced kidney injury and reduced filtration function in the Bj-IM to the muscle damage provoked by the IM administration. We concluded that the Bj-IM is the best preclinical model of AKI with the monitoring of the progression of renal function in the periods of 24 and 72 h.
Collapse
Affiliation(s)
- Mayara A Romanelli
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Paula A Soeiro
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Raquel Costa da Silva
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Rosilane Taveira-da-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo A Melo
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Lucienne S Lara
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Doxycycline treatment reestablishes renal function of Wistar rats in experimental envenomation with Bothrops jararacussu venom. Toxicon 2021; 199:20-30. [PMID: 34058237 DOI: 10.1016/j.toxicon.2021.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022]
Abstract
Acute kidney injury is one of the main complications of ophidian accidents and the leading cause of death in patients who survive the initial damage effects of venom. The hypothesis proposed in this investigation is that the pharmacological repositioning of doxycycline (doxy) attenuates renal injury provoked by Bothrops jararacussu (Bj) venom. Male Wistar rats were subjected or not (control) to experimental envenomation with Bj venom (3.5 mg/kg, im). Doxy (3 mg/kg, ip) was administered 2 h after envenoming. Envenomation with Bj venom promoted tissue damage in the renal cortex (moderate degree, score 3) in 24 h associated with decreased glomerular and tubular function, which promoted proteinuria and polyuria. Doxy treatment prevented the increase in urinary volume in 3 times, the increase in plasma creatinine in 33%, the increase in blood urea-nitrogen accumulation in 65%, the increase in urinary Na+ excretion in 2 times, marked proteinuria and kidney cortex injury induced by Bj envenomation. Bj venom promoted increase in protein content (66%) and reduction of 45% (Na++K+)-ATPase activity in the renal cortex. The enzyme was detected mainly in the luminal membrane. Doxy treatment was effective in preventing the mentioned alterations, maintaining (Na++K+)-ATPase in the basolateral membranes.
Collapse
|
4
|
Teixeira-Cruz JM, Strauch MA, Monteiro-Machado M, Tavares-Henriques MS, de Moraes JA, Ribeiro da Cunha LE, Ferreira, Jr. RS, Barraviera B, Quintas LEM, Melo PA. A Novel Apilic Antivenom to Treat Massive, Africanized Honeybee Attacks: A Preclinical Study from the Lethality to Some Biochemical and Pharmacological Activities Neutralization. Toxins (Basel) 2021; 13:toxins13010030. [PMID: 33466223 PMCID: PMC7824798 DOI: 10.3390/toxins13010030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/25/2022] Open
Abstract
Massive, Africanized honeybee attacks have increased in Brazil over the years. Humans and animals present local and systemic effects after envenomation, and there is no specific treatment for this potentially lethal event. This study evaluated the ability of a new Apilic antivenom, which is composed of F(ab’)2 fraction of specific immunoglobulins in heterologous and hyperimmune equine serum, to neutralize A. mellifera venom and melittin, in vitro and in vivo, in mice. Animal experiments were performed in according with local ethics committee license (UFRJ protocol no. DFBCICB072-04/16). Venom dose-dependent lethality was diminished with 0.25–0.5 μL of intravenous Apilic antivenom/μg honeybee venom. In vivo injection of 0.1–1 μg/g bee venom induced myotoxicity, hemoconcentration, paw edema, and increase of vascular permeability which were antagonized by Apilic antivenom. Cytotoxicity, assessed in renal LLC-PK1 cells and challenged with 10 μg/mL honeybee venom or melittin, was neutralized by preincubation with Apilic antivenom, as well the hemolytic activity. Apilic antivenom inhibited phospholipase and hyaluronidase enzymatic activities. In flow cytometry experiments, Apilic antivenom neutralized reduction of cell viability due to necrosis by honeybee venom or melittin. These results showed that this antivenom is effective inhibitor of honeybee venom actions. Thus, this next generation of Apilic antivenom emerges as a new promising immunobiological product for the treatment of massive, Africanized honeybee attacks.
Collapse
Affiliation(s)
- Jhonatha Mota Teixeira-Cruz
- Graduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.M.T.-C.); (M.M.-M.); (M.S.T.-H.); (J.A.d.M.)
| | - Marcelo Abrahão Strauch
- Graduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.M.T.-C.); (M.M.-M.); (M.S.T.-H.); (J.A.d.M.)
- Scientific Board, Vital Brazil Institute (IVB), Niterói, Rio de Janeiro 24230-410, Brazil;
- Correspondence: (M.A.S.); (L.E.M.Q.); (P.A.M.)
| | - Marcos Monteiro-Machado
- Graduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.M.T.-C.); (M.M.-M.); (M.S.T.-H.); (J.A.d.M.)
| | - Matheus Silva Tavares-Henriques
- Graduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.M.T.-C.); (M.M.-M.); (M.S.T.-H.); (J.A.d.M.)
| | - João Alfredo de Moraes
- Graduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.M.T.-C.); (M.M.-M.); (M.S.T.-H.); (J.A.d.M.)
| | | | - Rui Seabra Ferreira, Jr.
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, São Paulo 18610-307, Brazil; (R.S.F.J.); (B.B.)
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, São Paulo 18610-307, Brazil; (R.S.F.J.); (B.B.)
| | - Luis Eduardo M. Quintas
- Graduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.M.T.-C.); (M.M.-M.); (M.S.T.-H.); (J.A.d.M.)
- Correspondence: (M.A.S.); (L.E.M.Q.); (P.A.M.)
| | - Paulo A. Melo
- Graduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.M.T.-C.); (M.M.-M.); (M.S.T.-H.); (J.A.d.M.)
- Correspondence: (M.A.S.); (L.E.M.Q.); (P.A.M.)
| |
Collapse
|
5
|
Mohanty I, Arunvikram K, Behera D, Milton AAP, Elaiyaraja G, Rajesh G, Dhama K. Immunomodulatory and Therapeutic Potential of Zootoxins (Venom and Toxins) on the Way Towards Designing and Developing Novel Drugs/Medicines: An Overview. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.126.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|